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A B S T R A C T   

Rationale: Prognostic tools for aiding in the treatment of hospitalized COVID-19 patients could help improve 
outcome by identifying patients at higher or lower risk of severe disease. The study objective was to develop 
models to stratify patients by risk of severe outcomes during COVID-19 hospitalization using readily available 
information at hospital admission. 
Methods: Hierarchical ensemble classification models were trained on a set of 229 patients hospitalized with 
COVID-19 to predict severe outcomes, including ICU admission, development of acute respiratory distress syn-
drome, or intubation, using easily attainable attributes including basic patient characteristics, vital signs at 
admission, and basic lab results collected at time of presentation. Each test stratifies patients into groups of 
increasing risk. An additional cohort of 330 patients was used for blinded, independent validation. Shapley value 
analysis evaluated which attributes contributed most to the models’ predictions of risk. 
Main results: Test performance was assessed using precision (positive predictive value) and recall (sensitivity) of 
the final risk groups. All test cut-offs were fixed prior to blinded validation. In development and validation, the 
tests achieved precision in the lowest risk groups near or above 0.9. The proportion of patients with severe 
outcomes significantly increased across increasing risk groups. While the importance of attributes varied by test 
and patient, C-reactive protein, lactate dehydrogenase, and D-dimer were often found to be important in the 
assignment of risk. 
Conclusions: Risk of severe outcomes for patients hospitalized with COVID-19 infection can be assessed using 
machine learning-based models based on attributes routinely collected at hospital admission.   

1. Introduction 

The coronavirus disease (COVID-19) pandemic continues to place 
world-wide health systems under pressure. The ability to identify pa-
tients at greatest risk of developing severe disease would help inform 
discussions of the risks and benefits of treatments [1–3], target higher 
risk populations for clinical trials of therapeutic agents, compare out-
comes between patients with similar risk, and prioritize limited 
resources. 

Multiple prognostic factors have been identified, including age, 
certain comorbidities [4–6], neutrophil-to-lymphocyte ratio (NLR), D- 

dimer and C-reactive protein (CRP) [4,7–8]. However, the relative in-
fluence of these factors on prognosis has been difficult to elucidate. 

While traditional statistical modelling has been used to combine 
multiple attributes to predict outcomes for patients with COVID-19 
[9–10], modern machine learning (ML) has added advantage in its 
capability to discover more complex interactions between correlated 
attributes. Such methods have shown promise for predicting acute res-
piratory distress syndrome (ARDS) in diseases other than COVID-19 
[11–12] and demonstrated potential utility for predicting poor out-
comes in COVID-19 [13–29]. 

Many patients hospitalized with COVID-19 provide limited medical 
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history due to not engaging in routine care, not having easily accessible 
comorbidities data, or being intubated shortly after arrival. Hence, the 
goal of this study was to create and validate tests to risk stratify COVID- 
19 patients for progression to severe disease using only readily available 
clinical, demographic, and laboratory attributes collected at the point of 
hospital admission. Given the nature of these attributes, the tests strat-
ifying risk of admission to the intensive care unit (ICU), intubation, or 
progression to ARDS could be validated, blinded to outcome, on an in-
dependent patient cohort using data drawn from electronic health re-
cords (EHRs). 

2. Methods 

2.1. Data extraction and patient cohorts 

For test development, data was collected for all patients 18 years or 
older admitted to the University of Colorado Health (UCH) hospital in 
Aurora, CO with a positive COVID-19 nasopharyngeal polymerase chain 
reaction test between mid-March and mid-May 2020. Attributes deemed 
potentially useful at the time were extracted from the EHR by medical 
students and stored in a REDCap database [30]. Patient data was 
restricted to first recorded admission and observations for laboratory 
values and vital measures. ARDS occurrence was defined by any 
mention of ARDS in the critical care progress notes. 

The deidentified dataset was transferred to Biodesix for test devel-
opment. A set of 26 attributes (indicated with * in Table 1) to be used in 
classifier training was selected, limited to attributes routinely collected 
at hospital admission and available in the EHR, where inclusion of an 
attribute did not reduce the size of the cohort with complete data by 
more than 10%. The development cohort included patients with com-
plete information for the selected attributes. 

An independent validation cohort was derived from data provided by 
UCH’s EHR data warehouse service for blinded validation of the tests. 
The validation cohort included all patients aged between 18 and 90 
years, hospitalized in any UCH system facility with a positive COVID-19 
test or diagnosis, with first admission between mid-May 2020 and mid- 
September 2020 with complete data on the 26 required attributes 
(Fig. 1). Deidentified data for the validation cohort were transferred to 
Biodesix for blinded test classification generation. Outcome data for test 
performance evaluation for the validation cohort was only shared after 
test classifications were returned to UCH investigators. ARDS occur-
rence was identified by SNOMED code. More details on data curation 
and validation are provided in the supplement. The study was reviewed 
and approved by the Colorado Multiple Institutional Review Board. 

2.2. Test development 

A series of classifiers were trained to classify patients as higher or 
lower risk for each endpoint (ICU admission, intubation, ARDS) using 
the same set of 26 attributes that were all used in all final tests to predict 
risk of outcome. These classifiers were arranged in a hierarchy shown in 
Fig. 2 to give a final classification of up to four possible risk groups. The 
fundamental model behind each component classifier was the Diag-
nostic Cortex® platform, a strongly dropout-regularized, feature 
abstracted, ensemble logistic regression [31]. The classifier at the top of 
each test’s hierarchy was augmented with an additional decision tree 
model. Hyperparameters for the models were picked on heuristic con-
siderations as in [31] and are given in Table E2, and further optimization 
was not performed to avoid overfitting. Bootstrap validation results in 
the development cohort were obtained using out-of-bag estimates [32]. 
ML methods are described fully in the supplement, and source code 
demonstrating their application here is provided at [33]. 

Relative attribute importance for individual patient classification 
was evaluated using Shapley Values [34–35] for 50 patients in the 
validation cohort chosen to span different test classification groups and 
is described in detail in the supplement. 

2.3. Statistical methods 

The validation cohort was analyzed following a prespecified statis-
tical analysis plan, included in the supplement, using SAS Enterprise 
Guide 8.2 (SAS 9.4) (SAS Institute, Cary, NC). Performance is presented 
in terms of positive-predictive-value (PPV), specificity, and F1 scores 

Table 1 
Patient characteristics for the development and independent validation cohorts.    

Development 
Cohort (N = 229) 

Validation 
Cohort (N =
330) 

Categorical 
Attribute 

Class n (%) n (%) 

Race* White 41 (17.9) 113 (34.2)  
Black/African 
American 

52 (22.7) 23 (7.0)  

Hispanic/Latino 94 (41.0) 164 (49.7)  
Other 31 (13.5) 25 (7.6)  
Unknown 11 (4.8) 5 (1.5) 

Sex* Male 124 (54.1) 172 (52.1)  
Female 105 (45.9) 158 (47.9) 

eGFR* ≥60 mL/min/ 
1.73 m2 

180 (78.6) 244 (73.9)  

30 ≥ but < 60 
mL/min/1.73 
m2 

34 (14.8) 61 (18.5)  

<30 mL/min/ 
1.73 m2 

15 (6.6) 25 (7.6) 

Hypertension Yes 100 (43.7) NA  
No 126 (56.3) NA 

Diabetes Yes 82 (35.8) NA  
No 147 (64.2) NA  

Continuous Attribute Median (Q1-Q3) Median (Q1- 
Q3) 

BMI**, kg/m2  30 (27–36)  
Age*, years  57 (43–68) 57 (44–70) 
Temperature*, ◦C  37 (37–38) 37 (37–38) 
Heart Rate*, beats/ 

minute  
98 (84–110) 98 (85–110) 

Systolic*, mm Hg  130 (120–150) 130 (120–140) 
Diastolic BP*, mm 

Hg  
74 (65–83) 74 (65–84) 

Respiratory Rate*, 
breaths/minute  

20 (18–24) 20 (18–24) 

Oxygen Saturation 
*, %  

92 (87–94) 92 (88–95) 

Weight*, kg  82 (72–100) 85 (73–100) 
QTc*,  440 (420–460) 440 (420–470) 
Sodium*, mmol/L  140 (130–140) 140 (130–140) 
Potassium*, mmol/ 

L  
3.8 (3.4–4.0) 3.9 (3.6–4.2) 

Carbon dioxide* 
mmol/L  

23 (21–25) 23 (21–25) 

BUN* mg/dL  13 (10–20) 15 (10–22) 
Creatinine* mg/dL  0.94 (0.69–1.2) 0.87 (0.72–1.2) 
Anion Gap*, mmol/ 

L  
12 (10–13) 11 (9–13) 

WBC Count* ×109 

cells/L  
6.8 (5.3–8.9) 7 (5.5–9.1) 

Hemoglobin* g/dL  15 (13–16) 14 (13–15) 
Hematocrit*, %  44 (40–47) 42 (38–46) 
Platelet Count* 
×109 cells/L  

210 (160–260) 200 (160–260) 

LDH* U/L  320 (260–420) 450 (290–750) 
D-Dimer* ng/mL  860 (530–1500) 740 (410–1500) 
CRP*, mg/L  83 (41–150) 79 (37–160) 
Ferritin*, ng/mL  360 (170–730) 310 (130–600) 

Definition of abbreviations: eGFR = estimated glomerular filtration rate; BP =
blood pressure; QTc = corrected QT interval; BUN = blood urea nitrogen; CO2 =

carbon dioxide; WBC = white blood cell; LDH = lactate dehydrogenase; CRP =
C-reactive protein; BMI = body mass index. 

* Used for classification. 
** Only complete for 205 out 229 patients. 
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[36–38]. Cochran-Armitage test and Fisher’s exact test were used to 
assess trends and differences in proportions. Confidence intervals (CIs) 
for proportions were calculated using the Clopper-Pearson or bootstrap 
methods. 

3. Results 

Patients included in the development cohort were generally similar 
to those excluded due to lack of complete data, although rate of intu-
bation and systolic blood pressure were slightly higher and oxygen 
saturation and D-dimer level lower. Patients included in the validation 
cohort exhibited higher rates of severe outcomes than patients excluded 
due to lack of complete data. The included and excluded cohorts are 
compared in the supplement. 

Two-hundred twenty-nine patients were included in the develop-
ment cohort: 77 (34%) were admitted to the ICU, 53 (23%) were intu-
bated, and 45 (20%) developed ARDS. The proportions of patients 
experiencing poor outcomes were smaller in the 330 patients in the 
validation cohort, of whom 85 (26%) were admitted to the ICU, 42 
(13%) were intubated, and 35 (11%) developed ARDS. The patient 
characteristics of the two cohorts are summarized in Table 1. The racial/ 
ethnic composure of both cohorts were skewed compared with overall 
Colorado demographics [39] with White being significantly underrep-
resented in both sets, and Black being overrepresented only in the 
development cohort. All attributes used in classification are contained in 
Table 1 and denoted with an asterisk. The time from data collection to 
ICU admission was estimated in the validation cohort and is summarized 
in Fig. 3. 

3.1. Predicting ICU admission 

Test development for prediction of ICU admission used the schema in 
Fig. 2B, with the flow of patients through the hierarchical classification 
scheme shown in Fig. 3. In Fig. 4, we see the test classified 73 (32%), 54 
(24%), 51 (22%), and 51 (22%) of the development cohort to the lowest, 
low, high, and highest risk groups, respectively. Only 12% of patients in 
the lowest risk group were admitted to the ICU, whereas 65% of the 
highest risk group were admitted. Performance was similar in the vali-
dation cohort, of which 28%, 22%, 27%, and 22% were classified to the 
lowest, low, high, and highest risk groups, respectively. The proportions 
of patients that were admitted to the ICU were significantly associated 
with increasing risk subgroup (Cochran-Armitage p < 0.0001). The 
proportion of patients admitted to the ICU in the lowest risk group was 
11% (95% CI: 5–19%), significantly lower than that in the other groups 
(Fisher’s exact p < 0.0001). The proportion of patients admitted to the 
ICU in the highest risk group was 51% (95% CI: 39–63%), Fisher’s exact 
p (highest risk vs other) < 0.0001). 

Test classification was associated with heart rate, respiratory rate, 
oxygen saturation, sodium, blood urea nitrogen (BUN), anion gap, white 
blood cell (WBC) count, lactate dehydrogenase (LDH), D-dimer, CRP, 
and ferritin. Shapley Value analysis showed that the attributes most 
important for classification generation varied by patient, but that lowest 
risk classification was most often explained by CRP and D-dimer, with 
ferritin, LDH, platelet count, heart rate, respiratory rate, oxygen satu-
ration, and WBC also of relatively higher importance. In highest risk 
patients, classification was related to LDH and D-dimer, although oxy-
gen saturation, respiratory rate, CRP, ferritin, and weight were also 

Fig. 1. Consort diagrams of patient selection down to development (A) and validation (B) cohorts.  
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important for some patients. 

3.2. Predicting ARDS 

Test development for prediction of ARDS used the schema of Fig. 2B, 
with the flow of patients through the hierarchical classification scheme 
shown in Fig. 5. Note that, for this test, the lowest and lower risk groups 
were combined into a single lowest risk group, as the proportion of 
patients with ARDS was found to be similar in both subgroups during 
test development. In Fig. 4, we see the test predicting risk of developing 
ARDS classified 142 (62%), 47 (21%), and 40 (17%) patients to the 
lowest, low, and highest risk groups, respectively, in the development 
cohort. In the lowest risk group, only 8% of patients developed ARDS, 

while in the highest risk group 45% of patients developed ARDS. The 
proportions of patients assigned to the lowest, high, and highest risk 
groups were similar in the validation cohort: 190 (58%), 73 (22%), and 
67 (20%), respectively. The proportion of patients that developed ARDS 
increased with increasing risk group (Cochran-Armitage p = 0.02). 
Although the lowest risk group contained more than half of the patients, 
only 5% (95% CI: 3–9%) of them developed ARDS (Fisher’s exact p 
(lowest vs other) < 0.0001). In contrast, the percentage of patients 
developing ARDS in the highest risk group was 27% (95% CI: 17–39%), 
Fisher’s exact p (highest vs other) = 0.0004. 

Test classification was associated with age, blood pressure, oxygen 
saturation, sodium, BUN, WBC, LDH, D-dimer, CRP, and ferritin. 
Shapley value analysis again showed that the attributes most important 

Fig. 2. Hierarchical Configuration of Classifiers used for Risk Assessment for Each Endpoint. A Diagnostic Cortex model with in-bag decision tree model 
(represented by the top box) was used to stratify the entire development cohort into a higher and lower risk group for each endpoint. Diagnostic Cortex models 
(middle boxes) without trees were used to split the resulting two groups further according to one of the two schemas. (Schema A was used for the tests predicting risk 
of any complication and intubation. Schema B was used for the tests predicting risk of ARDS and admission to the ICU.) 
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for classification generation varied by patient, but that CRP and D-dimer 
contributed substantially to a classification of lowest risk, with race and 
age also contributing for some patients. Highest risk classification was 
related to LDH, CRP, and BUN in most patients and oxygen saturation in 
some patients. 

3.3. Predicting intubation 

Test development to predict intubation used the schema of Fig. 2A, 
with the flow of patients through the hierarchical classification scheme 
shown in Fig. 5. In Fig. 6, we see the test predicting risk of intubation 
classified 74 (32%), 62 (27%), 55 (24%), and 38 (17%) patients of the 
development cohort to the lowest, low, intermediate, and highest risk 
groups, respectively and 86 (26%), 120 (36%), 67 (20%), and 57 (17%), 
respectively, in the validation cohort. The patients of the validation 
cohort were assigned 86 (26%):120 (36%):67 (20%): 57 (17%) to the 
lowest, low, high and highest risk groups. Only 1% (95% CI: 0–6%) of 
patients in the lowest risk group were intubated (Fisher’s exact p (vs 
other <0.0001), while 33% (95 %CI: 21–47%) of patients in the highest 
risk group were intubated (Fisher’s exact p (vs other) < 0.0001). There 
was a significant association of increase in intubation with increasing 
risk group (Cochran-Armitage p < 0.0001). 

Test classification was associated with respiratory rate, oxygen 
saturation, BUN, creatinine, anion gap, WBC, LDH, D-dimer CRP, and 
ferritin. Shapley value analysis revealed that multiple attributes, varying 
by patient, were of increased relevance for classification. However, CRP 
was found to be generally most relevant for generation of a lowest risk 
classification, with D-dimer, LDH, BUN, race, and age also important 
factors. A highest risk classification was related to LDH, oxygen satu-
ration, CRP, and BUN. 

3.4. Comparison with other tests 

An attempt was made to compare the performance of the tests to 
similar published classifiers [8,10,15]. The classifier described in Xiao 
et al. [12] applied on the development cohort yielded very similar areas 
under the receiver-operating characteristic (ROC) curves to those for the 
first classifiers in our hierarchies for each endpoint. Using the specified 
cutoff [10], relatively small, but pure lowest risk groups were observed 
for all four endpoints. While the purity was similar to that of our tests, 
the lowest risk group sizes were roughly half the size. The classifier 

described by Liu et al. [8] used age and NLR to stratify patients into four 
risk groups. Across all four endpoints, purities in the lowest risk groups 
were similar to those presented here but were roughly half the size. The 
highest risk groups were nearly twice the size of those for our tests but 
had purities a factor of 2–3 smaller. Performance for predicting ICU 
admission was poor, with the low risk group containing a similar pro-
portion of patients admitted to the ICU as the highest risk group. Many 
studies have looked at binary classification to similar prognostic end-
points [20–27]. While our tests stratify patients into more than 2 groups, 
the top classifier in each hierarchy achieved comparable performance in 
terms of AUROC. 

4. Discussion 

Using EHR-derived data recorded at the time of hospital admission, 
we developed and blindly validated a clinical decision support system 
composed of three different ML-based risk tests predicting three mea-
sures of progression to severe disease in patients hospitalized with 
COVID-19; namely risk of progression to ICU admission, intubation, and 
ARDS diagnosis. Given that many patients admitted with COVID-19 may 
not be in regular care and aware of comorbidities or may be critically ill 
upon presentation and unable to provide a detailed medical history, we 
utilized only attributes readily accessible in an emergency care setting. 

Multiple previous studies have used ML-based algorithms to predict 
COVID-19 prognosis by combining basic patient demographics, vital 
signs, laboratory measurements, and comorbidities [14–16], socio-
demographic information, comorbidities and current medications [19], 
or chest computed tomography (CT) scan alone [18,19] or with patient 
demographics [15]. The performance of our tests compared favorably 
with that of two existing risk assessment models for which we were able 
to generate classifications for our development set, with our test 
achieving similar negative predictive values in the lowest risk groups 
but superior specificity. However, for other simple nomogram-based 
models, we were not able to compare performance due to lack of in-
formation for required attributes, as these were not obtainable from 
collected EHR data. 

We validated three tests by generating test classifications blinded to 
all outcome data and analyzing the results according to a prespecified 
statistical analysis plan. This validation study was possible using data 
directly extracted from the EHR, without any further curation, demon-
strating that the data required for risk assessment was easily and readily 
accessible. Test performance was similar between the development and 
validation cohorts, illustrating the ability of the ML platform to gener-
alize to unseen datasets. The successful validation of the performance of 
our models observed in test development shows that our selection of 
minimal attributes was rich in predictive information. Figs. 4–6 
demonstrate significant enhancement in the outcome of interest from 
the baseline in each cohort to the final risk groups. 

As with all modern ML-based modeling, it was not a priori obvious 
which attributes would most inform the results for an individual patient. 
Recent work using Shapley values has directly addressed model 
explainability at an individual patient level [40]. Our ML architecture 
made the calculation of exact Shapley values for all classifiers for 50 
patients from the validation cohort computationally feasible without the 
need for commonly made approximations [41–42], supplement). The 
Shapley value analysis found that, when used in combination by the ML, 
simple clinical measures of risk and disease severity (age, weight, oxy-
gen saturation) and general biomarkers of inflammation and acute phase 
reactants (CRP, D-dimer, LDH) were important for risk assessment. CRP, 
D-dimer, and LDH have been linked to COVID-19 severity in other 
studies, likely reflective of a pronounced inflammatory, systemic im-
mune response with heightened thromboembolic risk [43–44]. 
Increasing age and body mass index are well-established risk factors for 
influenza severity [45], and may, in part, exacerbate the inflammatory 
response [46–47]. While race/ethnicity was not found to play a key role 
in explaining risk classification in the Shapley value analysis, a white 

Fig. 3. Time from data collection to admission to the ICU for the 85 patients 
admitted to the ICU in the validation cohort indicating potential utility for ICU 
admission risk assessment at hospital admission. A time in the [0, 1] bin in-
dicates the patient was admitted on the same day as the data was collected. 
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race was observed to contribute towards a lower risk classification, 
while all other choices did not contribute substantially to risk category 
(see Fig. E22 in supplement). These observations were consistent with 
the associations we observed when we compared patient characteristics 
between our risk subgroups (see supplement). However, the Shapley 
values also revealed that our tests combined information across the 26 
attributes in non-trivial ways and the attributes that explained patient 
classification differed from patient to patient. For some patients, all at-
tributes had similar importance, while for others, some attributes 

pointed towards higher risk, while others pointed towards lower risk. 
In contrast to the single center development cohort, the validation 

cohort included patients from the statewide UC health system. However, 
the cohort size and restriction to Colorado are limitations of this study. 
While patients excluded from the development cohort due to missing 
data were generally similar to those included, in validation, patients 
with complete data (only 15% of the total available) exhibited higher 
rates of severe disease and generally worse prognostic factors (labora-
tory and vital signs) than those without. Further validation of the tests in 

Fig. 4. Performance Flow Chart for the Risk Assessment Test for ICU Admission for (A) the Development Cohort and (B) the Validation Cohort. Each 
uncolored box represents a classifier with the contents reflecting the set of patients to be classified by the classifier. The colored boxes represent the final risk groups 
with the contents reflecting composition of the groups and test performance. Bootstrap 95% confidence intervals for performance metrics are given in the sup-
plement. Pos = Positive (Admitted to ICU); Neg = Negative (Not Admitted to ICU), PPV = Positive Predictive Value. 
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larger cohorts derived from other health systems and geographic areas is 
necessary. 

The clinical utility of these tests will depend on their application. All 
tests achieved good performance in identifying patients who did not 
experience adverse outcome in the lowest risk groups in development 
and validation. Performance in identifying patients who experienced 
adverse outcomes in the highest risk groups was promising, but the risks 
of false positives and negatives would need to be carefully considered in 
an application where identifying patients likely to experience adverse 
outcome is desired. 

In summary, we have developed and validated a suite of tests able to 
assess the risk of a poor outcome for patients hospitalized with COVID- 
19 based on information easily and routinely collected at time of hos-
pital admission. Additional validation, preferably in a prospective 

setting, is required to further demonstrate the clinical utility of this risk 
assessment tool beyond clinical assessment alone. However, with 
readily-derived and quickly-available EHR data, a risk assessment at or 
near the time of admission can inform prognosis, guide discussions on 
the risks and benefits of treatments (including intubation), or identify 
low or high-risk patients for limited resources or enrollment in clinical 
trials. Furthermore, the methods here may be implemented in the care of 
future patients with novel viral infections. 

5. Summary Table  

What is already known?  

(continued on next page) 

Fig. 5. Performance Flow Chart for the Test Predicting Risk of Developing ARDS in (A) the Development Cohort, (B) the Validation Cohort. Each uncolored 
box represents a classifier with the contents reflecting the set of patients to be classified by the classifier. The colored boxes represent the final risk groups with the 
contents reflecting composition of the groups and test performance. Bootstrap 95% confidence intervals for performance metrics are given in the supplement. Pos =
Positive (Developed ARDS); Neg = Negative (Did not develop ARDS), PPV = Positive Predictive Value. 
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(continued )  

• Basic lab results and other clinical and demographic attributes have predictive 
power in predicting risk of adverse events during COVID-19 hospitalization  

• These include things like age, BMI, general inflammatory markers, and others  
• Machine learning can be used to combine these attributes to make reliable 

predictions of COVID-19 prognosis  
What does this study add?   

• Robust, validated, multi class machine learning risk prediction for 3 endpoints 
during COVID-19 hospitalization using only easily collectable attributes that are 
common in EHRs 

(continued on next column)  

(continued )  

• Rigorous explainability analysis to describe which attributes contributed more to 
the machine learning algorithms’ assignment of risk not found in any similar work  
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