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Abstract
Trehalose 6-phosphate (T6P) signalling regulates carbon use and allocation and is a 
target to improve crop yields. However, the specific contributions of trehalose phos-
phate synthase (TPS) and trehalose phosphate phosphatase (TPP) genes to source- and 
sink-related traits remain largely unknown. We used enrichment capture sequencing 
on TPS and TPP genes to estimate and partition the genetic variation of yield-related 
traits in a spring wheat (Triticum aestivum) breeding panel specifically built to cap-
ture the diversity across the 75,000 CIMMYT wheat cultivar collection. Twelve phe-
notypes were correlated to variation in TPS and TPP genes including plant height 
and biomass (source), spikelets per spike, spike growth and grain filling traits (sink) 
which showed indications of both positive and negative gene selection. Individual 
genes explained proportions of heritability for biomass and grain-related traits. Three 
TPS1 homologues were particularly significant for trait variation. Epistatic interac-
tions were found within and between the TPS and TPP gene families for both plant 
height and grain-related traits. Gene-based prediction improved predictive ability for 
grain weight when gene effects were combined with the whole-genome markers. Our 
study has generated a wealth of information on natural variation of TPS and TPP 
genes related to yield potential which confirms the role for T6P in resource allocation 
and in affecting traits such as grain number and size confirming other studies which 
now opens up the possibility of harnessing natural genetic variation more widely to 
better understand the contribution of native genes to yield traits for incorporation into 
breeding programmes.
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1  |   INTRODUCTION

The genetic improvement of wheat for increased yields is 
an urgent challenge. In bread wheat (Triticum aestivum L.), 
studies are increasingly focusing on the relationship between 
the supply of assimilates and the capacity to utilize carbo-
hydrates, that is source and sink and their integration to in-
crease genetic gains for yield (Reynolds et al., 2017). The 
trehalose pathway as a sugar signalling system consisting of 
trehalose phosphate synthase (TPS) and trehalose phosphate 
phosphatase (TPP) genes is emerging as a central regulator of 
both source- and sink- related traits. These traits encompass 
growth and development of the source including shoot leaf 
area, architecture and photosynthesis, and processes in sinks 
such as grain number and size (Fichtner et al., 2021; Paul 
et al., 2020b).

The trehalose pathway has an indispensable function 
in plants through the intermediate trehalose 6-phosphate 
(T6P) as a signal of sucrose availability (Lunn et al., 2006; 
Schluepmann et al., 2003). T6P is an inhibitor of SnRK1 
(Zhang et al., 2009), a member of the AMPK/SNF1 group 
of protein kinases. These kinases coordinate cellular and 
organismal responses to carbon and energy. Uniquely in 
plants T6P conveys information about carbon status to 
this central regulator. Through SnRK1, T6P de-represses 
gene expression for carbon use in biosynthetic pathways 
and growth and development (Nunes et al., 2013; Zhang 
et al., 2009). On this basis, the pathway is a promising can-
didate for potential modification in crops to alter growth, 
development, architecture and the biosynthetic pathways 
that underpin the accumulation of yield-determining end-
products such as starch (Paul et al., 2018). Grain-related 
traits are already known to be regulated by this pathway. 
For example, overexpression of a TPP gene in maize led to 
improved grain set (grain numbers) and yield in the field 
(Nuccio et al., 2015). In bread wheat, a TPP gene was as-
sociated with grain weight (Zhang et al., 2017). TPP genes 
contribute to the difference in plant height and assimilate 
partitioning in sweet and grain sorghum (Li et al., 2019). 
The chemical intervention of T6P levels in wheat through 
the application of UV-cleavable T6P precursors increased 
grain size in well-watered conditions and enhanced vege-
tative growth recovery after drought stress (Griffiths et al., 
2016). Consistent with a central function in the regulation 
of carbon and energy balance, Kretzschmar et al., (2015) 
showed that a TPP gene, OsTPP7, as the genetic determi-
nant in qAG-9–2, a major quantitative trait locus (QTL) 
for the promotion of anaerobic germination under flood-
ing in rice. All these examples show the centrality of the 
pathway in determining yield processes and significantly 
both TPS and TPP genes are listed as having been modi-
fied during domestication in maize (Hufford et al., 2012), 
potato (Xu et al., 2017) and sugarcane (Hu et al., 2020) 

yet the association with traits and specific opportunities for 
further genetic enhancement of the pathway through selec-
tive breeding is not clear.

Recently, a spring wheat panel was specifically built to 
capture the genetic diversity of the 75,000 wheat cultivar col-
lection to be available for the wheat community. The panel, 
known as the High Biomass Association Mapping Panel 
(HiBAP), consists of bread spring wheat lines constructed 
from elite high-yielding material, pre-breeding lines, land-
races and synthetically derived lines selected for high yield 
and biomass. Marker-trait associations have recently been 
published for this population (Molero et al., 2019). To com-
plement the genome-wide association studies, the genetic 
contribution of specific regulatory pathways to complex 
traits through variation inside genes is emerging as a new 
approach to understanding the role of key pathways and 
regulatory mechanisms to enable selection in crop breeding 
(Gardiner et al., 2018; Jordan et al., 2015; Uauy et al., 2017). 
Exome capture (enrichment) sequencing (Winfield et al., 
2012) has been used for gene-based association analysis 
(Neale & Sham, 2004), and screening signatures of selection 
in the whole genome in barley (Russell et al., 2016) and wild 
emmer (Avni et al., 2017), but selection signals in specific 
regulatory genes have not been performed in wheat. The use 
of genic variants for gene-based prediction within regulatory 
pathways is showing great promise for application in breed-
ing (Edwards et al., 2016; Zhang et al., 2020).

In this study, we used enrichment capture sequencing on 
the 25 TPS and 31 TPP genes found in wheat (Paul et al., 
2018) for the dissection of the genetic architecture of 24 
traits in the wheat HiBAP panel specifically developed to 
encompass genetic diversity across the 75,000 CIMMYT 
wheat collection (Molero et al., 2019). The overall aim was 
to better understand the extent to which variation in TPS 
and TPP genes was related to crop traits, evidence for se-
lection that has already occurred, and evidence of ongoing 
selection and future selection possibilities. The hypothesis 
is that a central mechanism of sucrose resource allocation 
will already have been selected for crop improvement, but 
recent genetic and chemical interventions in crops (Paul 
et al., 2020b) indicate that further improvement and se-
lection are most probable. Specific goals were to (i) apply 
single variant analysis and gene-based approaches to max-
imize the detection of genetic associations, as both meth-
ods have different assumptions (univariate and multivariate 
distribution) about the genetic effects, (ii) evaluate the in-
tragenic patterns of signatures of selection and epistatic 
interaction to find evidence of ongoing selection, (iii) esti-
mate the genetic contribution of trehalose genes to the vari-
ation of complex traits across and within exotic-derived 
and elite subpopulations, and (iv) explore various genomic 
prediction models using the whole genome and trehalose 
genes to predict complex traits. Our study has generated 
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a wealth of information regarding links of TPS and TPP 
genes to yield traits, historical and ongoing selection which 
will serve to direct strategies of crossing and selection from 
a diverse CIMMYT genetic resource and for in-depth mode 
of action studies to define the specific contribution of TPS 
and TPP genes to yield-related traits.

2  |   MATERIALS AND METHODS

2.1  |  Enrichment capture sequencing and 
variant calling

Enrichment capture and bioinformatics analysis were carried 
out as per Joynson et al., (2021). Briefly, DNA was extracted 
from flag leaf material from each panel member. A combina-
tion of 10 leaves per plot was pooled before extraction using 
a standard CTAB method.

Sequences for 25 TPS and 31 TPP genes were taken 
from Paul et al., (2018). For TPSs these were annotated as 
TPS1, TPS6, TPS7 and TPS11 in accordance with the near-
est A.  thaliana TPS (Paul et al., 2018). For TPPs this was 
not possible due to greater genetic divergence in TPPs be-
tween the two species. Probe sequences (120 bp) were de-
signed in an end-to-end format targeting gene bodies and 
2000 bp upstream ensuring capture of each gene's promoter 
sequence. These were integrated into a 12 Mb capture probe 
set. Libraries were constructed using the TruSeq DNA li-
brary preparation kit (Illumina) and were sequenced on 
a NovaSeq6000. The 150  bp paired-end sequences were 
mapped to the Refseq-v1.0 reference sequence using BWA 
MEM version 0.7.13 73 with subsequent filtering carried 
out using SAMtools v1.4 and Picard Tools MarkDUplicates. 
Variants were called using bcftools and filtered using GATK 
(McKenna et al., 2010).

2.2  |  Mapping population and 
phenotypic traits

Mapping population and phenotypic data analyses have 
been described by Molero et al., (2019). Briefly, we used the 
HiBAP (High Biomass Association Panel) population which 
was specifically built to capture the genetic diversity across 
the 75,000 lines of the CIMMYT wheat collection through 
149 wheat spring genotypes of the wheat pre-breeding and 
breeding programme. This panel comprised two main sub-
populations of 97 elite lines and 52 exotic derivatives (lan-
draces, synthetic and introgression lines). The field trials 
were conducted in two consecutive growing seasons (2015/16 
and 2016/17) under fully irrigated conditions situated in the 
Yaqui Valley, Mexico.

We used the means adjusted for spatial and temporal 
factors of 24 phenotypes: plant height (PH, cm), peduncle 
length (PED, cm), biomass at physiological maturity (BM, g/
m2), harvest index (HI), yield (Yield, g/m2), thousand grain 
weight (TGW, g), grains per m2 (GM2), percentage of grain 
filling (PGF), grain filling rate (GFR, yield/grain filling dura-
tion, g/m2/day), spikes per m2 (SM2), grains per spike (GSP), 
grain weight per spike (GWSP, g), spikelets per spike (SpS, 
number), infertile spikelets per spike (InfSpS), spike length 
(Spike, cm), awn length (Awns, cm), rapid spike growth 
phase (RSGP, percentage), days to initiation of booting 
(DTInB), days to anthesis (DTA), days to maturity (DTM), 
thermal time to initiation of booting (TTInB), thermal time 
to anthesis (TTAnth), thermal time to maturity (TTPM) and 
thermal time to anthesis +7 days (TTA7H). For further detail 
on trait evaluation see Molero et al., (2019).

2.3  |  Variant filtering and annotation

Twenty-one TPS and 27 TPP genes showed at least one vari-
ant and these were submitted to variant filtering (Table S2). 
For the gene-based analysis, we applied two strategies of 
variant filtering using (a) MAF ≥ 0.01 as combining low and 
common variants in region-based testing is likely to improve 
the statistical power of the models in detecting associations 
(Timpson et al., 2018), and (b) MAF ≥ 0.05. For the single-
point analysis, we only used markers with MAF ≥ 0.05. For 
the remaining genetic analyses, we used MAF  ≥  0.01 to 
capture more variation inside genes. Markers with call rate 
(CR) <95% were removed, and the remaining missing vari-
ants were imputed using Beagle 4.1 (Browning & Browning, 
2016) within the codeGeno function from the Synbreed R 
package (Wimmer et al., 2012). The final genotypic matrix 
was composed of 749 (1% MAF) and 319 (5% MAF) vari-
ants. The Ensembl Plants (Bolser et al., 2016) variant effect 
predictor (VEP) tool (McLaren et al., 2016) was used to an-
notate variants (coding and non-coding substitutions) and 
retrieve the functional impact scores of non-synonymous 
mutations according to the Sorting Intolerant From Tolerant 
(SIFT) algorithm (Vaser et al., 2016).

2.4  |  Inference of population structure and 
genetic differentiation

We explored the gene ontology network (biological process) 
of the trehalose biosynthetic pathway using the Cytoscape 
ClueGo plug-in (Bindea et al., 2009) inputting the wheat 
reference genome (IWGSC RefSeq v1.0 annotation) from 
Ensembl Plants. Additionally, we estimated the genetic di-
versity of exome variants by calculating the polymorphic 
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information content (PIC) and MAF using the popgen func-
tion from snpReady R package (Granato et al., 2018).

We detected the genomic diversity structure of the popula-
tion at the gene level. First, we applied a principal component 
(PC) analysis using the SNPRelate R package (snpgdsPCA 
function; Zheng et al., 2012). Second, we applied a discrim-
inant analysis of principal components (DAPCs) using the 
adegenet R package (Jombart et al., 2010). The group clus-
tering used was inferred by Molero et al., (2019). The con-
tributions (loadings) of each gene variant were estimated 
using the loadingplot function. Finally, a neighbour-joining 
tree (NJT) was generated based on the modified Euclidean 
distance using the ape R package (Paradis et al., 2004) and 
the pairwise genetic distance between populations (FST) 
was calculated following Weir and Cockerham (1984) in the 
SNPRelate R package. The genome-wide marker data (9267 
variants remaining after quality control), generated using the 
35 K Affymetrix Axiom® HD wheat SNP array (Allen et al., 
2017), was used only for the DAPCs.

We estimated the level of linkage disequilibrium (LD) 
between and within trehalose genes using the square allele 
frequency correlation coefficient (r2) calculated for each pair-
wise combination in PLINK v.1.9 (Purcell et al., 2007). The 
LD decay curve was fitted by a non-linear regression model 
(Marroni et al., 2011), obtained by fitting r2 with distance 
using Hill and Weir expectation of r2 between adjacent sites 
(Hill & Weir, 1988; Remington et al., 2001). Haplotype LD 
block was visualized in elite and exotic subgroups separately 
using the LDheatmap R package (Shin et al., 2006). Pairwise 
variant interactions between gene regions were tested by a 
linear regression analysis using PLINK --epistasis command. 
Regression coefficients (betas) were estimated for each inter-
action. The Bonferroni multiple testing was used to correct 
the epistatic significance threshold (0.05/N), where N is the 
number of interactions tested.

2.5  |  Single-point scan and gene-based  
mapping

Single variant association analysis was performed using 
a Mixed Linear Model (MLM) in GAPIT v3.0 R package 
(Lipka et al., 2012; Wang & Zhang, 2018) incorporating 
genomic kinship (K) matrix and the first three PCs (Q) to 
control for the confounding effects of cryptic relatedness 
and population structure (Yu et al., 2006). The default false 
discovery rate (FDR) (Benjamini & Hochberg, 1995) and 
Bonferroni multiple testing (Hochberg, 1988) were used to 
correct the genome-wide significance thresholds (α = 0.05).

Following recommendations that region-based tests have 
different assumptions about the genetic effects and weight-
ing functions (Bomba et al., 2017; Lee et al., 2014; Nicolae, 
2016), we measured the performance of gene mapping 

empirically using three approaches. First, we used a tradi-
tional multiple linear regression (MLR) model (Chapman 
& Whittaker, 2008) considering genotype effects as fixed. 
Second, we applied the SKAT model (Chen et al., 2013; 
Wu et al., 2011) assigning an Identity by State (IBS) kernel 
function. Third, we used the combination of burden test and 
SKAT named SKAT-O (Lee et al., 2012, 2014). Both kernel-
based tests consider the genotype effects as random. Variance 
components were estimated using restricted maximum like-
lihood (REML). The weights were calculated using the stan-
dard probability density function of the beta distribution. For 
further detail on the model description see Svishcheva et al., 
(2019). We estimated the P-values by using Kuonen's method 
(Kuonen, 1999) and considered the mode of inheritance as 
additive. The genomic relationship matrix (GRM) was calcu-
lated using the first formula proposed by VanRaden (2008), 
and the first three PCs were used as covariates in the mod-
els. Gene-based mapping was performed using the MLR and 
FFBSKAT (rho was assigned for SKAT-O test) functions in 
the FREGAT R package (Belonogova et al., 2016). Genes 
containing only one variant were removed from the analyses. 
We included all variant annotations (coding and non-coding) 
in the tests (Neale & Sham, 2004) following suggestions that 
combining signals from multiple mutations in the same gene 
increases model statistical power (Sham & Purcell, 2014). 
We adjusted the P-values for multiple comparisons to con-
trol for type I error at α  =  0.05 using the traditional FDR 
and Bonferroni procedure (0.05/N, where N is the number of 
genes tested) using the p.adjust R function. Finally, quantile–
quantile (Q-Q) plots were used to verify the fitness of the 
model and plotted using the CMplot R package (https://
github.com/YinLi​Lin/R-CMplot).

2.6  |  Screening for signature of selection 
at the gene level

We evaluated the evidence of selection at the gene level by 
estimating the normalized ratio of non-synonymous (mis-
sense, nonsense and splicing) substitutions per synonymous 
site (ω  =  dN/dS) using an optimized Poisson-based model 
(dNdScv) in the dndscv R package (Martincorena et al., 
2017). Briefly, this model accounts for variation in mutation 
rates, sequence context and full trinucleotide mutability. To 
estimate the mutation rate of a gene it uses a joint likelihood 
function combining local (synonymous substitutions in a 
gene) and global (negative binomial regression across genes) 
information to estimate the mutation rate of a gene. We used 
the buildref function to input the wheat reference genome 
(IWGSC RefSeq v1.0 annotation) from Ensembl Plants per 
chromosome. Global ω estimates across all genes were esti-
mated per chromosome. A global q-value ≤ 0.1 (without con-
sidering InDels) was used to identify statistically significant 

https://github.com/YinLiLin/R-CMplot
https://github.com/YinLiLin/R-CMplot
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genes. A confidence interval (α = 0.95) was calculated per 
gene. Selection was measured as positive (ω > 1), negative 
(ω < 1) and neutral (ω = 1; Nielsen, 2005).

2.7  |  Partitioning heritability per gene and 
predictive models

We investigated distributions of population genetic param-
eters by estimating beta and effect size. First, we estimated 
the coefficient of regression (β) by fitting a single-point as-
sociation test (Q+K model) using the FREGAT R package. 
Briefly, beta is the absolute additive effect of the minor alleles 
on the phenotype in standard deviations (Park et al., 2011; 
Timpson et al., 2018). Second, we estimated the effect size, 

defined as the contribution of the variant to the genetic vari-
ance of the trait, following the equation: EF = 2�2f (1 − f), 
where � measures the regression effect, and f  denotes the 
minor allele frequency (Park et al., 2010, 2011).

We further investigated the genetic architecture of complex 
traits by partitioning the genetic variation of individual genes 
and gene families within and across elite and exotic subpopula-
tions using the genomic-relatedness-based restricted maximum 
likelihood (GREML) approach (Yang et al., 2010) implemented 
in GCTA software v1.93.1beta (Yang et al., 2011). To estimate 
the proportion of the phenotypic variance explained (i.e. ge-
nomic heritability) per gene we fitted multiple GRM in the 
model, one contributed by the whole genome (35 K SNP Chip) 
and a second by a specific gene region. The proportion of her-
itability was estimated ignoring population structure (Table 1; 

F I G U R E  1   Population structure analysis using the exome capture data in the wheat HiBAP panel. (a) Gene ontology network and summary 
of the trehalose biosynthetic pathway. The same colour nodes represent similar biological processes. Trehalose phosphate synthase (TPS), 
trehalose 6-phosphate (T6P) and trehalose phosphate phosphatase (TPP). (b) Neighbour-joining tree (NJT) based on Euclidean distance where 
each colour represents a group. Group clustering was determined by Molero et al., (2019). (c) Density of individuals from a single discriminant 
function using the 35 K SNP Chip and exome capture data. Dark grey colour on the top right is the number of principal components (PC) retained 
for the discriminant analysis (DA). FST values are shown inside the plots. (d) First two PCs using exome data coloured by groups. Bottom left 
plot represents the variance explained by the first twenty PCs. (e) Contributions (loadings) of each gene variant to the DA function. (f) Pattern of 
linkage disequilibrium (LD) decay among all pairs of genetic variants for the complete set of individuals (all), elite and exotic materials. Values 
reported are the average squared correlations (r2) across all genes. (g) LD heatmap of the gene variants for elite and exotic subgroups. The colour 
gradient scale represents the range of r2 values. Black represents the highest estimates of LD. (h) Radar plot showing the distribution of Variant 
Effect Predictor (VEP) consequences (five non-coding and four coding substitutions) for the trehalose phosphate synthase (TPS) and trehalose 
phosphate phosphatase (TPP) gene family
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Figure 5) and adjusting PCs as fixed covariates (Table S1). We 
reported the single gene heritability as h2

l
= �2

l
∕
(

�2

g
+ �2

l
+ �2

�

)

 
(see Methods S1). Additionally, we partitioned the variation 
of the gene family as h2

TPS
= �2

TPS
∕
(

�2

g
+ �2

TPS
+ �2

TPP
+ �2

�

)

 (see 
Methods S2). �2

l
, �2

g
, �2

TPS
, �2

TPP
 and �2

�
 are the local gene, global 

whole genomic, TPS and TPP gene family, and residual vari-
ances, respectively.

We used the additive genomic best linear unbiased pre-
diction (GBLUP) model controlling for population structure 
(Lyra et al., 2018) to compare the predictive ability of four 
gene-based approaches (see Methods S3). Prediction of the 
phenotypes was performed by using the (i) genome-wide 
marker (35 K SNP Chip) effects, (ii) TPS and (iii) TPP gene 
family effects, and (iv) combining the whole-genome varia-
tion with the effects of the TPS and TPP gene families.

3  |   RESULTS

3.1  |  Exome sequences from trehalose 
pathway genes revealed substantial within-
group variation in elite germplasm

We generated the gene ontology network and a framework of 
the trehalose biosynthetic pathway (Figure 1a). Genome-wide 
(FST  =  0.1) and exome profiles (FST  =  0.06) revealed mild 
genetic structuring between groups and a substantial within-
group variation in elite lines, suggesting that these genotypes 
have gene-specific mutations (Figure 1b–d). Interestingly, the 
most contributing alleles to classify the groups were predomi-
nantly TPP variants (Figure 1e). We found that gene-wide LD 
decayed relatively slowly in the panel, implying that many 
genetic variants between genes remained correlated, also sug-
gesting reduced recombination rates due to artificial selection 
(Figure 1f). Elite lines revealed a larger LD block between 
genes compared to exotic materials, indicating fewer recom-
bination events, most likely due to bottlenecks created by the 
development of elite inbred lines (Figure 1g).

3.2  |  Gene-based scanning detected multiple 
trehalose pathway genes associated with key 
agronomic traits

Exome capture data showed that the number of variants in 
TPS and TPP sequences varied greatly among genes from 
1–173 in 21 TPS and 27 TPP homologues (Tables S1–S2), 
and most of them were predicted as non-coding substitutions 
(e.g. introns and upstream) whereas, in exonic regions, mis-
sense (non-synonymous) substitution was the most prevalent 
annotation (Figure 1h; Tables S1–S2).

From the single-point scans, we detected three point 
mutations in the TPP gene TraesCS1A02G210400 

linked with peduncle length and one variant in TPS7 
(TraesCS5B02G117800) associated with infertile spikelets 
per spike (SpS) (Table S3). Interestingly, all significant signals 
identified fell in non-coding regions. The gene-based mapping 
detected more signals than single variant analysis, identifying 
a total of 11 TPS and six TPP genes associated with 11 phe-
notypes using MAF ≥ 1% (Table 1; Figure 2; Figure S1), and 
seven genes linked to six traits using MAF ≥ 5% (Table 1). 
Plant height had the highest number of significant associa-
tions (i.e. four TPS and two TPP) followed by peduncle length. 
There were also effects on grain traits related to spikelet fertil-
ity such as number of spikelets per spike, grains and spikes per 
m2, and grain filling duration. There were small differences in 
the relative performances of the region-based models, but we 
observed a slight advantage of the multiple linear regression 
approach for gene discovery showing good model fits (Figure 
2; Figure S1).

3.3  |  Trehalose pathway genes revealed  
positive epistatic interactions, pleiotropy  
and distinct intragenic linkage 
disequilibrium patterns

We identified significant epistatic interactions within and 
between trehalose pathway genes associated with five yield-
related traits, particularly for plant height and peduncle length, 
but also grains per spike, percentage of grain filling and spike-
lets per spike (Figure 3a–c; Table S1). A large fraction of the 
interactions was positively associated with the traits (positive 
betas, Figure 3c). Accordingly, we found connectivity between 
coding genetic variants, for example missense (TPS1 on chro-
mosome 1A) and synonymous variants (TPP on chromosome 
3D) positively interacting with each other to enhance the per-
centage of grain filling. Furthermore, our results also showed 
that six genes affected multiple distinct phenotypic traits (i.e. 
pleiotropic effects), particularly the TPS1 on chromosome 1D 
(TraesCS1D02G065600, Figure 2a).

By evaluating the extent of intragenic LD, we identified 
substantial variation among TPS and TPP genes (Figure 
S2). For instance, the LD in homologues followed distinct 
patterns with some persisting across longer distances (e.g. 
TraesCS1A02G064800) while others increased with physi-
cal distance (TraesCS1B02G083100) or decayed within 1000 
base pairs (TraesCS1D02G065600) implying differences in 
associations of TPS and TPP genes with neighbouring alleles.

3.4  |  A large fraction of trehalose pathway 
genes are under positive and negative selection

We measured the strength and mode of natural selection 
acting on regulatory regions via the dN/dS ratio using a 
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trinucleotide substitution model (Figure 4; Table 1). Nearly 
one-half of the TPS and TPP genes showed strong indications 
of negative and positive selection indicating that purifying 
(negative) and diversifying (positive) selection are acting on 
them (Figure 4a). We observed high values (ω > 1, positive 

selection) of global information (i.e. variation of the mutation 
rate across genes in each sub-genome) for the chromosomes 
1D and 2B (Figure 4d). Interestingly, several genes found to 
be under positive selection were also associated with a spe-
cific phenotype, for example TPS1 on chromosomes B and 

F I G U R E  2   Summary of the gene-based association analysis in the wheat HiBAP panel. (a) Trehalose phosphate synthase (TPS) and trehalose 
phosphate phosphatase (TPP) genes are shown in the left panel. Same letter indicates homoelogues genes. Circle forms encoded by different 
colours represent genes detected by sequence kernel association test (SKAT), optimized SKAT (SKAT-O) and multiple linear regression (MLR) 
models. Gene-trait association detected using minor allele frequency (MAF) ≥ 0.01. Significance level used is Bonferroni correction (no asterisk, 
α = 0.05) and False Discovery Rate (with asterisk, α = 0.05). Circles overlapping each other represent multiple models detecting the same 
gene. Only genes and traits on which significant associations were detected are shown in the figure. a−dSame letter right to the gene ID indicates 
homoelogues genes. (b) Manhattan plot from the gene-based mapping. Results shown are from the MLR model. The x-axis shows genomic position 
(chromosomes 1A-7B), and the y-axis shows statistical significance [–log10(P)]. Dotted line indicates significance level for Bonferroni correction 
and False Discovery Rate (α = 0.05). Each dot represents a gene coloured by phenotype. Significant gene names are shown by black arrows. Traits 
are plant height (PH, cm), peduncle length (PED, cm), final biomass (BM, g/m2), grains per m2 (GM2), grain filling rate (GFR, yield/grain filling 
duration, g/m2/day), percentage of grain filling (PGF), spikes per m2 (SM2), infertile spikelets per spike (InfSpS, number), spikelets per spike (SpS, 
number), rapid spike growth phase percentage (RSGP) and awn length (Awns, cm)
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D (plant height and final biomass) (Figure 2; Figure 4) and a 
TPP gene TraesCS1A02G210400 (plant height and peduncle 
length). Some TPP genes showing positive selection were 
not linked to traits measured in our study (Figure 4a).

3.5  |  Partitioning the total genetic 
variance of trehalose genes revealed 
substantial contributions of the pathway to the 
phenotypic variance

By quantifying the contribution of each variant to the genetic 
variance of the trait, we observed contrasting patterns of the 
beta densities, clearly showing differences in the peak and 
distribution across families (Figure 5a). Additionally, most 
of the variants with large effect sizes were found at low fre-
quencies, following a decay curve shape (Figure 5b, Table 
S1).

We assessed the genetic architecture of complex traits 
by breaking down the total variance into single gene and 
gene families, thereby estimating the contribution of each 

component to the phenotypic variation (Figure 5c,d; Table 1; 
Table S1). The proportion of heritability per gene varied con-
siderably between gene families (e.g. explaining up to 18% of 
the variance for biomass) (Figure 5c). Likewise, we showed 
that TPS1 homologues explained a high fraction of herita-
bility (with some significant regions) for thousand grain 
weight, grains per m2, plant height, final biomass and harvest 
index (Table 1; Table S1). We further observed a meaningful 
amount of the variance explained by the TPS family in the 
complete set (e.g. 0.13 of the heritability for grains per spike; 
Figure 5d). Intriguingly, a pronounced contribution (e.g. 
0.02–0.41 of the heritability) of TPP genes was evidenced in 
the exotic germplasm, particularly for sink traits, for example 
grains per m2, grains per spike and percentage of grain filling.

Under the expectation that well-known regulatory path-
ways could be used in gene-based prediction, we identified 
that complex phenotypes were moderately predicted using 
only single-family effects (e.g. 0.09–0.47 for TPS and 0.03–
0.49 for TPP) (Figure 5e; Table S1). When we included gene 
effects simultaneously with whole-genome markers, we ob-
served gains of predictive ability for grain weight per spike 

F I G U R E  3   Epistatic interaction of polygenic traits across trehalose family genes in the wheat HiBAP panel. (a) Venn diagram shows the 
unique and shared number of gene interactions per family. (b) Significant SNP-SNP interaction within- (solid arrow) and between- (dotted arrow) 
trehalose phosphate synthase (TPS) and trehalose phosphate phosphatase (TPP) gene families. Arrows encoded by different colours represent 
phenotypes in which interactions between gene variants were found in at least one occasion. Significance level used was Bonferroni correction 
(α = 0.05). a−bSame letter inside circle indicates homoelogues genes. Only genes and traits on which significant connections were detected are 
shown in the figure. (c) Distribution of regression coefficients (betas) of the interaction against position (bp) of one variant for five phenotypes. 
Traits are plant height (PH, cm), peduncle length (PED, cm), grains per spike (GSP, number), percentage of grain filling (PGF) and spikelets per 
spike (SpS, number)
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F I G U R E  4   Inference of signature of selection across two trehalose family genes in the wheat HiBAP panel. (a) Gene-wide ratio (ω) 
showing evidence of negative and positive selection. Only genes on which a ratio was estimated are shown in the figure. (b) Total number of 
non-synonymous (dN) and synonymous (dS) substitutions per gene using the dNdScv method. **Genes detected at α ≤ 0.1 (qglobal). Trehalose 
phosphate synthase (TPS) and trehalose phosphate phosphatase (TPP) genes are shown in the panel. (c) Number of genes under different levels of 
positive and negative selection based on the ω ratio distribution. (d) Global ω estimates across all genes per chromosome. Values above bar plots 
indicate 95% confidence interval (CI). The number of genes (n) in each sub-genome is given inside the plot
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F I G U R E  5   Genetic architecture of complex traits using exome capture data of trehalose genes in the wheat HiBAP panel. Gene families are 
trehalose phosphate synthase (TPS) and trehalose phosphate phosphatase (TPP). (a) Estimate of the density distribution of regression coefficients 
(betas). (b) Association between effect size (ES) and minor allele frequency (MAF). (c) Association between the number of variants and the 
proportion of heritability per gene. Some genes are shown by black arrows. (d) Proportion of heritability in the complete set, elite and exotic 
subgroups. (e) Predictive ability based on genome-wide markers, single gene family and combined effects. Numbers inside plots represent the mean 
from 50 random cross-validations. Different letters above violin plots indicate significant differences at α = 0.05 from Tukey's test. Genome-wide 
markers represent the 35 K Affymetrix Axiom® HD wheat array. Traits are grains per m2 (GM2), grains per spike (GSP, number), percentage of 
grain filling (PGF), final biomass (BM, g/m2) and days to anthesis (DTA, days)
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(i.e. significant increase of 6% compared to the traditional 
model).

4  |   DISCUSSION

The T6P signalling pathway is a central regulatory system of 
resource allocation and source-sink interactions and is emerg-
ing as an important target in crops such as maize, rice, wheat 
and sorghum (Paul et al., 2018, 2020a). Here for the first time 
we analysed comprehensive exome SNP information for 
TPS and TPP genes and dissected the genetic architecture of 
yield-related traits in a spring wheat panel specially designed 
to represent the genetic diversity of 75,000 CIMMYT lines 
(Molero et al., 2019). We showed significant relationships 
of TPS and TPP genes with twelve agronomic traits with 
evidence of historical and ongoing selection and identified 
opportunities for future selection of TPS and TPP genes and 
potential epistatic interactions between TPS and TPP genes 
for yield improvement.

4.1  |  Gene-based scanning detected multiple 
trehalose pathway genes associated with key 
agronomic traits

Previous genome-wide and exome studies of complex traits 
suggested that both coding and non-coding variants tend 
to contribute to the phenotypic variance (Li et al., 2016; 
Visscher et al., 2017). Consistent with this expectation, we 
identified exclusively non-coding regions associated with 
the phenotypes (Table S3). Moreover, we empirically con-
firmed the argument that gene-based mapping would have 
greater statistical power than conventional single analysis (Li 
& Leal, 2008) as fewer signals were detected using the latter 
approach. We also observed that multiple linear regression 
outperformed the methods with random-effects (Figure 2a) 
showing a relatively good model fit (see QQ plots in Figure 
S1). Exome capture has proven in this study to be a very vi-
able means to narrow down the relative importance of core 
network genes (Kiezun et al., 2012) and represents a good 
paradigm for such an approach for other regulatory pathways.

4.2  |  Trehalose biosynthetic genes 
revealed positive epistatic interactions, 
pleiotropy and distinct intragenic linkage 
disequilibrium pattern

Under the assumption that epistasis is relatively common in 
central genetic networks of highly polygenic traits (Mackay, 
2014) we provided evidence of connectivity between vari-
ants from trehalose pathway genes, particularly for a set of 

complementary genes on the A, B and D genomes (Figure 3). 
For instance, we observed that the TPS1 homologues inter-
acted considerably with TPP homologues on chromosomes 
2A and 2D to affect plant height and peduncle length. This 
is entirely to be expected because both TPS and TPP genes 
are likely to coordinate regulation of T6P levels and hence 
combine to impact traits. Trehalose pathway gene interac-
tions have been reported in nematodes and yeast (Apweiler 
et al., 2012; Kormish & McGhee, 2005). Our results also re-
vealed pleiotropic effects (Figure 2; Table 1) likely because 
T6P elicits changes in whole plant carbon allocation to affect 
more than one trait together (Paul et al., 2018, 2020a) con-
firmed in transgenic studies (e.g. large changes in vegetative 
architecture and relationships with sucrose content) (Goddijn 
& van Dun, 1999; Lunn et al., 2014; Romero et al., 1997).

Contrasting patterns of gene LD have been reported 
across a range of studies in maize (Ching et al., 2002; 
Remington et al., 2001), barley (Caldwell et al., 2006), rice 
(Mather et al., 2007) and rye (Li et al., 2011), but the investi-
gation of wheat genes remain largely unexplored (Sela et al., 
2011). By evaluating a large set of exome regions (Figure 
S2) we identified high levels of intragenic LD (persisting and 
increasing across longer distances), possibly as a result of 
the reduced recombination rates due to strong artificial se-
lection of associated alleles (Palaisa et al., 2003; Remington 
et al., 2001). We also observed a few occasions where LD 
decayed rapidly (i.e. TPS1-TraesCS1D02G065600 and TPP-
TraesCS2D02G168200) reflecting the impact of local recom-
bination, meaning that such genes could have been selected 
quickly during the breeding process.

4.3  |  A large fraction of trehalose pathway 
genes are under positive and negative selection

In the screens for signatures of selection, we identified a 
similar proportion of genes under positive and negative 
selection (Figure 4). Two TPS1 homologues associated 
with plant height, peduncle length and biomass showed 
evidence of positive selection indicating they underwent 
breeding selection. Interestingly Li et al., (2019) found 
T6P levels associated with plant height and biomass in 
sweet and grain sorghum. Additionally, two TPS7 genes on 
chromosomes 3A and 3B that are under negative selection 
in our study were identified as associated with domestica-
tion improvement in the closest genes in maize (Hufford 
et al., 2012; Paul et al., 2018). This implies that these genes 
may already have been selected and that further selection 
for yield is not being tolerated. Interestingly, a large pro-
portion of the positive selection was attributed to the TPP 
family, indicating that most of the non-synonymous sub-
stitutions in these genes might be essentially driver muta-
tions, that is providing a selective advantage (Pon & Marra, 
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2015). TPP genes showed positive selection for traits such 
as percentage of grain filling (Figure 4). In contrast, for 
several TPS genes traits such as grains per m2, percentage 
grain filling, grain filling rate, spikelets per spike, grains 
per spike and final biomass showed negative selection, 
meaning that most of the mutations were removed by nega-
tive selection during crop breeding (Casillas & Barbadilla, 
2017; Vitti et al., 2013). For instance, a significant ratio of 
ω~0.18 indicates that at least ~82% of missense mutations 
have been removed by negative selection.

4.4  |  Trehalose pathway genes revealed 
substantial contributions to the quantitative 
genetic variation of source- and sink-related  
traits

We found that trehalose pathway genes contributed to pro-
portions of heritability for specific traits, particularly for 
grain number and grain filling traits, biomass and days to 
anthesis (Figure 5c; Table S1), suggesting an important im-
pact of this regulatory pathway on yield traits consistent with 
other studies (Paul et al., 2018). Comparing this result to 
those from the gene-based testing (Figure 2), we found that 
the latter yielded fewer associations (e.g. the TPS1 gene on 
chromosome 1D is linked to three traits but explained some 
variance to twelve traits). Additionally, a TPS1 gene known 
to regulate flowering time in Arabidopsis (Wahl et al., 2013) 
explained around 2% of the heritability in our panel (Figure 
5c). In a recent study, a TPP gene on chromosome 6A was 
associated with thousand grain weight in bread wheat and 
successfully cloned (Zhang et al., 2017). Similarly, we ob-
served about 3% of heritability fraction in the same TPP gene 
associated with this particular trait.

We also estimated the relative contribution of each gene 
family to the phenotypic variance of subpopulations (Figure 
5d; Table S1). As expected from the quantitative genetics’ 
theory (Barton et al., 2017) a larger proportion of heritabil-
ity was captured by genome-wide markers. Additionally, we 
observed contrasting contributions of the trehalose pathway 
family to elite and exotic materials. Firstly, both TPS and TPP 
gene families showed very little contributions to exotic ger-
mplasm for biomass, plant height and harvest index, but their 
proportion increased considerably in elite materials (up to 
20% higher), suggesting that the selection process impacted 
carbon allocation and source and sink balance through the tre-
halose pathway. TPS1 homologues explained a high fraction 
of heritability in elite materials, particularly for plant height 
(Table 1). The TPP family explained a high fraction of her-
itability in exotic materials for grain-related traits (Figure 5; 
Table S1) and not so much for elite lines. TPP genes in exotic 
derivatives might contain more favourable alleles impacting 
grain-related traits. This also suggests potential for inclusion 

of genetic variation in TPPs for these traits from exotic germ-
plasm into breeding crosses to increase yield via these traits. 
Secondly, both gene families showed a high contribution to 
elite and exotic subpopulations for days to anthesis, suggest-
ing that trehalose genes had little impact on flowering during 
the selection process in our panel, but suggest the pathway 
as a whole contributes substantially to flowering time, which 
was fixed early on in the breeding process. Similar patterns 
of genetic variation changes through selection have been re-
ported across a range of complex traits (Briggs & Goldman, 
2006; Raquin et al., 2008).

Our findings on predicting complex traits using treha-
lose gene variants have several important implications for 
designing strategic crosses aiming to improve source-sink 
balance in wheat. As expected, predicting phenotypes by 
using single-gene families captured enough information 
to represent the kinship supporting other studies that also 
show a clear advantage of gene-based prediction compared 
to genome-wide markers (Zhang et al., 2020). Our second 
strategy was combining whole-genome marker effects with 
gene variants, and we observed that predictive ability was 
significantly improved only for grain weight per spike (Table 
S1). Genome-wide marker effects are most likely capturing 
the variation from other core genes, and possibly the infor-
mation of both types of kinship would be redundant, conse-
quently not effectively contributing to improving prediction 
(Lyra et al., 2019). Incorporating gene effects considerably 
increased predictive ability for grain weight, suggesting that 
the associated regulatory pathway highly impacted the grain 
weight phenotype (see the proportion of heritability per sin-
gle gene and subpopulation), thus adding extra information 
to the model.

4.5  |  Potential implications of using  
the trehalose pathway gene in wheat 
strategic crossing

Our hypothesis that the T6P pathway is in the middle of 
a selection process in wheat is supported by this study. 
Contribution of the pathway to the quantitative genetic vari-
ation of yield-related traits enables the prioritization of target 
genes (TPS1, TPS7, TPS11 homologues and several TPPs) 
(Table 1). Selection of genes within the pathway appears to be 
ongoing and positive for TPS1 genes and several TPP genes, 
and already has had a significant impact on harvest index, 
final biomass, plant height and flowering time. It has already 
been demonstrated in transgenics, crossing and chemical in-
tervention studies that perturbation of T6P has a large effect 
on the traits affected in the wheat study presented here (Paul 
et al., 2020b). However, it has not been possible before to 
relate traits to specific native genes in wheat in a compre-
hensive manner or show previous and ongoing selection and 
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gene interactions in wheat. Hence the work contributes to 
targeting native genes for yield in specific ways that were 
not possible before. This is an important aspect in the im-
provement of food security through breeding or gene-editing 
and yield improvements could be achieved through further 
selection.

We propose that the trehalose gene family will support de-
signing strategic crossing and pre-breeding in various ways. 
First, we identified several promising genes that in conjunc-
tion with gene-editing techniques could be used to study their 
more exact role in source/sink pathways, for example TPS1, 
TPS7 and TPS11 homologues to elucidate their mode of ac-
tion within the T6P pathway mechanism. Second, TPP genes 
in exotic-derived material could be reintroduced to enhance 
grain-related traits, for example grains per m2. Third, there 
were strong epistatic interactions between genes that could 
enable gene combinations to be considered, for example for 
TPS1 and TPP genes for percentage of grain filling. Fourth, 
predicting wheat phenotypes by combining whole-genome 
marker effects with trehalose pathway gene effects has the 
potential to be a viable predictive model, helping breeding 
programmes to design strategic crosses. Of course, given the 
strong effects on carbon allocation mediated by T6P there 
may need to be careful balancing of effects of variation in 
TPS and TPP genes in new lines to avoid trade-offs. For ex-
ample improvements in grain numbers could be offset by 
reduction in grain size. However, potentially better insight 
into such trade-offs and the possibility of uncoupling them 
could be realized through targeting the genes associated with 
grain-related traits. The link of T6P with sink-led increase 
in photosynthesis (Oszvald et al., 2018) gives optimism that 
modifications of TPSs and TPPs can give rise not only to 
beneficial changes in partitioning within the plant but also 
to an overall increase in carbon assimilated due to enhanced 
sink capacity. Our work provides opportunities for the first 
time in a regulatory pathway in wheat. One way T6P may 
be having such a large effect on the reproductive tissue is 
through the regulation of FT-genes (FLOWERING LOCUS 
T-like). T6P regulates flowering time in Arabidopsis through 
FT (Wahl et al., 2013); in cereals, FT may have a broader role 
in productive development beyond flowering time including 
effects on spike development, spikelet number and fertility 
(Liu et al., 2019). This hypothesis can now be tested.

In conclusion, our study shows the importance of the tre-
halose pathway as a contributor to crop improvement both 
historically and for the future. The wealth of information will 
direct strategies of crossing and selection and in-depth mode 
of action studies to better define the specific contribution of 
TPS and TPP genes to yield traits.
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