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Abstract

The identification of the initial ventricular activation sequence is a critical step

for the correct personalization of patient-specific cardiac models. In healthy

conditions, the Purkinje network is the main source of the electrical activation,

but under pathological conditions the so-called earliest activation sites (EASs)

are possibly sparser and more localized. Yet, their number, location and timing

may not be easily inferred from remote recordings, such as the epicardial acti-

vation or the 12-lead electrocardiogram (ECG), due to the underlying complex-

ity of the model. In this work, we introduce GEASI (Geodesic-based Earliest

Activation Sites Identification) as a novel approach to simultaneously identify

all EASs. To this end, we start from the anisotropic eikonal equation modeling

cardiac electrical activation and exploit its Hamilton–Jacobi formulation to

minimize a given objective function, for example, the quadratic mismatch

to given activation measurements. This versatile approach can be extended to

estimate the number of activation sites by means of the topological gradient,

or fitting a given ECG. We conducted various experiments in 2D and 3D for

in-silico models and an in-vivo intracardiac recording collected from a patient

undergoing cardiac resynchronization therapy. The results demonstrate the

clinical applicability of GEASI for potential future personalized models and

clinical intervention.
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1 | INTRODUCTION

In this work, we address the central question of identifying earliest activation sites (EASs) in a propagation model for
ventricular activation. In a healthy (human) heart, ventricles are activated via a specific pathway that originates in the
atrio-ventricular node, continues in the His bundle and the Purkinje network, to eventually spread in the myocardium
through Purkinje-myocardial junctions.1 These junction points can be effectively modeled by a discrete set of EASs, that
form the initial condition of the propagation model. Unfortunately, the precise structure of the set of EASs (defined by
their number, location and timing) cannot be detected in vivo, and rule-based approaches are limited by inter-patient
variability. More importantly, severe pathological conditions such as intraventricular conduction disorders are directly
associated with partially malfunctioning activation pathways, hence corresponding to a pathological set of EASs. A cor-
rect and possibly automatic identification of EASs from non-invasive or minimally invasive recordings is therefore of
high clinical relevance, especially in selecting the optimal treatment for the patient.2

A particularly suitable propagation model in the context of EASs is the anisotropic eikonal equation, which was
originally exploited as a convenient approximation of the monodomain and bidomain models,3,4 but is nowadays more
often utilized for its computational efficiency.5,6 This work, however, leverages the eikonal model from a novel perspec-
tive, based on Hamilton–Jacobi formalism and geodesics,7 to enable a gradient-based approach for localizing the EASs
termed GEASI (Geodesic-based Earliest Activation Sites Identification). In detail, we start from the anisotropic eikonal
equation as a common model for cardiac electrophysiology,8 in which the EASs define boundary conditions at specific
sites. For numerical reasons, the eikonal equation is solved using the Fast Iterative Method (FIM).9 The main goal of
our approach is the minimization of a given objective function depending on the solution of the anisotropic eikonal
equation as a function of the EASs. Here, a feasible optimization strategy involves the Hamilton–Jacobi formalism,
which promotes a tractable derivative with respect to the EASs.7 Note that this derivative is geometrically related to the
tangent of the geodesic at the EASs. In this respect, a geodesic connects an EAS such as a Purkinje entry point to an
observation through a path of minimum distance in a predefined metric. Finally, we exploit the aforementioned
methods to introduce GEASI, which in its core employs a quadratic mismatch between the eikonal solution and the
measurements, such as observations of an electro-anatomical mapping, in the objective function. In summary, GEASI
can therefore fit the parameters of the eikonal model to clinical recordings in a very efficient and flexible manner.

We emphasize that GEASI is not limited to this quadratic objective function and can straightforwardly be extended
to other scenarios. In this work, we additionally investigate two such extensions: the topological gradient designed for
estimating the number of EASs and fitting of EASs of an eikonal-based ECG model to a clinically recorded ECG.

Changing the number of EASs and the effect of this action on the objective function is evaluated by means of the topo-
logical gradient. The concept of topological gradients can be readily introduced via the Hamilton–Jacobi theory. Here, we
consider the splitting of a single EAS into a pair of two EASs symmetrically arranged at infinitesimal distance along a given
direction in a dipole-like fashion. Thus, the topological gradient provides a criterion to decide whether an EAS should be
split or not. In particular, this approach promotes a simple model as a starting point with too little complexity to represent
the measurement data and increase the number of source sites until the encountered activations are properly approximated.

In combination with the pseudo-bidomain model, a template-based action potential and the lead field theory, the
eikonal model also results in an almost-real-time ECG simulator5,6 with remarkable physiological accuracy.8 Here, we
extend a previously proposed approach,10 based on this ECG model, to solve the inverse ECG problem, that is,
we exploit GEASI to localize EASs purely from ECG data. Numerical experiments in Section 5 demonstrate that the
proposed approach is capable of finding the optimal EASs even in high-fidelity cardiac models. We visually summarized
GEASI and its applications in Figure 1.

1.1 | Related work

In what follows, we briefly review similar and related approaches to GEASI.
From a physiological perspective, EASs can be derived from an automatically generated Purkinje network,11 closely

following the actual anatomy of the heart. The approach, anatomically tailored but not patient-specific, is indicated in
the case of a generic healthy activation and a (complete or partial) bundle branch block. When dense endocardial map-
ping data are available, the Purkinje network can be estimated automatically.12–14 In the method proposed by Palamara
et al.,12 the Purkinje network is created from intra-cardiac measurements by dividing the endocardium into regions of
influence for each Purkinje entry point. For this purpose, an isotropic eikonal equation is solved for each measurement
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point to compute the regions of influence in a Voronoi-diagram like fashion. According to fractal laws, Purkinje entry
points are subsequently either moved, deleted or generated to better fit the observed activation on the endocardium.
The connection with GEASI becomes apparent once we consider the underlying problem in terms of geodesics and
regions of influence, further discussed in Section 2. We can observe that GEASI is a generalization of the aforemen-
tioned approach, since it gives rise to Voronoi partitions with non-linear boundaries. Thus, GEASI can be applied to
heterogeneous conduction velocities and heterogeneous fiber directions.

An alternative formulation of the Purkinje network is based on a very sparse set of EASs embedded in thin, fast-
conducting layers in both ventricular endocardia.15 In some sense, this approach can be referred to as lumped Purkinje net-
work formulation. Here, the number of EASs is drastically reduced. In fact, a few sites per chamber are generally sufficient
to correctly capture the activation and reproduce the surface ECG.16 Overall, the parameters of the eikonal model with
lumped Purkinje network are just the location, the number and the activation onset of the EASs, as well as the conduction
velocities in the thin layers and the myocardium. The problem of fitting these parameters to clinical data has already been
considered in the literature for the conduction velocities.17–20 However, the optimization of EASs received limited attention
so far with only a few works dealing with activation onsets21 or locations.22 The simultaneous optimization of EASs (espe-
cially their number) and conduction velocity has been analyzed only very recently.10,20,23

In the work by Kunisch et al.,22 the authors recast the problem of localizing EASs as a shape optimization problem.
In their viscous eikonal formulation, the EASs are modeled as small spherical holes in the domain whose boundaries
impose the activation onset. Under sufficient smoothness assumptions, an adjoint state can be defined through the
shape derivative with respect to these boundaries, and therefore be exploited to optimize the EASs. This approach is
efficient and can be applied to multiple pacing sites, although—in contrast to our approach—no topological changes
are permitted by the formulation, impeding both a change in the number of EASs and movement from the interior to
the boundary of the domain. Additionally, the coalescence of multiple sites needs special treatment in the shape deriva-
tive (not addressed in Kunisch et al.22). The viscous eikonal formulation, moreover, introduces a curvature-dependent
conduction velocity, potentially strong at EASs, posing limitations on the radius of the spherical holes.

It is worth noting that all previous works, either based on the full12 or a lumped21,22 Purkinje network, require local
measurements of activation times, for example, endocardial maps, whereas GEASI can be applied to fit epicardial record-
ings and even the surface ECG. This aspect is relevant in view of non-invasive personalization of patient-specific models,
as recently advocated.24 Moreover, a major challenge in cardiac personalization addressed by GEASI is the estimation of
the ground truth number of EASs. A possible solution is to consider a large number of EASs densely covering the earliest
activation region, and successively removing sites according to some predefined rule.10 For instance, an optimization pro-
cedure could determine the optimal activation onset of all sites, and then remove those with a very late onset. In a previous

FIGURE 1 GEASI in a nutshell: The EASs—given by their timings, locations and number—are important parameters that define

cardiac activation. GEASI is able to identify these parameters by exploiting the Hamilton–Jacobi formulation. This formulation allows for an

efficient optimization scheme for minimizing mismatches to either activation maps or resulting quantities such as the ECG. Using the

topological gradient we can additionally estimate the number of EASs
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study, we optimized the initiation times along with the anisotropic conductivity tensors by manually deriving the Fast Iter-
ative Method.9 The large number of EASs results in a highly ill-posed inverse problem and consequently requires further
regularization to successively remove initiation sites. While providing good results with respect to the measured activation
times,10,20 this approach heavily relies on initial choice of EASs and the selected regularization strategy.

1.2 | Notation

We denote the identity matrix by I and the space of symmetric and positive definite matrices in ℝd by Symd�d. Through-
out this work, Bζ xð Þ and Bζ xð Þ refer to the open and closed ball with radius ζ>0 around x. We denote by X˚ the interior
of the set X . A½ �ij denotes the entry in the i-th row and j-th column of a matrix A∈ℝn1�n2 . Furthermore, A≻B if A�B is

positive definite for A,B∈ Symd�d, and we set〚N〛≔ 1,…,Nf g: The set of unit vectors in ℝd is denoted by d�1. The

Dirac measure of a set S is referred to as δ S½ �. Further, we use the notation C0 X ,Yð Þ for the space of continuous func-

tions mapping from X to Y endowed with the norm k �kC0 X ,Yð Þ, and we denote by Ck X ,Yð Þ the associated space of k-

times continuously differentiable functions equipped with the norm k �kCk X ,Yð Þ. We use the symbol Ck,α X ,Yð Þ for the

Hölder space with exponent α and norm k �kCk,α X ,Yð Þ. Finally, we denote by Lp X ,Yð Þ and Wm,p X ,Yð Þ the p-Lebesgue

space and the Sobolev space of m-times weakly differentiable and p-integrable functions, and we
set Hm X ,Yð Þ¼Wm,2 X ,Yð Þ.

1.3 | Structure of the work

In Section 2, we successively introduce the eikonal equation and the objective functional, which are the buildings blocks of
GEASI. Based on the introduced algorithm, we present in Section 3 the topological gradient as well as the ECG fitting prob-
lem. Then, we elaborate in Section 4 on efficient discretization schemes and implementation detail of the proposed method.
In Section 5, we consider the problem of estimating the initiation sites for different models—primarily in-silico experiments,
but also one in-vivo experiment. Further aspects of future work are addressed in Section 6.

2 | GEASI

Next, we introduce the GEASI method, which encompasses the following ingredients. In Section 2.1, we review the
anisotropic eikonal equation and its associated Hamilton–Jacobi formulation. Subsequently, in Section 2.2 we analyze a
general objective function involving the solution of the anisotropic eikonal equation from a functional-analytical per-
spective. Section 2.3 deals with the gradient computation of the distance function, which is later exploited in the afore-
mentioned objective function. Finally, all introduced concepts are combined in Section 2.4 to define GEASI.

2.1 | Eikonal equation

We consider the computational domain Ω�ℝd for d ≥ 2, which in most cases represents the myocardium. Further, let
E be the subset of N pairs xi, tið ÞNi¼1

n o
∈UN ≔ΩN � Tmin,Tmaxð ÞN for a priori given Tmin <Tmax and fixed N . Through-

out this work, E is a set of EASs, where N is the number of EASs, xi and ti are the location and timing of the i-th site,
respectively. Let ϕE :Ω!ℝ be the unique solution of the anisotropic eikonal equation with prescribed values on E,
which is commonly referred to as the activation map. That is, ϕE xð Þ is the first arrival time at x∈Ω of the propagating
action potential. Hence, ϕE solves ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D xð ÞrϕE xð Þ�rϕE xð Þp ¼ 1, x∈Ωn x1,…,xNf g,
ϕE xið Þ ¼ ti, xi, tið Þ∈E,

(
ð1Þ
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where D∈C1 Ω,Symd�d
� �

describes the anisotropic conduction. In the model, the anisotropy arises from the fiber align-
ment inside the heart.8 Recall that Symd�d is defined as the set of positive definite and symmetric d�d-matrices, which
gives rise to the definition of the norm kpkD :¼ ffiffiffiffiffiffiffiffiffiffiffi

Dp�pp
for p∈ℝd. Note that the assumptions already guarantee that

λ�I≺D xð Þ≺ λ�I

for all x∈Ω and finite bounds 0< λ� ≤ λ� <∞. It is well known that the eikonal Equation (1) admits a unique viscosity
solution according to the theory of Hamilton–Jacobi Equations.7 The Lipschitz continuous solution of the eikonal equa-
tion ϕE ∈C0,1 Ω

� �
is of the form

ϕE xð Þ¼ min
y, tð Þ ∈ E

tþδ x,yð Þf g ð2Þ

where δ x,yð Þ denotes the geodesic distance

δ x,yð Þ¼ infbγ ∈H1 0,1½ �,Ωð Þ
L bγð Þ :bγ 0ð Þ¼ x,bγ 1ð Þ¼ yf g ð3Þ

given the length functional

L γð Þ≔
ð1
0
k _γ tð ÞkD�1 γ tð Þð Þdt: ð4Þ

Thus, the induced Riemannian metric for two vectors v,w∈ℝd is

v,wh iγ tð Þ ≔D�1 γ tð Þð Þv�w: ð5Þ

We note that the infimum γ in (3) is actually attained, and by the geodesic equation we can even deduce
γ∈C0,1 0,1½ �,Ω� �

(see, e.g., Bornemann and Rasch25). Indeed, in the definition (3), we first note that kpkD�1 xð Þ ≤ λ�1
� k

pk2 for all p∈ℝd and x∈Ω. Then, for any segment x,y½ � fully contained in Ω we have that δ x,yð Þ≤ λ�1
� k x�yk2 since

the segment is a geodesic path in the Euclidean norm. Figure 2 illustrates a single geodesic path in red on a domain
with a continuously varying conduction velocity and isotropic conduction.

When N >1, all pairs xi, tið Þ, xj, tj
� �

∈E must satisfy the subsequent compatibility condition

ti� tj ≤ δ xi,xj
� � ð6Þ

in order to ensure the existence of a solution. This fact is a direct consequence of (2), because non-compatible data can
not exist w.r.t. the eikonal equation. For the purpose of this work, this condition is not too restrictive, since we aim at
identifying EASs rather than enforcing them. Interestingly, the condition is also physiologically sound: if a stimulus at
some location xj is applied too late, for example, right after the passage of an activation front originating from xi, it
should not trigger another propagation, because the tissue is already depolarized. In fact, under such circumstances the
activation time tj at xj would be larger than the travel time from xi, that is tiþδ xi,xj

� �
, clearly violating (6).

The Hamilton–Jacobi formulation is essential for computing perturbations of E, which is conducted in the following
subsection.

2.2 | Objective function

The overall objective of this work is the minimization of a given functional J :C0,1 Ω
� �!ℝ depending on the activation

map ϕE with respect to E, that is
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mN ≔ min
ε ∈ UN

J ϕεð Þ ð7Þ

For instance, the objective could describe the minimization of a mismatch (in the least-squares sense) between the sim-
ulated activation and the activation detected from epicardial, as well as endocardial mapping (see Section 5). The objec-
tive functional can also involve the activation map implicitly: In Section 5.3, we utilize the mismatch between the
recorded and simulated 12-lead surface ECG as a metric for optimization.

In what follows, we prove the existence of minimizers for (7) for varying N . To this end, we define
for E ¼ xi, tið ÞNi¼1

n o
ΦN x,x1,…,xN , t1,…, tNð Þ≔ϕE xð Þ: ð8Þ

Lemma 1. ΦN ∈C0,1 Ω�UN
� �

is a bounded function of its arguments.

Proof. Using (2), we immediately see that

ΦN x,x1,…,xN , t1,…, tNð Þ¼ min
i¼1,…,N

tiþδ xi,xð Þf g:

The Lipschitz continuity of δ as well as the compactness of Ω�UN imply the statement.

We note that Rademacher's theorem ensures the differentiability of ΦN almost everywhere. Non-differentiability
with respect to x occurs for instance at x¼ xi, but also in the presence of front collisions. An immediate consequence of
this lemma is the following.

Theorem 1. (Existence) If J is uniformly continuous, then the problem (7) admits at least one minimum.

Proof. The previous lemma and the uniform continuity of J imply the existence of at least one minimum.

Proposition 1. Under the hypotheses of Theorem 1, mN is a non-increasing function of N . Moreover, if there exists N
such that mNþ1 ¼mN , then mNþn ¼mN for all n≥ 1.

FIGURE 2 Left: fixed velocity field c in Ω. Right: contour plot of the associated anisotropic eikonal equation with anisotropic

conduction D xð Þ¼ c xð Þ2I along with the geodesic path joining the EAS x1 with an arbitrary point
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Proof. The first claim immediately follows from the definition of mN and set inclusion arguments. To prove the second
claim, we assume that mNþ1 ¼mN for some N and mNþ2 <mNþ1. However, the choice xNþ1 ¼ xNþ2 and tNþ1 ¼
tNþ2 results in a contradiction.

Corollary 1. If N is bounded from above by Nmax, then minN ≤NmaxmN has at least one minimum.

Remark 1. 1. From a practical point of view, this corollary ensures that by adding new EASs, we either improve the
objective function or we keep the same level of accuracy. This is also seen in the experiments in Section 5,
where coalescence of two or more sites is observed if introducing too many EASs.

2. The minimum in (7) is in general not unique as it depends on the choice of J and on the order of the EASs. In prin-
ciple, by permuting EASs we obtain the same value of the minimum. In particular, this symmetry induces a periodic
partition of the set UN . Each partition is associated with a specific choice of the order of the EASs. From a numerical
point of view, this may constitute a problem for methods based on random sampling. For deterministic steepest
descent algorithms, the problem is mitigated by the fact that we rarely cross the boundary between two partitions,
for example, by swapping points, unless the two points coincide.

3. In general, we cannot take N unbounded with no further hypotheses on J . Suppose for instance that J is mini-
mized by ϕ xð Þ¼ c for some constant c∈ℝ. Then, infN ∈ ℕmN attains no minimum. Indeed, we cannot represent a
constant function with (2) if E is only countable. However, we can approximate the constant with arbitrary precision
with a sufficiently large number N of EASs.

2.3 | Exponential map

In what follows, we compute the Riemannian exponential map to derive an expression for the variation of the distance
function. In particular, we discuss the relation of the derivatives of ΦN and the geodesic path.

We briefly recall fundamental concepts in Riemannian geometry. Given x∈Ω and a tangent vector v∈V for a suffi-
ciently small neighborhood V around the origin of the tangent space at x, the exponential map Expx :V!Expx Vð Þ�Ω
is given by Expx vð Þ¼ γ 1ð Þ, where γ∈C0,1 0,1½ �,Ωð Þ is a geodesic path with v≔ _γ 0ð Þ and Expx Vð Þ is the corresponding
image domain. The logarithmic map Logx :Ω�Expx Vð Þ!V is the inverse of the exponential map Exp�1

x . In other
words, the logarithmic map of y∈Ω identifies the tangent vector _γ 0ð Þ of a geodesic path γ emanating from x and
ending at y.

Proposition 2. (Variation of the distance function). Let x,y∈X , where X �Ω is sufficiently small such that all points
inside are connected by unique geodesics. Then the variation of δ x,yð Þ with respect to y with w¼ Logx yð Þ
reads as

rxδ x,yð Þ¼� D�1 xð Þw
kwkD�1 xð Þ

: ð9Þ

Proof. Suppose that γ is a geodesic with respect to the Riemannian metric in (5) realizing the distance δ y,xð Þ, that is,
γ 0ð Þ¼ y, γ 1ð Þ¼ x and

δ x,yð Þ¼
ð1
0
k _γ tð ÞkD�1 γ tð Þð Þdt:

Let eγ : 0,1½ �� �R,Rð Þ!Ω
o
for small R>0 be a smooth variation of γ such that eγ t,0ð Þ¼ γ tð Þ for all t∈ 0,1½ �. The first varia-

tion formula (O'Neill,26 Chapter 10) with c¼k _γ tð ÞkD�1 γ tð Þð Þ for t∈ 0,1½ � implies

rxδ x,yð Þ eγð Þ¼ 1
c

�
ð1
0
€γ tð Þ,∂2eγ t,0ð Þh iγ tð Þdt�

Xk
i¼1

Δ _γ tið Þ,∂2eγ ti,0ð Þh iγ tið Þ þ _γ 1ð Þ,∂2eγ 1,0ð Þh iγ 1ð Þ � _γ 0ð Þ,∂2eγ 0,0ð Þh iγ 0ð Þ

 !
ð10Þ
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Here, 0 < t1 < � � �< tk <1 are possible discontinuities of the geodesic curve and Δ _γ tið Þ¼ _γ tþið Þ� _γ t�i
� �

, where _γ t�i
� �

and
_γ tþið Þ denote the one-sided derivatives from the left and the right, respectively. The derivative of eγ with respect to the
second argument is denoted by ∂2eγ. Since γ is assumed to be geodesic and smooth, the first two summands in (10)
vanish.

By adjusting eγ such that ∂2eγ 1,0ð Þ¼ 0 and observing that _γ 0ð Þ¼Logx yð Þ we have proven

rxδ x,yð Þ eγð Þ¼�D�1 γ 0ð Þð Þ _γ 0ð Þ
k _γ 0ð ÞkD�1 γ 0ð Þð Þ

�∂2eγ 0,0ð Þ,

which readily implies (9).

In Proposition 2, we assumed uniqueness and smoothness of the geodesic curve, which is in general not ensured. In
practice, the influence of geodesics violating these assumptions is negligible and thus in GEASI only consider (9) for all
computations.

As before, let ϕE be the solution of the eikonal equation with given E ¼ xi, tið ÞNi¼1

n o
. This admits a natural definition

of region of influences as

Ri ≔ x∈Ω :ϕE xð Þ¼ tiþδ x,xið Þ� �
: ð11Þ

Note that each point in the interior of Ri is thus assigned to a single EAS through means of the geodesic distance. Fur-
thermore, the derivatives of ΦN with respect to xi and ti at x∈ Ri

o
read as

rxiΦN x,x1,…,xN , t1,…, tNð Þ¼rxiδ xi,xð Þ,

∂tiΦN x,x1,…,xN , t1,…, tNð Þ¼ 1,

where we note that function is not differentiable on the boundary of the regions of interest. To compute the exponential
map, we solve for each i¼ 1,…,N the following initial value problem

_γi tð Þ¼�D γi tð Þð Þrϕ xi,tið Þf g γi tð Þð Þ,
γi 0ð Þ¼ x

(
ð12Þ

for x∈Ω. The regularity and boundedness of D and ϕ xi,tið Þf g already imply the existence of solutions. Then, we define
the piecewise geodesic path γ as γ tð Þ¼ γi tð Þ if γ tð Þ∈Ri. Furthermore,

t¼ argmin
t > 0

γ tð Þ∈Bζ xið Þfor i¼ 1, :::,N
� � ð13Þ

is finite due to the assumptions regarding D for a small ζ>0. The inclusion of the ζ-balls essentially circumvent prob-
lems related to the non-differentiability of γi in the proximity of xi, tið Þ.

We note that by construction γ is a unit-speed geodesic for the length functional (4). In this case, we define the expo-
nential map in the direction t _γ 0ð Þ as Expx t _γ 0ð Þð Þ¼ γ tð Þ, and the logarithm Logx γ tð Þð Þ¼ t _γ 0ð Þ as its inverse. Note the log-
arithm can efficiently be computed by tracking backward the geodesic from γ tð Þ to x.

Remark 2. We note that points can belong to multiple regions of influence, at which the derivative of ϕE might not be
defined. However, due to the general functional-analytic setting the Lebesgue measure of these points is
negligible.
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2.4 | GEASI algorithm

In this section, we introduce the GEASI Algorithm to solve (7) using a gradient-based approach. Here, we restrict to the
specific functional

J ϕð Þ≔
ð
Γ

1
2

ϕ xð Þ� bϕ xð Þ
� �2

dx, ð14Þ

where Γ�Ω is a subdomain of Ω with a positive Lebesgue measure and bϕ∈L2 Γ,ℝð Þ is a fixed square-integrable func-
tion. In numerical experiments, bϕ reflects the measurements on a known subdomain Γ, for which the quadratic mis-
match on Γ between ϕ and bϕ with respect to the EASs is minimized. Examples of Γ include finite sets of points
mimicking a contact recording map, the full endocardium/epicardium, or subregions of them.

According to Sections 2.2 and 2.3, the optimization problem for N ¼ 1 simply reads

min
x1, t1ð Þ ∈ U1

ð
Γ

1
2

t1þδ x1,xð Þ� bϕ xð Þ
� �2

dx: ð15Þ

To employ a gradient-based approach, we see that following Proposition 2 the gradient of J with respect to x1 simply reads as

rx1J ϕ x1,t1ð Þf g
� �

¼�
ð
Γ
r x,x1, t1ð ÞD

�1 x1ð Þ _γx1!x 0ð Þ
_γx1!x 0ð Þ		 		

D�1 x1ð Þ
dx, ð16Þ

where γx1!x tð Þ is the geodesic path from x1 to x and r x,x1, t1ð Þ¼ t1þδ x1,xð Þ� bϕ xð Þ is the residual. Optimizing multiple
points simultaneously yields an average direction weighted by the residuals r on Γ. Figure 3 depicts how the velocity
field shown in Figure 2 translates to a descent direction to optimize (15).

The extension to multiple EASs works similarly. A convenient formulation consists in splitting Γ into subdomains
Γi ≔Ri\Γ, each composed of those points activated by the EAS xi (note that the set of points belonging to multiple
regions Γi has Lebesgue measure 0). Then, the objective function reads as follows

min
xi, tið ÞNi¼1f g ∈ UN

XN
i¼1

ð
Γi

1
2

tiþδ xi,xð Þ� bϕ xð Þ
� �2

dx: ð17Þ

Clearly, the optimization procedure for a single EAS readily translates to the case of multiple sites.
We found that rather than a simple gradient descent scheme, a Gauss–Newton optimization proved beneficial to

reduce the overall number of required optimization iterations, resulting in the following update rule

FIGURE 3 Visualization of the optimization problem in (15). Geodesics (white) originating from the single EAS x1 to distinct points on

Γ (left) and corresponding gradients computed with (9) (middle). The highlighted direction (red) coincides with the gradient in (16). Right:

by iteratively applying a gradient-based scheme we determine the optimal x1, t1ð Þ
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E kþ1ð Þ ¼ argmin
xi, tið ÞNi¼1f g ∈ UN

XN
i¼1

1
2

rxi,tiJ ϕE kð Þ
� � xi�x kð Þ

i

ti� t kð Þ
i

 !
þϕE kð Þ xð Þ� bϕ xð Þ

					
					
2

L2 Γð Þ
: ð18Þ

Here, E kð Þ ¼ x kð Þ
i , t kð Þ

i

� �N
i¼1


 �
are the solutions of the previous iteration. To overcome local minima of the optimization

problem (7) caused by non-unique solutions (see Remark 1) we additionally use an over-relaxation27,28 with fixed
βa ¼ 1ffiffi

2
p . The resulting Algorithm 1 iteratively linearizes and solves the problem using the computed gradient from δ to

match a given measured activation. We remark that the gradient properly reflects infinitesimal changes of activation
times on Ri for each xi, but it is not capable of accurately capturing higher order effects like the change of Ri. The

experiments showed that rather than directly using E kþ1ð Þ from (18) as the new solution, it is beneficial to take a step-
size βs <1 and compute the convex combination of old and new solution according to this step size. For all experiments,
we used βs ¼ 1

2. For further details of the numerical realization we refer the reader to Section 1.

Algorithm 1. GEASI

Input: initial x 0ð Þ
i and t 0ð Þ

i defining E 0ð Þ ¼ x 0ð Þ
i , t 0ð Þ

i

� �N
i¼1


 �
, target activation bϕ xð Þ for x∈Γ, conduction velocity

tensor D
Output: optimal EASs x�i and times t�i
for k¼ 1,…,K do

eE kð Þ ¼ E kð Þ þβa E kð Þ �E k�1ð Þ
� �

solve the eikonal Equation (1) for eE kð Þ ¼ ex kð Þ
i ,et kð Þ

i

� �N
i¼1


 �
compute all geodesics γxi!x tð Þ for x∈Γ by solving (12)

compute E kþ1ð Þ
using (18) (with eE kð Þ

)

E kþ1ð Þ ¼ eE kð Þ þβs E kþ1ð Þ � eE kð Þ� �
end

3 | EXTENSIONS OF GEASI

GEASI is a versatile optimization algorithm, which can be extended in several aspects. In this section, we focus on two
such possible extensions. First, the topological gradient estimation allows for an accurate estimation of the number of
EASs. Second, we modify the original objective function of GEASI to fit a given ECG.

3.1 | Variable number of EASs: Topological gradient

So far, we assumed the number of EASs N to be fixed. Since the optimal number of EASs is in general unknown, we
subsequently propose a method to approximate the optimal N . As a possible approach to estimate N (which is not
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conducted in this work) one could start with a large number of sites and successively remove distinct EASs that violate
the constraint (6). However, this approach suffers from some major drawbacks:

• several local minima can occur leading to a strong dependency on the initial guess,
• enforcing (6) results in some numerical issues, for example, dimension changes of the optimization problem and

order of EAS removal.

In contrast, starting with a few (or even a single) EASs and subsequently introducing new EASs overcomes the
above issues since according to Proposition 1 adding new sites does not increase the objective function. In what follows,
we briefly recall the topological gradient, which is used to compute the infinitesimal expansion of splitting a single
EAS. This expansion is exploited to estimate the decrease in objective function of adding a new site.

Consider the case of a single EAS, that is, N ¼ 1. The topological gradient is defined as the effect on the solution of
the associated eikonal equation if splitting a single EAS x1 into two new sites x1þ εn and x1� εn in the direction of
n∈d�1. We can directly infer from (2) that

ϕEε
xð Þ¼min t1þδ x1� εn,xð Þ, t1þδ x1þ εn,xð Þf g ð19Þ

for Eε ¼ x1þ εn, t1ð Þ, x1� εn, t1ð Þf g, where ε>0 is sufficiently small. This topological operation divides the domain into
two subdomains Ω�

ε ≔ x∈Ω : δ x1� εn,xð Þ< δ x1þ εn,xð Þf g and Ωþ
ε ¼Ω∖Ω�

ε . We can now expand ϕε with respect to ε
as follows

ϕEε
xð Þ¼ t1þδ x1,xð Þþ εmin �rx1δ x1,xð Þ�n,rx1δ x1,xð Þ�nf gþo εð Þ

¼Φ1 x,x1, t1ð Þ� ε rx1δ x1,xð Þ�nj jþo εð Þ,

where Φ1 was defined in (8) and we used (9). In this case, we call the quantity

j x,x1,nð Þ≔ � rx1δ x1,xð Þ�nj j ð20Þ

the topological gradient.
A visual example of the topological gradient is provided in Figure 4. It is worth noting that the activation ϕEε

contin-
uously depends on the splitting distance ε. Hence, the topological operation of splitting an EAS does not introduce any
discontinuities in the objective function. Moreover, we note that adding new optimal sites always decreases the objec-
tive functional unless rx1δ x1,xð Þ�n¼ 0. Therefore, we shall define a criterion for adding a split. The decrease in
objective function of splitting a single site can be estimated as follows:

νS,ε ≔ min
n ∈ d�1

ð
Γ
r x,x1, t1ð Þ2� r x,x1, t1ð Þþ εj x,x1,nð Þð Þ2dx, ð21Þ

where r x,x1, t1ð Þ¼Φ1 x,x1, t1ð Þ� bϕ xð Þ. Likewise, the effect of moving a source point in direction n is given by

νM,ε ≔ min
n ∈ d�1

ð
Γ
r x,x1, t1ð Þ2� r x,x1, t1ð Þþ εrx1δ x1,xð Þ�nð Þ2dx: ð22Þ

The ratio νM,ε

νS,ε
has proven to be a robust score for adding new sites, which is verified in the numerical experiments. In

particular, if the ratio is below a certain threshold, then a new EAS is introduced.

3.2 | Optimization using the ECG

The electrocardiogram (ECG) is the observed signature of the electric activity of the heart, which is measured at
selected locations on the chest. Being routinely acquired and non-invasive, the ECG is the ideal candidate for inferring
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cardiac activation in a clinical framework. Here, we will introduce a method to reconstruct the EASs directly from ECG
measurements. To this end, we exploit the method presented in Pezzuto et al.6 to efficiently compute the ECG from
activation maps of the eikonal equation. Finally, the quadratic mismatch of the computed and measured ECG is mini-
mized, which yields optimal EASs.

From a modeling perspective, we denote by ΩT �ℝd∖Ω the whole body domain excluding the heart cavity. The
heart-torso interface ΓH ≔ΩT \Ω is the boundary between the active myocardium and the rest of the body (for
instance, endocardium plus epicardium), whereas Σ≔ ∂ΩT∖ΓH is the chest, on which the aforementioned electrical sig-
nal is recorded. We denote by �ℝ the considered time interval. In Figure 5, we outline how this setup would look in
actual clinical measurements on the example of Lead I.

An equation for the torso potential can be derived from bidomain theory for the cardiac tissue and the balance of
currents in the body (see, e.g., Colli Franzone et al.29). Here, we consider the so-called pseudo-bidomain5,30 or forward-
bidomain model,31 in which the parabolic and elliptic part of the bidomain equation are decoupled and can be solved
sequentially. In this way, the transmembrane potential, denoted by Vm x, t,Eð Þ, is not affected by the extracellular and
torso potentials and can therefore be approximated independently. The resulting system of equations reads as follows:

�r� Grueð Þ ¼ r� GirVmð Þ, inΩ�,

�r� GTruTð Þ ¼ 0, inΩT �,

�GTruT �n ¼ 0, inΣ�,

ue x�, tð Þ ¼ uT xþ, tð Þ, x, tð Þ∈ΓH �,

GT xþð ÞruT xþ, tð Þ�n
�G x�ð Þrue x�, tð Þ�n ¼ Gi x�ð ÞrVm x�, tð Þ�n, x, tð Þ∈ΓH �,

8>>>>>>>><>>>>>>>>:
ð23Þ

where the following quantities occur:

• ue �, �,Eð Þ :Ω�!ℝ is the extracellular potential in the heart, parameterized through the set of EASs E,
• Vm �, �,Eð Þ :Ω�!ℝ is the transmembrane potential,
• uT �, �,Eð Þ :ΩT �!ℝ is the potential in the torso,
• GT :ΩT ! Symd�d is the electric conductivity of the torso,
• Gi :Ω! Symd�d is the intracellular conductivity,
• Ge :Ω! Symd�d is the extracellular conductivity, and
• G¼GiþGe is the bulk conductivity of the heart.

FIGURE 4 Left: geodesics (white) joining multiple points with x1. Contour plots of x 7!rx1δ x1,xð Þ�n (middle) and x 7! rx1δ x1,xð Þ�nj j
(right) for fixed n� d�1. Moving a single EAS in the direction n alters the activation times δ x1,xð Þ as shown. In contrast, splitting in the

same direction n is similar to simultaneously moving a source point in both directions, and keeping only the shorter geodesic (right)
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The normal vector n at x∈ΓH points outwards, that is, from the heart surface towards the torso, and is the outer
normal vector for x∈Σ. The points x	 associated with x∈ΓH are obtained by taking the limit x	ε ¼ x	 εn for ε! 0.

The well-posedness of (23) follows from standard arguments for elliptic PDEs (see Gilbarg and Trudinger32). How-
ever, some care is required for the discontinuity across the heart-torso interface ΓH . Indeed, in order to render (25)
meaningful, we need at least uT to be continuous on Σ for every t∈. Let eΩ¼Ω[ΩT [ΓH be the domain modeling the
whole torso (including the heart), and

eG¼ G, in Ω,
GT , in ΩT ,


 eu¼ ue, in Ω�,

uT , in ΩT �:




Following,29 we assume that

1. Ω,ΩT �ℝd are Lipschitz domains,
2. Gi,Ge ∈C1 Ω,Symd�d

� �
and eG∈L∞ eΩ,Symd�d

� �
,

3. Vm �, t,Eð Þ∈W 2,p Ωð Þ, with p> d, for all t∈ and E.

Proposition 3. Under the above assumptions, the weak formulation of (23) given by

findeu �, t,Eð Þ∈H1 eΩ� �
s:t: :ð

eΩeGreu x, t,Eð Þ�rv dx¼�
ð
Ω
GirVm x, t,Eð Þ�rv dx, 8v∈H1 eΩ� � ð24Þ

is well-defined. In particular, there exists a unique solution up to an additive constant (the reference potential).

The proof directly follows from the Lax–Milgram theorem32 by noting that Vm �, t,Eð Þ∈W 2,p Ωð Þ andeu �, t,Eð Þ∈W 1,p eΩ� �
for p> d and all t∈.

Let xe ∈Σ, e¼ 1,…,NE, be NE electrodes placed on the chest. A single-lead ECG recording is the potential difference
between two such electrodes or, more generally, a zero-sum linear combination of the recordings. For instance,
Einthoven's lead I is the potential difference between left and right arm electrodes. More generally, given electric poten-
tials uT at the electrodes, the standard ECG is a vector-valued function V :!ℝL given by

FIGURE 5 Exemplary setup for the lead-field of Lead I appearing in many ECG recordings. ΩT (torso) encapsulates heart domain Ω
(heart domain), the left/right arm electrodes on ΩT are marked as x1 and x2. The normal n is pointing from the surface of the heart domain

Ω into the torso domain ΩT . The corresponding Zl is computed using (27), which is subsequently employed to obtain the ECG Vl of Lead I
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V t,Eð Þ¼

V1 t,Eð Þ
V2 t,Eð Þ

..

.

VL t,Eð Þ

0BBBB@
1CCCCA¼A

uT x1, t,Eð Þ
uT x2, t,Eð Þ

..

.

uT xNE , t,Eð Þ

0BBBB@
1CCCCA, ð25Þ

where L is the number of leads and A is a L�NE real matrix defining the lead system, for example, the 12-lead ECG.
Since each row of A sums to zero, the matrix is not full-rank. For instance, the standard 12-lead ECG corresponds to
the choice L¼ 12 (three Einthoven leads, three augmented limb leads and six precordial leads) and NE ¼ 9 (three limb
electrodes and six precordial electrodes), in which case A has rank 8. We remark that Morrey's inequality guaranteeseu �, t,Eð Þ∈C0 eΩ� �

, hence validating (25).
Solving (23) is numerically costly for the standard 12-lead ECG, since we only evaluate uT at selected locations. Note

that the system must be solved for every t∈. Thus, we adopt the following integral representation of (25):

Vl t,Eð Þ¼
ð
Ω
Gi xð ÞrVm x, t,Eð Þ�rZl xð Þdx, ð26Þ

where Zl : eΩ!ℝ are the lead fields (or Green's functions) satisfying the adjoint problem

�r� eGrZl

� �
¼ 0, in Ω[ΩT,

�eGrZl xð Þ�n ¼ PNE

e¼1
A½ �leδ x�xe½ �, x∈Σ,

Zl x�ð Þ ¼ Zl xþð Þ, x∈ΓH ,

G xþð ÞrZl xþð Þ�n ¼ G x�ð ÞrZl x�ð Þ�n, x∈ΓH :

8>>>>>>>><>>>>>>>>:
ð27Þ

An informal derivation of (26) follows from the application of the second Green's identity to (23). As for (23), the solu-
tion is defined up to a constant. For a rigorous derivation accounting for the discontinuity in eG, we refer the reader to
Colli Franzone et al.29 (pp. 152 ff.). A key observation is that the lead fields do not depend on t and E, making (26) par-
ticularly attractive for parameter estimation.

Next, we assign the transmembrane potential Vm accordingly to a fixed waveform U :ℝ!ℝ shifted by the activa-
tion time ϕE as follows

Vm x, t,Eð Þ¼U t�ϕE xð Þð Þ:

We write the parameterized waveform as:

U ξð Þ¼K0þK1�K0

2
tanh 2

ξ

τ1

� 
� tanh 2

ξ�APD
τ2

� � �
, ð28Þ

which is visualized in Figure 6.
Furthermore, the conduction velocity tensor D in the anisotropic eikonal equation in (1) is linked to the electric

conductivity as follows:

D¼ α2

β
GeG�1Gi, ð29Þ

where β is the surface-to-volume ratio and α is a rescaling factor either experimentally estimated or obtained by solving
the monodomain equation in a cable propagation setup.6 Note that in all conducted experiments we assumed an equal
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anisotropy ratio Gi ¼ λGe, from which D¼ α2

β
λ

1þλGi follows. The equal anisotropy ratio assumption simplifies the numer-
ical experiments, but is not necessary for GEASI. All parameters adopted in this study are provided in Table 1.

We emphasize that ϕE ∈C0,1 Ω
� �

only implies Vm �, t,Eð Þ∈W 1,p Ωð Þ and not Vm �, t,Eð Þ∈W 2,p Ωð Þ as required for t∈
and E ∈UN . However, the aforementioned theory is still valid in this case with some major modifications that are
beyond the scope of this work. Again, we refer to Colli Franzone et al.29 and the references therein for further details.

In what follows, we intend to compute the sensitivities of the ECG with respect to the parameter set E ∈UN . In the
problem, only the activation map ϕE appearing in the definition of Vm depends on the parameters in E. Note that the
chain rule straightforwardly implies

rEVm ¼�∂U
∂ξ

rEϕE :

The use of the aforementioned smooth waveform allows for a continuous analytical derivative ∂U
∂ξ . Details on the deriva-

tion of the term rEϕE were already given in Section 2.3. Then, the derivative rEVl is computed from (26) and reads as

rEVl t,Eð Þ¼
ð
Ω

Gi xð Þr2
E,xVm x, t,Eð Þ� �rZl xð Þdx: ð30Þ

FIGURE 6 Membrane voltage waveform as a function of time, equivalent to (28) with parameters from Table 1. The continuous

formulation allows for an analytical derivation in (30)

TABLE 1 Parameters to compute the ECG from the eikonal solution ϕE

Parameter Description Value Unit

t Time 0,T½ � ms

λ Anisotropy ratio 3 —

GT Torso conductivity 0:2 mS mm�1

α2 Conduction velocity scaling 400 mm2 mS�1 ms�2

β Surface-to-volume ratio 100 mm�1

K0 Resting potential �85 mV

K1 Plateau potential 30 mV

τ1 Depolarization time-scale 1 ms

τ2 Repolarization time-scale 50 ms

APD Action potential duration 200 ms
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Finally, in this model the set of EASs E is computed from the measured ECG bVl : I!ℝ as follows:

min
E ∈ UN

1
2

XL
l¼1

ð


Vl t,Eð Þ� bVl tð Þ
� �2

dt, ð31Þ

which is solved using the Gauss–Newton algorithm in a similar fashion to Algorithm 1. In particular, the update of the
set E reads as follows

E kþ1ð Þ ¼ argmin
xi, tið ÞNi¼1f g ∈ UN

XL
l¼1

XN
i¼1

1
2

rxi,tiJ E kð Þ
� �

xi�x kð Þ
i , ti� t kð Þ

i

� �T
þVl t,E kð Þ

� �
� bV tð Þ

				 				2
L2 ð Þ

ð32Þ

with the modified objective functional

J Eð Þ¼ 1
2

XL
l¼1

ð


Vl t,Eð Þ� bVl tð Þ
� �2

dt: ð33Þ

The numerical integration in (32) is realized using the trapezoidal rule.

Remark 3. There are several numerical issues related to the optimization:

1. The waveform (28) is a rough approximation of a physiological action potential modeled the electrophysiology of a
cell. The function U and the scaling parameter α may be simultaneously approximated from a generic ionic model
by solving a 1-D propagation in a (possibly very long) cable with uniform coefficients. Alternatively, it is possible to
show that U ,αð Þ solves a nonlinear eigenvalue problem involving the ionic model.3

2. Equation (28) is actually not suitable to model the repolarization of the heart which is responsible for the T-wave.
The reason is that the polarity of the T-wave, in general in accordance with the polarity of the QRS complex, can
only arise from a heterogeneity in the action potential. Such heterogeneity might be introduced here, but it would
be hard to reproduce the smoothing effect due to diffusion currents. Finally, the eikonal model is not suitable for
the repolarization because, opposed to the depolarization phase, the repolarization front is of the same order of the
size of the domain, impeding a proper perturbation analysis. In this work, the repolarization time is ϕE xð ÞþAPD,
hence it satisfies the same equation as ϕE , but with a shifted time.

3. Equation (30) requires higher order derivatives of Vm and subsequently ϕE . While we computed the derivative
rEVm as previously discussed, the computation of rxVm is numerically achieved on the reference element.

4. It is important to mention that the gradient computation for the minimization of (31) is usually much more costly
compared to optimizing the problem in the eikonal formulation from (15), since the size of Γ is much smaller com-
pared to Ω. However, to compute rxi,tiJ we need the activation times and their derivatives in Ω, which necessitates
the computation of the geodesics from each point of our domain to the EAS xi. The computational complexity is sig-
nificantly larger than the complexity for (15). Further strategies to reduce additional computational costs are pres-
ented in Section 6.2.

4 | DISCRETIZATION

In this section, we elaborate on the discretization aspects for Algorithm 1, which encompasses the steps: over-relaxation
of E kþ1ð Þ, solving the eikonal equation, computation of the geodesics and update of E kþ1ð Þ.
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4.1 | Solving the eikonal equation

The discrete function space for the eikonal equation is the space of volumetric Lagrange P1-finite elements defined on
triangular (d¼ 2) and tetrahedral (d¼ 3) meshes discretizing Ω, respectively. Moreover, the discrete measurements in Γ
are degrees of freedom (DOFs) of the mesh.

Typically, finite element solvers require the initiation sites to coincide with DOFs of the mesh. However, since the
original problem (7) expresses xi as a continuous quantity, we identify the DOFs of the actual element containing
the activation site. Then, these DOFs are added to the Dirichlet boundary ΓD with fixed activation times given by tiþ
x�xik kD�1 xið Þ for x∈ΓD due to structural assumptions regarding the P1-finite element space. For the rare case of two
or more initiation sites residing in the same element, we use the properties of (2) and (6) to compute the activation
times.

In all subsequent computations, we employ the FIM9,33 to solve the eikonal equation to account for the anisotropy.

4.2 | Computation of geodesics

In this work, we employ Heun's method (second order explicit Runge–Kutta scheme) to solve (12), which proved to be
stable and efficient in numerical experiments. Due to the convergence of the ODE system to a stable node xi we termi-
nate the iteration if the ℓ2-norm of two consecutive iterations is below 10�10. In practice, the ODE system is solved
independently on each region of interest Ri incorporating the whole set E. Since the gradient of the eikonal solution for
the chosen discretization is a P0-finite element function (i.e., piecewise constant), we advocate a standard L2-projection
onto the P1-finite element space.34 Note that this projection can be realized by solving a linear system involving the
mass matrix in P1. Since the boundary of Ω is in general curved, we project the geodesics back onto ∂Ω if they are out-
side of the domain after each update.

As remarked in Section 2.3, the gradient of the eikonal solution is discontinuous around each xi. To enforce regular
gradients at each xi after the L2-projection of the previous eikonal solution eϕE , we recompute the points with vanishing
gradient by the subsequent variational problem with Tikhonov regularization for c∈d and balancing parameter λ>0 as
follows:

rϕE y1ð Þ½ �c
..
.

rϕE ydþ1

� �� �
c

0BB@
1CCA¼ argmin

n ∈ℝdþ1

1
2
Ψ xið Þ,nh i2þ λ

2
n�

reϕE y1ð Þ
h i

c

..

.

reϕE ydþ1

� �h i
c

0BBBB@
1CCCCA

										

										

2

:

Here, Ψ¼ ψ1,…,ψdþ1

� �Τ
and yj

n odþ1

j¼1
are the collections of P1-basis functions and degrees of freedom associated with

the element containing xi, respectively. Figure 7 depicts the effect of this regularization on the solution around xi.
The gradient computation in (9) is also sensitive to the choice of the step sizes of (12), which we choose as 5�10�2h

with h being the average element size. As already described in Section 2.3, we compute the geodesic direction not
directly at xi, but rather in a small ζ-neighborhood with ζ¼ 0:5h as advocated in (13). Numerically, the convergence of
geodesics to this neighborhood is not ensured and non-converged geodesics (rarely occurring) do not affect the
optimization.

4.3 | Update of E kþ1ð Þ

Next, we optimize (18), where we have to ensure E∈UN . The constraint xi∈Ω is mesh-dependant and allows for no
general analytical solution, potentially limiting the available optimization implementations. To overcome this hurdle,
we use a proximal point algorithm enforcing E∈UN . The integration is realized using an exact simplex quadrature rule.

In detail, we first compute the Moreau envelope of (18) with respect to the metric induced by Mi,E kð Þ ≔ 1
τ I�

JΤ
i,E kð ÞJi,E kð Þ for τ< k JΤ

i,E kð ÞJi,E kð Þk�1, where Ji,E kð Þ ≔r xi,tið ÞJ x kð Þ
i , t kð Þ

i

� �
. Thus, the Moreau envelope reads as
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f E� �≔ min
E ∈ UN

XN
i¼1

1
2

Ji,E kð Þ
xi�x kð Þ

i

ti� t kð Þ
i

 !
þrE kð Þ xð Þ

					
					
2

L2 Γð Þ
þ1
2

xi�xi
ti� ti

� 				 				2
M

i,E kð Þ

ð34Þ

with E ¼ xi, tið ÞNi¼1

n o
and E ¼ xi, tið ÞNi¼1

n o
, and rE kð Þ xð Þ¼ϕE kð Þ xð Þ� bϕ xð Þ. This particular choice of the metric27 allows for

an explicit solution to (34) given the projection onto UN . This method is usually referred to as Iterative Shrinkage and
Thresholding (ISTA).35 In summary, the iteration step of the proximal point algorithm reads as
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Thus, the resulting optimal set is bE ¼ bxi,bti� �N
i¼1

n o
. Note that the convexity of the projection depends on the convexity of

the domain. In practice, hardly any cardiac mesh is convex, but nevertheless the proposed method generated reliable
results for sufficiently small step sizes. The gradient direction of the Moreau-envelope is

rf xi,ti E
� �¼ τ�1 xi�bxi

ti�bti
� 

In this case, the unconstrained problem is solved using L-BFGS.36

5 | NUMERICAL RESULTS

Next, we present numerical results for various methods discussed above, where we focus on four setups to test GEASI
on theoretical and cardiac problems:

1. The square domain presented in Figure 2 with a periodic conduction velocity field, where the measurement domain
Γ coincides with the boundary of the surface. The initial initiation sites were chosen randomly for optimization
w.r.t. activation times. For the optimization w.r.t. the ECG, we moved the target EASs further apart and used pertur-
bations of the target EAS positions as initializations.

2. On a simplified 2D left ventricle (LV)-slice geometry with a transmural fiber rotation. Fiber and transverse intracel-
lular conductivities were set to achieve a conduction velocity of 0.6 and 0.4 mm/ms, respectively. The measurement

FIGURE 7 Left: zoom of family of geodesics emanating from a single EAS without special handling. Note that before the L2-projection

of rϕE geodesics are not guaranteed to reach the EAS. Right: after the L2-projection all geodesic curves actually reach the EAS
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domain Γ is the outer ring of the domain, that is, an epicardial slice. The initial initiation sites were chosen ran-
domly for all related experiments.

3. On a clinically sampled, endocardial electrical mapping, recorded during intrinsic rhythm in a patient candidate to
cardiac resynchronization therapy (CRT) and affected by a left bundle branch block. Data acquisition and the con-
struction of the patient-specific anatomical model has been described in previous studies.6,10 The measurements of
activation were projected onto a patient-specific LV heart geometry. We mapped fiber orientations into the model
using the approach described in Bayer et al.37 Fiber, transverse and cross conduction velocities were set to 0.6, 0.4
and 0.2 mm/ms, respectively. Again, the initial initiation sites were chosen randomly, the target initiation sites are
unknown.

4. A full biventricular, trifascicular LV/RV human heart geometry with 1000 measurement points Γ distributed evenly
along the epicardium. Details on the model building process have been reported previously in Augustin et al.38 Con-
duction velocities and fibers were assigned as in the above experiment, with an additional fast-conducting isotropic
endocardial layer with a propagation velocity of 1.5mm/ms. As in almost all other experiments, the initial initiation
sites were chosen randomly. The target EASs, three in the left ventricle and three in the right ventricle, were chosen
in accordance with our previous study, see Grandits et al.20 (p. 10).

In all experiments involving the computation of the ECG and lead fields, we assumed that intra- and extra-cellular
conductivities are proportional to the tensor D, as explained in Section 3.2. Further numerical specifications of the
aforementioned setups are listed in Table 2 and Figure 8.

In this work, we use a custom C++ implementation of FIM9 to solve the eikonal Equation (1). Note however
that the method is independent of the chosen eikonal solver and may benefit from higher order or smoother solu-
tions of different solvers. A minimal working example for the method can be found on GitHub,* but is limited to
the isotropic eikonal equation on structured grids using the Fast Marching Method39,40 without FEM. The ECG
and geodesic computations, that is, (26) and (12), and its Jacobian computation are calculated using the Ten-
sorFlow framework,† making use of available GPUs and enabling automatic derivation of Vl with respect to fVm. All
computations were performed on a single desktop machine with an Intel Core i7-5820K CPU using 6 cores of each 3.30
GHz, 32 GB of working memory and a NVidia RTX 2080 GPU.

5.1 | Activation time optimization

In Figure 9, we present the results of GEASI for the 2D experiments: In the first iterations of the square example, the
EASs are moved to the center of the domain to promote a good overall fit during optimization. As the sites approach
the center, fine details on the boundary can be fitted by minimizing the mismatch defining the optimal points. The ide-
alized LV model additionally requires a non-convex projection since the fiber alignment favors movements on the endo-
cardial wall. The optimization still works for this case, even though the problem in (34) becomes non-convex.

Next, we concentrate on 3D experiments in Figures 10 and 11, for which we alter the number of initiation points for
both models. Even though we can not ensure that the activation of the clinically acquired CRT patient can be described
by the eikonal model with the simple rule-based fiber orientation, the results on the CRT measurements provide an
overall low root-mean-square error (RMSE) between modeled and measured activation times. In the presence of a sin-
gle EAS, the fit is (expectedly) sub-optimal since the activation requires a more complex activation pattern. With three

TABLE 2 Selected parameters for each setup

DOFs Size (cmd) h (mm) Runtime (h) Topological gradient ECG

1 502 2�2 0:4 1/2 (ECG) ✓ ✓

2 7980 2�2 0:11 1/2 (ECG) ✓ ✓

3 1:5�104 10:7�8:9�9:5 1:9 2.5 ✓

4 1:08�105 10:3�8:1�12:6 0:66 3.5/18 (ECG) ✓

Note: The size refers to the bounding box of the setups and h is the average element spacing. Tested extensions are indicated by check marks. The ECG
runtimes are separately denoted behind the dash as the experiments are more computationally demanding.
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or more EASs, we get a much better fit, evenly distributed throughout the ventricles, but additional initiation sites are
moved from the septum to the LV. Note that there is no guarantee that the chosen rule-based fiber mapping can prop-
erly model the encountered ventricular activation. In such a case, the additionally employed initiation sites are able to
compensate possible modeling inaccuracies. We can achieve even better results by successively increasing the number

FIGURE 8 Activation times for all setups considered along with fiber orientations (if available). The isotropic conduction velocity of case 1 is
presented in Figure 2 and exhibits no fiber orientation due to isotropy. Note that case 3 was measured in-vivo and thus no ground truth is available

FIGURE 9 Results of GEASI for both 2D experiments. We located the exact initiation sites with only a few iterations, both for the

heterogeneous velocity case (left) and in the presence of non-convex projections for the idealized LV model (right)
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of initiation sites, but this only reveals the nature of the ill-posed problem: By increasing the complexity of our model,
we can more closely approximate the presented activation map (cf. Proposition 1).

The trifascicular model has a higher resolution in comparison to the CRT model with an added fast conducting sub-
endocardial layer, which is utilized in all longer geodesics from the measurements to the initiation sites. For this reason,
it is important to properly project the geodesics in each iteration on the endocardium in a fast way. For further details of
the actual implementation we refer the reader to Section 6.2. As a result, when using less EASs than in the ground truth
we already achieve convincing numerical results, which is visualized in Figure 11. If we incorporate six initiation sites,
we get a very good fit, even though one of the activation sites is deactivated before convergence due to (6). The three sep-
tal points are jointly modeled by two EASs accounting for the deactivated point. Adding points beyond the given ones did
not yield any improvement as they are deactivated by other points during the optimization (not shown).

5.2 | Topological gradient

We also tried to estimate the correct number of EASs by using topological gradients (see Section 3.1), where we ana-
lyzed all 2D setups and the CRT patient. In this case, a splitting can only occur if the ratio νM,ε

νS,ε
is below 10�1 2Dð Þ=2:5�

10�1 3Dð Þ and the maximum Euclidean distance of the position of two consecutive iterates among all EASs is smaller
than 10�2h (with h being the average element spacing).

The minimizer of (21) is chosen by evaluating 360 2Dð Þ=5625 3Dð Þ directions, which are evenly distributed on the
hypersphere. We additionally ensure that the splitting direction is feasible (i.e., it does not point outside the domain) by

FIGURE 10 Results for the CRT experiment with varying number N of EASs along with the RMSE (in ms) shown above each

experiment. The color-coded spheres indicate the observed activation times, while the white circles represent the optimized EAS positions.

The white trailing paths show the optimization path over the iterations. Increasing N lowers the overall RMSE, but may result in

physiologically unlikely EAS (e.g., top of the left ventricle for N ¼ 5)
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projecting the samples onto the mesh. To avoid two coalescing EASs inside one element after a split, the points are
moved apart by 2h from the original site.

In Figure 12, we collected the results for all 2D experiments using this method and plot the ratio νM,ε

νS,ε
over the itera-

tions. The first EAS is moved towards the center of the ground truth EASs, and subsequently several splits occur that
closely match the ground truth sites. A similar behavior can be observed in the idealized LV model.

For the CRT patient in Figure 13, neither the ground truth EASs nor the fiber distribution and velocities in Ω are
known. In total, the algorithm introduced eight splits (i.e., N ¼ 9), of which four are deactivated during optimization
since they violated (6). Only those final EASs are shown in the right plot of Figure 13. Moreover, we can see that three
main clusters are identified, where one initiation cluster is located at the upper part of the anterior septum. The optimi-
zation in this region is further complicated by the very thin wall of the 3D mesh, which likely causes the high number
of splits. We highlight that constant (in time) split ratios are caused by temporarily deactivated EASs violating (6). To
conclude, we get a tremendous fit with the presented measurement points despite the aforementioned model assump-
tions. Moreover, the topological gradient could be successfully applied to all 2D models leading to the correct estimate
for the number of EASs and also matching the correct sites. The corresponding results in 3D provide a very low overall
RMSE on the measurements.

5.3 | ECG

In what follows, we present numerical results for the ECG optimization for both 2D experiments as well as the
trifascicular model in a simplified fashion as a proof-of-concept. The ECG requires an additional full torso domain ΩT

FIGURE 11 Results for the trifascicular experiment along with the RMSE (in ms) shown above the experiments for both Γ and Ω. The
color-coded spheres indicate the observed activation times. The white and green circles represent the optimized and target EAS, respectively.

The overall RMSE activation error is very low if using the correct number of initiation sites (N = 6), but we already obtain a good fit with

fewer sites
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FIGURE 12 Results of the 2D experiments for the topological gradient. Top row: optimization paths starting with a single EAS. Bottom

row: plots of νM,ε

νS,ε
for each EAS depending on the iterations, where an EAS is split if this ratio is below the dotted red line. The location (top)

and iteration (bottom) of the splits are marked by 1 and 2. Note that an EAS only splits if all parameters have converged (see Section 5.2)

FIGURE 13 Results for the topological gradient extension on the CRT experiment with a visualization analogous to Figure 12
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and the computation of the lead fields. For all experiments in this paper, we embedded all three in-silico experiments
(i.e., 1, 2, 3) into a non-equilateral cube-torso without any additional organs and an overall torso conductivity of
0.2mSmm�1. The size of the cube-torso is proportional to the bounding-box of Ω. The computed lead fields are shown
in Figure 14. In all cases, we generated a noiseless target ECG from the reference model setup with parameters and ini-
tiation sites already presented in Section 5. We optimize our model with random initialization with respect to this target
ECG. Note that we do not focus on the generated ECGs' absolute potentials, since this heavily depends on the actual
torso setup. Instead, we rather focus on the overall morphology of the ECGs.

To compute the lead fields in (27), our cube-torso is sampled using a structured regular grid of 100d equidistant
points, and the problem is solved with a finite difference scheme, which is sufficiently accurate since the lead field is
evaluated far away from the singularity.41 The lead fields are computed prior to the optimization since they remain con-
stant. The ECG signals for the 3D models are mean-filtered with a small kernel of size ≈ 2ms to improve accuracy.

Optimization solely based on the ECG is frequently very challenging. However, with a proper initialization xi, tið Þ,
good fits for the ECGs can be computed. Figure 15 shows the optimization paths, as well as initial, target and optimized
ECGs using the modified GEASI algorithm presented in Section 3.2 for the 2D examples, which are computed in
approximately 2.5 h each. The two potentials are a result of the two axis-aligned lead-fields (see Figure 14).

In the numerical experiments, it turned out that that the overall step size βs has to be chosen smaller compared to
the activation timing problem. The morphology of the initial ECG and the optimized ECG differ by a large margin,
making the fitting non-trivial. As a result, in both the square domain and the idealized LV experiment we are able to
closely match the actual sites from which the target ECG was generated (Figure 15, second row).

The trifascicular model in Figure 16 is computationally demanding since in each iteration step a computation of all
geodesics is required, that is, we need to solve ≈ 105 ODEs per iteration (for further details we refer to Section 6.2). As
each initial EAS is randomly chosen, the initial ECG significantly differs from the target. Note that the 3D cube torso

FIGURE 14 Setup for the ECG experiments showing the torso domain ΩT . The heart domain Ω is indicated by black lines for the 2D

experiments and gray silhouettes for 3D. The streamlines visualize the lead fields. Note that the lead field for axis Z (green) is only present in

the 3D experiments
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exhibits three axis-aligned leads. Since lead-X and lead-Z have the most prominent peaks, they have the largest effect
on the resulting L2-error. After the optimization, these peaks were fitted by the algorithm by shifting most of the initia-
tion sites to the LV and one to the anterior wall and septal region. The added difficulty with an activation featuring that
many EASs is also apparent from the computed paths (white lines) which strongly vary during optimization. After ter-
mination, four of six sites are close to the ground truth sites defining the target ECG.

6 | DISCUSSION

In the previous section, we have experimentally demonstrated the broad applicability of the proposed GEASI method
for a variety of problems. Despite the convincing results there are still some issues related to our approach and alterna-
tive approaches, which will be addressed in future work.

FIGURE 15 Results of the 2D ECG optimization. Top row: temporal change of the positions of the EASs along with the ground truth.

Bottom row: initial, final and target ECG for fitting
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6.1 | Eikonal equation

In this work, we rely on the anisotropic eikonal equation, but other versions thereof are also applicable. More specifi-
cally, several eikonal frameworks to model physical and medical processes have been proposed over the last three
decades, which can be derived from either the monodomain or the bidomain equation using a perturbation argument.29

The most common equation inferred from a first-order approximation of the monodomain equation is the anisotropic
eikonal Equation (1). The eikonal model originating from the bidomain model is slightly different and is based on a
Finsler-type metric.42

Second-order approximations lead to the curvature-eikonal, diffusion-eikonal and viscous-eikonal equations. In the
curvature-eikonal model,3 the front velocity is corrected by the curvature of the front in the metric induced by the con-
ductivity tensor. In contrast, in the diffusion-eikonal Equation (4) a diffusion term is added to the right-hand side of (1).
Finally, in the viscous-eikonal model,22 a squared eikonal equation is considered, which is corrected by a
diffusion term.

Higher-order approximations have also been proposed, but are rarely used in practice.43 The effect of higher-order
terms is more pronounced in front collisions, at the boundary of the domain and in narrow channels, for example, in
scarred tissue. In practice, however, deviations from the classical eikonal model are minimal and is therefore widely
accepted for personalization of cardiac models.

FIGURE 16 Results of the ECG optimization on the trifascicular model. Top row: optimized positions of EASs (white circles) along

with temporal changes over the iterations (white lines). The green circles represent the target position from which the ground truth was

generated. Bottom row: initial, final and target ECG
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The distinction between these models is however important from the point of view of the EASs and is often dictated
by the numerical method rather than the physiology. In the standard anisotropic eikonal model (1), EASs can be single
points, whereas in the curvature-eikonal equation EASs are required to have a strictly positive Lebesgue measure. Note
that the conduction velocity of a spherical front with small radius is significantly slower in the presence of higher-order
correction terms.

6.2 | Runtime

The majority of the computational time is spent for solving the geodesics in (12), performed in parallel on the GPU. We
highlight that the number of geodesics is proportional to the size of Γ in the original version (Algorithm 1) and propor-
tional to Ω in the modified version (Section 3.2). The computation of all geodesics in both cases is performed in parallel
on a GPU and therefore scales well with the mesh size. The bulk of computational time inside the ODE solver is spent
on the projection of each ODE solution back onto the mesh and nearest neighbor computation. For the nearest neigh-
bor computation, we implemented a custom KD-Tree implementation (publicly available on GitHub‡). For the projec-
tion operator, we extract the surface of the mesh, prior to the computation using the truncated signed distance function
from VTK.§ The K-nearest neighbor elements of the current positions of the geodesics are then queried to calculate the
analytical projection onto all reference elements. The projection to all nearest neighbors is the minimum distance pro-
jection onto the mesh Ω. Note that the time of each individual ODE solution in (12) depends on the length of the associ-
ated geodesic. Since adding new points can only shorten geodesic lengths (compare (3) and Section 3.1), more EASs
will result in faster convergence and reduced computation time.

Solving the eikonal equation in (1) as well as the Gauss–Newton optimization in (15) only requires a minor portion
of the computational time. As already mentioned, the activation time optimization is much faster compared to the
remaining computations. In total, the experiments were finished within about 100 iterations only taking approximately
30 and 90 min for 2D and 3D experiments, respectively. The experiments for the topological gradient behaves similarly
regarding computational time. In contrast, the 3D optimization in the ECG problem requires approximately 12 h.

To further decrease runtime, several approaches are possible: A custom GPU implementation to solve (12) along
with the projection could significantly speed-up the optimization. Additionally, we often witnessed a collapse of many
geodesic paths, especially in the trifascicular model, making subsequent computations redundant. An adaptive sam-
pling from the measurement domain Γ combined with a proper upsampling technique could increase performance at
the cost of precision.

To improve performance for the 3D ECG optimization, we analyzed the convergence of the ODEs. Figure 17 shows
a probability density function (PDF) of convergence of the geodesics γ over the number of required iterations using the
trifascicular model with a single initiation site in the septum. Convergence in this case is defined as the first time two
subsequent ODE iterations of (12) have a change of less than 10�10, that is, γ tkþ1ð Þ� γ tkð Þk k<10�10. We see that many

FIGURE 17 Convergence of the geodesic ODE in (12) for the trifascicular model over the iterations with a single EAS in the septum.

The majority of the geodesics converge before 2000 iterations
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of the computed geodesics converge very quickly, while points with a high geodesic distance need significantly more
iterations before convergence. Our vectorized/parallel implementation to solve (12) exploits this fact to only include
non-converged geodesics.

6.3 | ECG

The ECG results demonstrated that GEASI can be used to fit a given ECG. However, one main problem is getting stuck
in local minima. While the L2-error is relatively low in these minima, the morphology of the optimized and the target
ECG differ a lot. One of the main reasons for this problem could result from the usage of the L2-error, which is not
robust to transformations of the time series, such as time shifts. Better error measures for this type of optimization
include dynamic time warping44 and the Wasserstein distance.45 Finally, different optimization algorithms could fur-
ther help to overcome this issue.

7 | CONCLUSION AND FUTURE WORK

This paper introduced the novel GEASI method to find the optimal source points of an eikonal model with a special
focus on electrophysiological examples. We showed that GEASI can model complex eikonal activations, either from the
activation times directly, or by fitting a given ECG. For our model examples, we were able to identify most of the gro-
und truth EASs along with times, and in the case of the topological gradient also the number. We were even able to
model CRT measured data with only a few source points.

So far, we only assumed fixed conduction velocities and fiber distributions for all cases. In future studies we intend
to estimate these parameters using the same procedure with only minor necessary modifications to (15). We note that
past studies18,20 have already shown that for the optimization of conductivities, additional regularization is crucial to
decrease model complexity.

GEASI is inherently connected to the anisotropic eikonal equation through the Hamilton–Jacobi formalism. Thus, a
possible extension of GEASI to reaction-diffusion models, possibly with non-local diffusion terms46 and more complex
boundary effects,30,47 is not trivial and probably requires a hybrid reaction-diffusion-eikonal approach.5

All extensions of GEASI such as topological gradient and ECG optimization hold much promise for future applica-
tions in clinical real-world examples. GEASI faces several computational hurdles, many of which we already tackled in
this study. We hope to further improve and expand GEASI—both methodologically and computationally—to enlarge
the applicability to a wide-range of problems. Several pathological scenarios nicely fit in the GEASI framework, and the
proposed method could potentially greatly improve the identification of the site of origin of premature ventricular con-
tractions and monomorphic ventricular tachycardia.48 GEASI could also be applied to improve planning of therapeutic
interventions such as cardiac rhythm management with optimal placement and number of pacing leads.2 Therefore, we
believe that GEASI has the potential to significantly advance and improve personalized health care in the future.
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