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Computational chemistry has come of age in drug discovery. Indeed, most pharmaceutical development

programs rely on computer-based data and results at some point. Herein, we discuss recent applications

of advanced simulation techniques to difficult challenges in drug discovery. These entail the

characterization of allosteric mechanisms and the identification of allosteric sites or cryptic pockets

determined by protein motions, which are not immediately evident in the experimental structure of the

target; the study of ligand binding mechanisms and their kinetic profiles; and the evaluation of drug–target

affinities. We analyze different approaches to tackle challenging and emerging biological targets. Finally, we

discuss the possible perspectives of future application of computation in drug discovery.

Introduction

In 2020, the US Food and Drug Administration (FDA)
approved 53 new products, the second-highest number in 20
years, just short of the record of 59 established in 2018. The
interest in cancer is notable, with about 35% of approved
products for this disease dominating the list.

One key factor that strongly contributed to this landmark
achievement is the emergence of new knowledge and
approaches for target identification, screening and drug design.

Computational studies are now recognized to play an
increasingly crucial role in the evolution of drug discovery.
The development of new hardware, software and their
integration, coupled to the increasing amount of data on
drug activities and the development of new algorithms to
analyze them, can significantly contribute to reduce the costs
and time required to advance a hit compound into a new
administrable medicine.

The classic roles of computational chemistry and biology
range from structure refinement to the generation of poses for
ligands in targets, as well as from ligand or structure based
virtual screening to similarity searches and de novo design.
Most of these approaches are centered around the concept that
drug candidates typically need to engage structurally well-
defined active/binding sites on the target: specific side chains
and cavities around such sites can be exploited to guide the

modification of the initial lead via functional groups aimed to
generate novel binding interactions.

Fundamental studies and technological advances have
revealed that, in many cases, engaging an active site may not
be sufficient to disarm the pathologic activity of a biological
target. Changes in expression levels, mutations in sites distal
from the active site, complex conformational changes, post-
translational modifications, the emergence of drug
resistance, have all been recognized to contribute to many
pathological states.

Novel computational approaches, and biomolecular
simulations in particular, are essential tools for
understanding the molecular complexities and
interconnections among all these mechanisms. On this basis
they can provide new opportunities for cancer drug design
and development.

As an example, recent work on epidermal growth factor
receptor (EGFR), an important cancer oncogene, has shown
how the combination of imaging technologies and
simulations could reveal the determinants of assembly of
ligand-free receptor polymer chains on the extracellular
membrane, supporting the hypothesis that dysregulated
species bear populations of symmetric and asymmetric
kinase dimers that coexist in equilibrium. This structural
characterization of the assembly bears clear relevance for
future drug design efforts.1

Relevant applications entail revealing cryptic sites, that
might not even be present in the crystallographic model of
the target of interest, sampling complex free-energy
landscapes, revealing the impact of mutations on the
activation states of oncogenes, unveiling allosteric regulation
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pathways, and estimating the kinetic parameters of drug
binding and unbinding or drug residence times.
Furthermore, it is worth noting that drug effects extend on
multiple scales: the molecular interactions established by the
drug with the target alter its function, impact its interaction
network and eventually reverberate at larger multimolecular
and cellular scales. Simulations that encompass and
interconnect such different scales are becoming more and
more important in drug design and will likely grow in their
importance for our understanding of complex mechanisms
and ultimately for our ability to predict pharmacological and
biological effects.

In this review, we discuss how advanced computational
approaches can help realize the promises of discovering,
designing and optimizing novel cancer therapeutics. We will
present our views on emerging methods and applications in
this fascinating field at the crossroads between chemistry,
biology, biophysics and computational sciences, outlining
how they can be combined to extend the chemical space of
new molecules for cancer treatment.

Is allostery so cryptic? Binding pocket
detection and allosteric regulation

The investigation of allostery has become a hot field of
investigation as it offers promising strategies for new
inhibitor discovery. Understanding allosteric communication
pathways has proven key in shedding light on functional
regulation mechanisms, on the impact of mutations on the
levels of enzymatic activation, and on the determinants of
drug resistance. In this context, recent work by Galdadas and
coworkers2 combined equilibrium and nonequilibrium
molecular dynamics simulations to characterize allosteric
effects in two prototypical class A β-lactamases, TEM-1 and
KPC-2. This work, while not strictly related to cancer, tackles
the problem of drug resistance, which is one of the main
challenges facing drug discovery. In particular, the authors
look at how the dynamics and shape of the proteins respond
to the presence or removal of an allosteric ligand. The picture
provided by equilibrium and non-nonequilibrium
simulations unveils communication pathways that connect
very distant sites (more than 30 Å apart) in the proteins and,
importantly, where more than 50% of clinically relevant
amino acid substitutions concentrate on these identified
signal transduction pathways.

A combination of classical equilibrium and enhanced
sampling simulations3 has been applied to the study of
PI3Kα, a member of the phosphoinositide-3 kinase (PI3K)
family (Fig. 1), which controls several cellular responses
such as cell proliferation, survival, and motility by catalyzing
the phosphorylation of the inositol lipid PIP2 at the 3′
position of the inositol ring, generating the signalling
molecule PIP3. Mutations in PI3Kα cause enhanced
signalling, exacerbating the above-mentioned cellular
activities and contributing to oncogenesis.4

Here, the authors focused on one particularly important
mutation for tumors, namely E545K. This mutation increases
PI3Kα lipid kinase activity.5

Classical molecular dynamics (MD) and multiple walkers
metadynamics simulations of the p110α (catalytic) and p85α
(regulatory) subunits of PI3Ka indicate that the charge
reversal determined by the mutation has complex
consequences at the level of both protein structure and
dynamics. E545K lies at the interface between the nSH2
(p85α) and helical (p110α) domains: the simulations indicate
that two displacements originate from the mutation. One is
the detachment of nSH2 domain from the helical domain,
and the other is the sliding along the helical domain. The
former motion leaves the activation-loop intact, as the loop's
interactions with the iSH2 domain are maintained, which
overall leaves the catalytic subunit unaffected. The latter
motion, in contrast, directly influences the catalytic subunit
by establishing new contacts between the positively charged
Lys545 with residues of the linker that connects the nSH2
with the iSH2 domain. This in turn determines the onset of
conformational changes in iSH2 that end up breaking up the
regulatory contacts between this domain and the activation
loop, thus increasing activity allosterically. Eventually, the
end result of this perturbation is to unlock the activation-
loop facilitating its exploration of active-like conformations,
especially in the presence of PIP2.

These types of complex modes of action and regulation of
activities, via the modulation of the cross-talk between
ligands or mutation sites and the rest of the protein
structure, have been observed in other multidomain proteins
and appear to facilitate functionally oriented movements.6,7

Barros et al.8 combined long-timescale simulations with
Markov state models (MSM) to study how mutations in the
tumor suppressor protein p53 determine which structural
elements have a significant influence on the slowest motions
of the protein (see Fig. 2). Because of its DNA-binding and
regulation activities, mutations in p53 are found in the large

Fig. 1 PI3Kα subunit organization (PDB: 4OVU) with salient functional
domains labelled. The mutation E545K lies at the interface between
the nSH2 and helical domains of the p85α and p110α subunits,
respectively. The inset zooms in on E545K rendered as ball-and-stick.
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majority of human cancers. Not surprisingly, this protein has
become the focus of intense research and strategies to rescue
its activity by pharmacological chaperones have emerged as
promising options in cancer therapy.9 Upon comparing the
simulations and the energy landscapes of the wildtype p53 and
of the Y220C cancer mutant, the study by Barros et al. uncovers
loop L6 as a determinant of the slowest motions of the protein.
Interestingly, here computational studies are validated by NMR
relaxation studies. The Y220C mutation stabilizes alternative
conformations to those present in all experimental models,
whereby the loop is extended and locates further away from the
DNA-interacting surface. This modification of the structural
dynamics reverberates allosterically on the conformational
landscape of the functionally-important loop L1, ultimately
leading to inactivation of the mutant. Here, the use of
extremely long MD simulations and MSM analysis are used in
synergy to unveil conformational and kinetic differences
between two forms of this important protein. Furthermore, the
results highlight the presence of a novel cryptic pocket in
Y220C that can be used to design compounds acting as
chemical chaperones to restore the functional wildtype-like
state of p53.

Enhanced sampling methods are being increasingly
appreciated for their potential in drug discovery.
Metadynamics, for instance, uses a (combination of) collective
variable(s) (CVs) to guide complex transitions in the systems of
interest. A notable example of the application of metadynamics
to cancer drug discovery is the identification of the binding site
and the characterization of the binding poses of the inhibitor
SSR128129E (SSR) on fibroblast growth factor receptor 1
(FGFR1).10 FGFR1, through interactions with its endogenous
ligands FGFs is one of the key factors in tumor angiogenesis.
SSR was identified via high-throughput screening and its
binding site was hypothesized to be located in the D3 domain
of FGFR1. Yet the unstable and highly dynamic nature of the
domain prevented the definition of the precise binding spot. In
an elegant application of metadynamics, the authors combined

CVs related to ligand binding to CVs relevant for the folding of
the domain. Using a range of CVs that describe not only the
binding process but also the folding of the domain, the authors
simulated the reversible binding of SSR to a hidden pocket
formed by the extension of a helix in D3. The validity of the
models was tested and corroborated by mutation of residues
identified as important for the binding mechanism. Most
importantly, the results of simulations were used to design
more potent inhibitors.

These results show how the combination of different
simulative approaches, followed by integration with
experimental biochemical, mutational, and functional data,
can offer potent new tools to gain high-resolution atomistic
insight into the inner workings of allosteric communication
in enzymes. It must be underlined here that the true
potential of simulations in the quest for new active leads can
be realized if new targetable binding sites are revealed and
characterized. In this framework, targeting functionally
relevant hinges or pockets (even if distal from the active site)
can provide novel platforms to guide drug discovery. In many
cases, potentially interesting sites are cryptic, i.e. they are not
visible in proteins crystallized without a ligand and can be
exposed in crystals only upon a binding event or a dynamic
conformational rearrangement following a reaction. Work in
the chaperone field is one example: the characterization of
the mechanical coordination between binding and
processing of the natural substrate at the nucleotide binding
site and distal regions of Hsp90 or Hsp70 chaperones was
used as the starting point for the identification of druggable
pockets. The design of ligands with functional groups
selected to target the complementary functionalities on such
putative allosteric pockets generated a series of new
modulators of the functions of the two chaperones. The novel
leads showed interesting isoform selectivity properties and
anticancer activities.11–16

In the cancer field, Spinello and coworkers17 screened for
allosteric binding sites on aromatase, an important enzyme
in the development of breast cancer. Previous experimental
findings in fact pointed to the possibility of allosterically
inhibit the enzyme. The authors combined in silico screening,
molecular dynamics and free energy simulations, supported
by enzymatic and cell-based assays, to identify five leads that
are demonstrated to inhibit the enzyme without directly
competing with substrates directed at the active site (Fig. 3).
In the context of breast cancer, the availability of alternative
binding sites on one of the enzymes that are determinant for
hormone synthesis may offer an important therapeutic
alternative to estrogen deprivation therapy.

The same group employed long atomistic simulations
NetWork Analysis (NWA) to the study of the Arp2/3 molecular
machine, fundamental for cell motility and migration, whose
aberrant functions favor cancer invasion and metastasis.18

Here the authors identify the mechanistic elements that
trigger the conformational transitions initiated at the ATP-
allosteric binding site. The results show that while ATP-
induced motions are ordered and synchronized, the binding

Fig. 2 p53 DNA-binding domain in complex with DNA (PDB: 1TSR),
highlighting conformational variability in loops L1 (green) and L6 (red)
(PDB: 2FEJ). The Y220C mutation is rendered as spheres.
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of allosteric inhibitors perturb functional motions by
desynchronizing them. This ends up hindering the protein
transition towards activation. Interestingly, the data establish
a framework for the design of better ligands able to block
infiltrative cancer migration.

Other elegant examples have appeared in the literature
where cryptic pockets are identified and characterized based
on the equilibrium fluctuations of apo proteins. An elegant
review by the Bowman group reports on different
computational and experimental tools and pipelines
developed by the authors over the years to reveal targetable
pockets from protein dynamics.19 One key aspect the authors
underline is the importance of correctly considering the
relative weights of different structures sampled during
simulations, which underlies the impact on function a
certain molecule can have by modulating the balance of
conformational populations.

In this context, the authors introduced a sampling
algorithm called FAST (fluctuation amplification of specific
traits) to enable extensive conformational sampling on
commodity hardware.20 This is achieved by balancing the
trade-offs between focused searches around promising
solutions (exploitation) and trying novel solutions
(exploration). The algorithm is based on the observation that
many physical properties have an overall gradient in
conformational space, similar to the energetic gradients that
are known to guide proteins to their folded states. The
authors demonstrate this via a retrospective analysis of
existing Markov state models (MSMs). FAST is shown to
exploit such gradients through the recognition and
amplification of structural fluctuations along gradients that
optimize a selected physical property, via the overcoming of
barriers that interrupt these overall gradients, and by
rerouting to discover alternative paths when faced with
insurmountable barriers. The authors prove that FAST
efficiently identifies cryptic binding pockets, and unveils
preferential paths between structures while providing the
proper thermodynamics and kinetics of the events.

The same group further developed methods to identify
potentially interesting binding pockets by segmenting protein
structures into clusters of residues that undergo cooperative
changes in their solvent exposure,21 or to reveal allosteric
relationships by identifying correlations among the rotameric
and dynamic properties of proteins.22

These advanced approaches can also be combined to a
number of experimental methods.23

The examples reported above show that the true potential
of simulations in the quest for new active leads can even be
enhanced if new targetable, cryptic binding sites are revealed
and characterized. Besides facilitating the discovery of
chemical tools to investigate complex mechanisms, these
sites might provide unexplored opportunities to target
proteins for which classic drug design approaches fail. These
include difficult targets often deemed undruggable.

Simulative approaches can efficiently reveal connections
between different sites and transient opening or closing of
cryptic pockets. We should note here that this may not always
be sufficient to support the design of ligands targeting that site.
The first step in this direction is to explore the pocket to define
which functional groups or substructures it might proficiently
accommodate. MD-based mixed solvent simulations are the
first step in this direction.24 Inspired by X-ray and NMR
experiments demonstrating that organic solvents can bind
precisely at locations alternative to the active site, mixed solvent
simulations can detect cryptic pockets and give access to the
calculation of interaction energies between the target and ligand
fragments. Seco et al.25 showed that this principle could be
successfully applied to different pharmacological targets.

The SILCS (Site Identification by Ligand Competitive
Saturation) approach by the MacKerell group26 introduced
the use of a combination of small fragments in a mixture to
map the preferential positioning of groups that are typically
part of drug molecules, such as small aliphatic or aromatic
groups, and hydrogen bond donors and acceptor. Since
different ligands presenting the various functionalities are
simultaneously present with the target in the simulation box,
the method simulates the actual competition among the
fragments and generates a 3D free energy map of fragment
binding, highlighting the most favorable target–fragment
interactions. When applied to the oncoprotein BCL-6, a driver
of B-cell lymphoma, the SILCS maps recapitulate the
crystallographic binding modes of peptides known to bind
the protein. Building on these results, Cheng et al. developed
drug-like inhibitors of BCL6 protein–protein interactions
(PPIs), combining the SILCS approach with NMR-screening
and medicinal chemistry evolution of initial leads.27

Bakan et al.28 extended these concepts to quantitatively
evaluate the druggability of a site. Specifically, these authors

Fig. 3 Molecular structures of the five lead compounds capable of allosteric inhibition of the aromatase.
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combined the simulation of the binding dynamics of a set
of diverse probe molecules representative of different
approved drugs to the identification of potential binding
sites and the evaluation of binding affinities as a function of
the geometry and energetics of clusters of bound probes.
The method was shown to correctly identify the binding site
and affinity of known drugs for protein tyrosine phosphatase
1B (PTP1B), lymphocyte function-associated, antigen 1, and
p38 mitogen-activated protein kinase. Interestingly, the
method showed the ability to identify binding spots in very
challenging cases.28

An efficient approach to identifying cryptic sites has been
recently introduced by Gervasio and coworkers. The method,
called SWISH (sample water interactions through scaled
Hamiltonians), facilitates the exploration of hydrophobic and
(partially) buried regions using a Hamiltonian replica
exchange strategy that modifies the interaction of apolar
carbons and sulfurs with water oxygen.29,30 At higher replicas,
the protein becomes less hydrophobic and this ultimately
allows it exploration compared to plain MD. SWISH can be
combined with probe molecules in the simulation box, whose
work is to enter the otherwise transiently open cryptic
pockets thus stabilizing them. This method is often coupled
to the use of restraints between residues that are particularly
important for the structural stability of the protein, since
modifying residue–residue interactions may result in protein
unfolding. Interestingly, SWISH can be combined to
metadynamics both for examining the opening of the pockets
and for modeling the diffusion of probes into the target.

The capacity of specific regions, distinct and/or distal
from a classic active site, to host a small molecule requires
the display of side chains able to determine favorable
interactions with the ligand. Khazanov and Carlson31 nicely
pointed out that understanding the general composition of
these sites is important to shed light on the druggability of
the different elements of the proteome and understand its
functional diversity. The authors analyzed 3295 non-
redundant proteins with 9114 non-redundant binding sites to
identify residues over-represented in binding regions versus
the rest of the protein surface. To this end they took
advantage of the Binding MOAD (Mother of All Databases)
database,32 one of the largest curated sets of protein–ligand
complexes, developed in the Carlson group. On this basis
they classified ligands as “valid”, or biologically relevant, or
“invalid”, representing artifacts of molecules present e.g. in
crystallization media and bound to the protein without any
known function.

Contacts with the respective proteins are found to differ
between the two sets of molecules. Interestingly, the identity
of residues in biologically relevant binding sites differs from
that of pockets that bind artefactual and non-functional
small molecules. Furthermore, the composition of the
“valid” binding is distinct from that of the rest of the
protein surface. This type of knowledge and analysis can
nicely complement methods for the discovery of novel
binding sites.

Affinity for the target: evaluating
proficient binding

Once functionally relevant novel binding sites have been
discovered and leads identified, the key questions entail the
evaluation of the affinity (binding free energy) and, possibly,
the estimation of the residence time of the ligand in the
binding site. Both aspects are strictly related to the key issue
of target engagement.

The importance of methods for the estimation of target–
ligand binding free energies has grown dramatically in recent
years. In particular, the improvement in force fields,
sampling methods, the speed up of MD simulations have
made free energy estimation more and more accessible.
Indeed, the use of methods to calculate absolute and relative
free energies of binding is being increasingly incorporated in
drug discovery protocols,33–37 also at the industrial level. In
most applications of interest for drug development, the focus
is on the calculation of the relative free energy of binding of
newly designed compounds with respect to an initial lead. In
this context, most approaches are variations on the themes
of free energy perturbation (FEP) and thermodynamic
integration (TI), which require MD or Monte Carlo (MC)
sampling to determine the free energy differences between
related ligands.36

These methods are somewhat less efficient when the
compounds to be analyzed are chemically very different, they
belong to distinct chemical series, or large conformational
changes are involved.38,39 In such cases, collective-variable-
based free energy calculation methods, such as
metadynamics40–42 or umbrella sampling,43 are the preferred
choices. These methods have been used to compute free
energies of binding trajectories, even for allosteric systems,
where they have been able to capture the details of the
coupling between protein–ligand recognition and the onset
of allosteric perturbation within the protein structure once
the ligand bound.13

While generally valid, these methods are still
computationally very intensive and require a suitable
definition of the relevant collective variables. The latter point,
in particular, requires an in-depth knowledge of the system
under study and of the determinant degrees of freedom
underlying binding mechanisms. These requirements still
limit the routine application of enhanced sampling methods
in drug discovery pipelines.

The recent resurgence of machine learning (ML) methods
and the explosion of deep learning applications in the chemical
sciences have inspired the combination of rigorous physical
chemistry methods with data-driven methodologies (Fig. 4).

The accuracy of the predictions is one of the limiting
factors in FEP simulations. In the best cases, such
calculations can deliver predictions within 1–2 kcal mol−1 of
the experimental value.44 However, this limit may still
prioritize compounds for synthesis that eventually turn out
not to have desirable potency and selectivity profiles.
Improving on this limitation could thus significantly reduce
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the number and focus the chemotypes of proposed
compounds in discovery campaigns, ensuring a more
efficient and smooth evolution towards pharmacologically
active molecules.

To improve the accuracy of FEP results, Scheen et al.45

used machine learning regressions to evaluate empirical
correction terms to be applied to FEP results. In this
framework, the authors train a ML model to predict the error
made in the evaluation of FEP (for the hydration process)
using the set of experimental data present in the FreeSolv
database. The calculated error is then used as an offset value
to correct systematic errors made in normal FEP calculations.
Naturally, this strategy assumes that given a sufficiently large
training set, the model will be able to estimate the offset for
a new set of predictions. Interestingly, when applied to the
evaluation of hydration free energies of a set of compounds
from the SAMPL4 competition, the mixed FEP/ML is shown
to give better results than most free energy evaluation
approaches, and to outperform pure ML methods.

A notable advancement is represented by the work of Rufa
et al.46 The problem they tackled is strictly linked to the
limitations of existing classical-mechanics based force fields
to capture the very complex physics of the interactions in
biochemical systems. This problem is particularly aggravated
in the estimation of torsional energetics: as new ligands are
designed, a poor representation of their torsional profiles
may have a large impact on binding free energy evaluations,
especially if one considers that torsional motions can be
coupled to other degrees of freedom. In the case of newly
designed ligands, new torsional parameters often need to be
calculated anew or refitted to high-level energy calculations.
However, since significant conformational changes can take
place upon transition from the unbound to the bound state,
reparameterization of force field terms may not always be
effective.47 To overcome these problems, Smith et al.
introduced the use of quantum machine learning potentials
based on the use of neural networks.48 In this framework,
Rufa et al.46 showed how hybrid machine learning/molecular
mechanics (ML/MM) potentials can provide notable
significant accuracy improvements in modeling protein–
ligand binding affinities: they used a standard MM
alchemical free energy calculation and then post-processed
the results with a correction step to efficiently recover ML/
MM free energies. They benchmarked their approach by

studying kinase-inhibitor affinities showing a significant
reduction in the errors in the estimation of free energies.

An additional source of errors in FEP calculations is the
insufficient overlap between the various distributions used to
take the system from the starting to the end state. Here, the
use of ML approaches also appears to provide effective
improvements over classical protocols. Targeted free energy
perturbation (TFEP)49 is one of the strategies to mitigate this
problem, using a high-dimensional mapping in configuration
space to increase the overlap of the distributions.

Wirnsberger et al.50 reformulated TFEP in the framework of
machine learning problem: here the mapping is modeled as a
neural network that is optimized to increase overlap. The
authors describe the possibility to apply this novel ML/TFEP
strategy in normal periodic MD simulations, obtaining a
reduction in the variance of the estimates of free energy values.

Machine learning approaches are being applied also to
the calculation of absolute free energies. Evans and
coworkers combined funnel metadynamics with an ML
selected optimal pathlike variable to obtain accurate results
for a set of 18 diverse ligands binding human epoxide
hydrolase, a particularly complex target for drug discovery.
Interestingly, the method demonstrated a good balance of
computational cost and speed.51

This work highlights the importance of a proper selection
of the collective variables required for enhanced sampling.
There are indeed many difficult questions to face when
setting out to pick CVs, especially considering that binding/
molecular recognition problems are multi-dimensional: they
range from the simple selection of initial configurations, or
the selection of internal degrees of freedom in ligands and
their potential couplings with receptor degrees of freedom, to
the definition of the reaction coordinate for a protein–ligand
binding reaction. Sultan and Pande52 have recently proposed
a data-driven approach inspired by the field of supervised
machine learning to solve the problem of the selection of the
“initial” CV(s). Using model peptides, they show how a
different classifier can be used to reversibly sample slow
structural transitions.

While based on the use of simple model systems, these
combination strategies in which ML is coupled to physically
rigorous treatments of the biological systems hold promise
for future implementation in the evaluation of affinities in
real drug design projects.

Fig. 4 A simplified scheme of how machine learning (ML) and deep learning approaches can improve standard physical chemistry methods.
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Finally, we envisage that ML and deep learning
approaches may have significant impact on the prediction of
the activities of allosteric ligands. Since they bind to pockets
that are often far removed from the active site, direct
correlations between the binding affinity values and effects
on functions or cellular activity should not necessarily be
expected. Indeed, the structure–activity relationships (SARs)
of allosteric ligands are often complex. Indeed, some ligands
may inhibit while others activate a protein activity: the
question is how to prospectively discriminate such different
effects. Using supervised ML approaches to post-process the
results of long MD simulations of complexes between a
ligand and an allosteric binder, Ferraro et al.16 showed the
possibility of discriminate between effective and non-effective
allosteric inhibitors.

A further extension of this ML–MD approach, applied to a
dataset of 133 ligands containing both inhibitors and activators
of the biochemical activity of the protein, proved able to
discriminate between the two groups with high accuracy.53

One of the major limitations in ML approaches is that no
new knowledge is generated on the physical mechanisms
underlying the modulation of protein function. The
development of methods that couple the predictive activities
of ML with the physical insights that physics-based methods
can provide will most likely have a transformative impact on
drug design.

Not only thermodynamics: residence
times as compound/drug selection
parameter

Recent advances in drug discovery have highlighted the
kinetics of binding as a useful parameter for hit/lead
selection. Indeed, residence times can be key determinants
of efficacy.54–56 Long residence time may extend the duration
of the effect of a ligand and improve selectivity: if the drug
engages one protein at a certain timepoint, it may be less
available for establishing binding contacts with alternative
targets, potentially minimizing side-effects. The role of
residence times may be particularly relevant in allosteric drug
discovery, where the ligand needs to be in contact with the
receptor as long as necessary to trigger the dynamic signals
that modulate functionally oriented motions. The
consideration of the lifetime of a drug–target complex can
thus improve the performances of drug discovery programs.

It comes as no surprise that in the last few years
computational methodologies for calculating residence times
have appeared and gained momentum in the drug discovery
community.57–59 Excellent in-depth reviews of the methods
and general applications for these methods can be found in
ref. 60 and 61.

One study involving the calculation of residence times for
an important anticancer drug, dasatinib, binding to an
important cancer target, Src kinase, is due to the Shaw
group.62 Furthermore, the authors studied another kinase

inhibitor, namely PP1. Using unbiased, plain microsecond
MD simulations, they could show the spontaneous binding
of the two ligands to the active site, in poses very close to the
ones observed in the respective crystal structures. The
analysis of the trajectories allowed the authors to estimate
the on-rates for the two compounds with results in close
agreement with experiments.

De Cherchi et al.63 also reported the use of plain MD to
sample small molecule–protein recognition events. In their
study of binding of the DADMe-immucillin-H to purine
nucleoside phosphorylase, they ran multiple independent
MD trajectories (14 runs amounting to a total of 13
microseconds of simulation time). The latter were then
analyzed with an ad hoc machine learning algorithm to
provide an estimate of the kon rate close to experiment.

Enhanced sampling methods have been used to prioritize
compounds based on their residence times: in this context,
Callegari et al. ran comparative analyses among a series of
compounds,64 starting from the bound complex and
extending until the ligand achieved the fully solvated state.
The average simulation time taken by each species was then
computed. This allowed a set of 10 arylpyrazole analogs
targeting the Cdk8 protein to be correctly ranked into three
classes according to short, medium, and long residence times
as observed in the experiments (Fig. 5).

An alternative approach based on a different strategy to
improve sampling is smoothed MD (sMD), which rescales the
potential energy surface through the suitable choice of a
smoothing factor. The end result is a potential energy surface
with lower energy barriers among configurational basins,
which makes it easier for a ligand to exit (or enter) a binding
site. An advantage of sMD is that one does not have to set a
reaction coordinate to guide unbinding. Indeed, the
smoothing potential scaling is applied indiscriminately to
the whole system. On the other hand, this requires restraints
to be used on the protein to prevent artefactual unfolding
events. The approach was used to study the unbinding of a
series of ligands from HSP90, GRP78, A2A, and glucokinase,
proving the possibility to correctly rank ligands according to
their residence time.65

The problem of estimating binding kinetics has also been
tackled with the application of Markov state models (MSM),
whereby multiple trajectories are discretized through the
definition of microstates according to select structural
criteria or degrees of freedom. Subsequently, a transition
probability matrix is constructed, which is eventually used to
define the kinetic constants of the transitions among the
microstates.66,67 These approaches were then extended to
learn how to adapt and increase sampling into the most
interesting region of configurational space,68 allowing to
characterize complex drug–enzyme binding mechanisms.69

A nice example of combination of MSM analysis in
drug discovery (though not strictly in the cancer area) is
given by the paper by Hart and coworkers.70 Here the
authors use MSMs to identify hidden conformations and
explore their role in determining TEM's specificity against
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ligands. These models are integrated with classical drug-
design tools to generate “Boltzmann docking”. In this
framework, TEM specificity is correctly predicted by
accounting for conformational heterogeneity. Interestingly,
hidden states are identified whose populations correlate
with activity against cefotaxime. The authors validate their
model by mass spectroscopy and design novel variants to
stabilize the hidden cefotaximase states showing that their
populations predict activity against cefotaxime in vitro and
in vivo.

The advent of multiscale methods is emerging as an
important tool in the study of complex drug–receptor
recognition problems. Jagger et al.71 showed the possibility of
ranking ligands according to their binding kinetics
combining Brownian dynamics and classical MD with a
milestoning model. Milestoning allows the calculation of the
time evolution of complex processes, of which drug–receptor
binding mechanisms are paradigmatic examples. In this
framework, the method permits to study processes whose
timescales largely exceed the ones accessible by plain MD. In
milestoning, the system under exam is partitioned into cells
by dividing hypersurfaces (milestones). The dynamics are
reduced to transition events between the milestones that are
computed via short MD simulations.72

The approach was successfully applied to the important
enzyme superoxide dismutase in the study of the binding
of superoxide anion (O2

−), as well as to the N-terminal
domain of troponin C with its natural calcium ion
substrate (Ca2+). The calculated kon and koff values
appeared to be in good agreement with experimentally
determined values.73,74 One great advantage of milestoning
is that it is highly parallelizable and computationally
cheaper than comparable methods.

New challenges for new simulations:
emerging nucleic acids targets

Recent advances in medicinal chemistry have brought nucleic
acids (NA), especially RNA and specific tertiary-structure-
forming NA motifs like G-quadruplexes, into the spotlight of
computational drug discovery.75 The importance of nucleic acid
targets stems from the fact that they are involved in numerous
diseases, ranging from cancer to neurodegeneration, from
bacterial to viral infections. Targeting RNA in general, and
specific tertiary motifs in particular, is exceptionally
challenging due to their high conformational flexibility and the
limited chemical diversity of the receptors against which to
select binders. An additional challenge for computational
approaches is represented by the necessity of optimizing force
fields and simulation methodologies for these classes of
molecules. To alleviate these problems, approaches ranging
from reparameterization to the correction of force fields with
experimentally derived data have been reported.76–78 An
excellent extensive review of how RNA has been studied and
small molecules have been used to address its biology in
disease was recently published by Falese et al.,79 and we refer
the interested reader to that paper for an in-depth analysis.
Here, we will simply report a few examples of how simulations,
ranging from docking to enhanced sampling, are supporting
the improvement of our understanding related to the
determinants of nucleic acid–ligand recognition.

In a notable example in which the target's conformational
diversity was accounted for in the selection of viable ligands,
Stelzer et al.80 docked small molecules on an ensemble of
RNA structures constructed combining NMR data and MD
simulations. Specifically, the authors used experimental data
from multiple sets of NMR residual dipolar coupling (RDC)

Fig. 5 Structure of Cdk8 in complex with compound 1 (PDB: 4F6S; sticks). The active site is represented in red. 1 and nine other arylpyrazole
compounds reported by Callegari et al. are ranked according to their residence times.
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data as filters to select conformers from a larger ensemble
generated using unconstrained MD. The ensemble of docking
targets is defined by the structures that satisfy all time
averaged RDC data (Fig. 6). This data-driven selection is
critical to focus the ensembles of RNA to a number of
representative conformations amenable to subsequent
docking studies. Indeed, the authors quantitatively predict
binding energies for small molecules that bind different RNA
conformations and discover new compounds that bind the
target with interesting affinity and good activities.

The large ligand chemical space and target
conformational space to explore are the two main challenges
also in the case of ligand design for G-quadruplex motifs
(G4s). G4s are structures formed in guanine-rich sequences,
whose backbone is composed of stacked square-planar
arrangements of four guanine bases, known as G-tetrads,
stabilized by Hoogsteen hydrogen bonding.81 G4s are found
in prominent genomic regions involved in the regulation of
biological processes, among which telomeres and oncogene
promoters. Their location, biological role, and characteristic
structure made them groundbreaking therapeutic targets for
the development of anticancer drugs.82–84

Docking and molecular dynamics (MD) simulations
have been applied to screen for ligands and investigate
G4 affinities.85–87

Advanced methods based on enhanced sampling and
absolute free energy calculations have recently been used to
shed light on the mechanisms of ligand binding and
associated G4 conformational responses. These phenomena
typically occur on long-time scales, so other simulation
methods can be used to overcome the limitations of
classical MD, like metadynamics88 or potential of mean
force (PMF) calculations.89

In this framework, work by O'Hagan et al.90 studied the
G4 binding mechanisms of different rigid ligands. Using
metadynamics simulations, they revealed a diversity of

binding mechanisms a poses for various ligands.
Interestingly, the small molecules are shown to have different
effects on the conformational properties of the G4 receptor,
unveiling a clear small-molecule-G4 cross-talk.
Computational results were next corroborated by NMR and
CD spectroscopy studies, which proved how predicted
binding modes and affinities could be validated
experimentally. Information on how a ligand can influence
the structure of the G4 target is fundamental, both in the
design of molecules with improved selectivity and activity
profiles and in the interpretation of experimental data,
improving our understanding of these fascinating NA motifs.

Nayis et al.91 used computation to study the mechanism
of G4-binding of Au–carbene compounds. These are known
to stabilize G4s and interfere with telomere elongation, a
phenomenon associated with uncontrolled cell replication
and growth at the basis of tumor development. Here, the
authors used MD simulations and absolute free energy
calculation methods developed by Roux and coworkers,89 to
reveal different binding modes and mobilities of Au–carbene
when targeting different G4 surfaces. Important for drug
design and optimization is that the detailed analysis of
energetic contributions revealed nonpolar and van der Waals
interactions as the key factors driving binding. These results
can clearly be useful to guide modifications to improve Au–
carbene affinity and specificity for G-quadruplex binding.

Conclusion and perspectives

Molecular simulations have reached a high level of
sophistication and accessibility. On the one hand, the
development of more and more refined, accurate and reliable
methods for sampling, free energy evaluation, and kinetic
analysis of binding, makes computational chemistry a key
part of the discovery of new candidate drugs. On the other
hand, the impressive advance in technology, both from the

Fig. 6 Schematic representation of different binding modes of G4 ligands (PDB: 143D). Larger ovals represent binders with a trans-benzylpentane
scaffold bound in groove regions; the smaller oval represents those with a cis-benzylpentane scaffold bound on the top of tetrads. Labelled bases
are those deemed to be the most important for ligand binding.
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hardware and from the software points of view, has made
computational experiments accessible on a routine basis for
many applications. A striking example of this is represented
by the recent simulation of the whole proteome of the SARS-
CoV-2 virus92 via distributed computing. Such simulations
provide an unprecedentedly rich source of information for
the design of new ligands revealing over 50 ‘cryptic’ pockets,
dramatically expanding the chemical space available for viral
inhibition. Clearly, the same type or approach can be
translated into the simulation of cancer related proteins. The
consequence of these impressive advances is that a number
of approaches which were substantially restricted to the
academic realm have now become common practice even in
the industrial setting.

Computational drug discovery is now advancing into the
era of artificial intelligence and big data. Indeed, a
continuously growing number of papers is now being
published in which computational learning techniques are
applied to disparate problems, from force-field corrections,
to the evaluation of interaction energetics, to the prediction
of the biological activities of drug candidates.93

It is clear that artificial intelligence will significantly impact
drug development integrating the (massive) amounts of data
available on the pharmacological properties of known drugs
(ranging from activity to safety and metabolism) originating
from disparate sources with the more classical physics-based
modeling of structural, dynamic, and interaction properties. In
this context, artificial intelligence approaches such as deep
learning can help reveal non-obvious patterns correlating
observed in vivo activities and the chemical determinants of
binding or ligand-dependent regulation of functionally-
oriented motions. This interconnection may also help
anticipate the efficacy and safety of drug candidates. Finally,
we envisage that the inclusion of data on genetic information,
mutations, their familial frequency etc. may result in models
that make it possible to adapt drug design to the demands of
specific (patient dependent) protein variants, in a real
personalized medicine perspective.

In summary, building on strong chemical and physical
bases, new advances of artificial intelligence and big data
can pave the way for better and more efficient drug
development and optimization, with a strong impact on
future drug discovery.
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