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Abstract

Autism is a highly heritable complex disorder where de novo mutation (DNM) variation 

contributes significantly to risk. Using whole-genome sequencing data from 3,474 families, we 

investigate another source of large-effect risk variation, ultra-rare variants. We report and replicate 

a transmission disequilibrium of private, likely gene-disruptive (LGD) variants in probands but 

find that 95% of this burden resides outside of known DNM-enriched genes. This variant class 

more strongly affects multiplex family probands and supports a multi-hit model for autism. 

Candidate genes with private LGD variants preferentially transmitted to probands converge on the 

E3 ubiquitin-protein ligase complex, intracellular transport, and Erb signaling protein networks. 

We estimate these variants are ~2.5 generations old and significantly younger than other variants 

of similar type and frequency in siblings. Overall, private LGD variants are under strong purifying 

selection and appear to act on a distinct set of genes not yet associated with autism.
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Autism spectrum disorder (ASD) is a phenotypically heterogeneous disorder affecting 

about 1 in 59 children in the United States1. Studies to date have primarily focused on 

high-impact, sporadic variants such as de novo copy number variants (CNVs) and single

nucleotide variants (SNVs). Despite their large effect sizes, de novo mutations (DNMs) 

account for ~3-25%2-5 of autism cases. Although this genetic model is highly relevant to 

simplex ASD, where only one child is affected in a family, it does not explain most cases 

and is less likely for multiplex families, where more than one child is affected6. This has led 

to the reassessment of various classes of inherited variation and their contribution to autism 

risk3,7-12.

It is well established that large, sometimes inherited CNVs underlie a small percentage of 

sporadic and multiplex autism3,4. Preferential transmission of likely gene-disruptive (LGD) 

variants have been observed in both simplex3 and multiplex autism8 in genes that converge 

on related functional networks3,8. Genetic studies of ASD and developmental delay families 

have found affected children are enriched for multiple gene-disruptive variants (CNVs and 

SNVs)13-16. Recent analyses suggest that common inherited risk variants also contribute to 

ASD pathology5,17,18.

In this study, we focus on private variants, or ultra-rare variants unique to a family. In 

contrast to other studies8,11, we do not rely on support from DNMs or DNM rates and 

exclude genes known to be enriched with DNMs in ASD and neurodevelopmental disorder 

(NDD) cases to facilitate the discovery of novel genes. We expand the number of multiplex 

and simplex autism families sequenced, taking advantage of the increased sensitivity 

afforded by whole-genome sequencing (WGS) over whole-exome sequencing (WES) data19, 

to create a highly sensitive variant callset from WGS data from 3,474 autism families from 

the Centers for Common Disease Genomics (CCDG) (Table 1 and Supplementary Table 

1). We assess transmission biases in probands and unaffected siblings after controlling for 

population structure8,20-23 and replicate these analyses in WES data from 5,879 families 

from SPARK (Simons Foundation Powering Autism Research for Knowledge)24,25. Our 

results provide strong support for private LGD variants contributing to autism, particularly 

multiple hits in different genes. We show these variants have arisen more recently in autism 

families (2.5 generations) when compared to other classes of variants. Importantly, genes 

enriched for DNMs contribute little to this burden; rather, we suggest new gene candidates 

enriched in specific functional pathways.

RESULTS

Whole-genome sequencing.

We generated WGS data (30-fold sequence coverage) from 2,507 individual DNA samples 

from 394 multiplex and 251 simplex autism families (Table 1, Supplementary Table 1, and 

Online Methods). Combined with published WGS data8,21,22, we created a standardized 

callset of SNVs and indels from 13,547 genome samples using two callers and made these 

publicly available (Data and Code Availability). The set consists of data from 4,364 

probands and 2,235 siblings and includes parent–child SNV data from 774 multiplex and 

2,700 simplex families. Focusing initially on DNMs, we employed two additional callers 

and performed 582 random Sanger sequencing validation experiments, combining these with 
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published validation experiments (Supplementary Table 2)4. We report an overall validation 

rate of 99.5% for our DNM callset and estimate a false negative rate of 3.5%. On average, 

we observe 65.14 DNMs per child and an increase of 1.11 and 0.37 mutations per year 

of paternal and maternal age, respectively (Supplementary Fig. 1). This estimate is lower 

than what was reported in Turner et al.4 because we required three out of four variant 

callers to agree to increase the specificity of the callset (Online Methods). As expected, 

de novo LGD and severe missense mutations are significantly enriched in probands when 

compared to siblings (LGD OR = 1.8, P = 1.43 × 10−23; MIS30 OR = 1.25, P = 1.10 × 

10−4; Supplementary Table 3). Combining these de novo calls with published DNM callsets 

(Supplementary Table 4), we identify 100 genes after Benjamini-Hochberg correction (False 

Discovery Rate (FDR) < 5%, DNM count > 1) and 45 genes after Bonferroni correction 

(P < 5.1 × 10−7, DNM count > 1) with an excess of DNMs in autism probands (Online 

Methods and Supplementary Table 5). One gene, MED13, published as a case report29, 

reached Bonferroni significance for an excess of DNMs in autism; four other genes (CPA6, 

FRA10AC1, MPHOSPH10, RALGAPB) reached FDR < 5% significance. These results 

replicate the reported excess of de novo LGD mutations in RALGAPB24,30 and identify 

three genes associated with other neurodevelopmental or neurodegenerative disorders with 

an excess of de novo missense mutations in ASD. CPA6 is associated with epilepsy31; 

FRA10AC1, a gene of unknown function, is associated with Alzheimer's disease32; and 

MPHOSPH10 is associated with early-onset Parkinson's disease33. These genes represent 

excellent candidates for future investigation.

Discovery and properties of private variants.

While previous studies focused on the contribution of DNMs or common variants underlying 

ASD2-4,6, we focused on the contribution of transmitted variants3,8,11,12. Because our 

previous study showed transmission disequilibrium signals increased with rarer inherited 

variants3, we focused on private inherited variants. We define these as heterozygous variants 

observed only once in the parent population and transmitted to at least one child, regardless 

of potential de novo status in unrelated children within the cohort. We note that 0.036% of 

our private variants overlap with mutations in our DNM callset. Based on our sample size, 

private variants are ultra-rare in nature and correspond to an approximate allele frequency 

≤ 7 × 10−5. We identified 26,606,722 unique private variants (35,871,117 total) in our 

discovery cohort of 6,599 children and detected no difference in the average number of 

private variants between probands and unaffected siblings genome-wide (Mann-Whitney 

test, autosomes, P = 0.168; female X chromosome, P = 0.328; male X chromosome, P = 

0.534). We detect no difference in the number of private autosomal variants transmitted 

from fathers as compared to mothers genome-wide (Wilcoxon signed-rank test, P = 

0.1995) but did detect a difference, as expected, if we consider the female X chromosome 

(Wilcoxon signed-rank test, P = 0.0215; mean paternally transmitted: 98.7, mean maternally 

transmitted: 102).

Since individuals of similar ancestry have an increased chance of allele sharing as compared 

to individuals from different populations34, we considered private variants in the context 

of ancestry. We assigned individuals to one of six super populations (EUR, AFR, AMR, 

EAS, SAS, and OCN) based on maximum likelihood estimations of ancestry using a human 
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diversity panel (Online Methods and Supplementary Fig. 2). Consistent with previous 

studies35,36, children of European ancestry carry the fewest private variants per genome 

(Figs. 1b,c and Supplementary Tables 6 and 7). This is because most individuals in the 

discovery cohort (85.6%) are of European ancestry (Supplementary Fig. 2). Private variants 

among the EUR subgroup will be of the lowest frequency, providing the greatest specificity, 

in principle, to detect pathogenic events3.

We tested whether filtering against a genetic database (dbSNP150) would be sufficient to 

eliminate this effect and improve our specificity for private events in other populations 

(Fig. 1c, Supplementary Fig. 3, and Supplementary Table 8). Although dbSNP filtering 

did reduce the average number of private variants per child, the magnitude of the effect 

varied by population. This treatment reduced the number of private variants by 69.2% 

among individuals of African ancestry but a reduction of only 43.6% and 44.9% among 

individuals of East and South Asian ancestry, respectively. Children of African and East 

Asian ancestry had, on average, similar variant counts prior to dbSNP filtering (mean: 

11,630 AFR vs. 11,653 EAS; Supplementary Table 7). This suggests that the composition 

of the population genetic database may introduce additional biases because sampling across 

populations has been nonuniform, and allele frequency filtering alone is not sufficient to 

account for population stratification. These differences highlight the need to evaluate the 

impact of ancestry and increase underrepresented populations for gene discovery—even in 

rare variant analyses. We evaluated the impact of population stratification on our results 

by comparing burden estimates with and without ancestry as a covariate (Supplementary 

Table 8). We find the results are comparable and conclude that variation in the number of 

private variants between populations is generalizable and does not introduce biases into our 

analyses. Nonetheless, all analyses reported in this study have been replicated in the SPARK 

cohort and confirmed in the European subset of our discovery cohort (Supplementary Figs. 

4-7).

Patterns of private, transmitted variants in protein-coding regions.

In this study, we restrict our analyses to autosomal, protein-coding regions of the genome 

where we expect to have the greatest power to detect enrichment of private, transmitted 

variants2,3,8. Missense variants are the most abundant followed by synonymous and then 

LGD variants, defined here as stop-gain, stop-loss, splice-altering SNVs or frameshift indels 

(Fig. 1a and Supplementary Table 7). We observe no significant difference between the 

overall proportion of proband and unaffected sibling carriers for missense, synonymous, or 

LGD variants and detect no significant enrichment when considering all genes (Logistic 

regression, LGD: OR = 1.03, Bonferroni-corrected P = 0.153; MIS: OR = 1, Bonferroni

corrected P = 1; SYN: OR = 1, Bonferroni-corrected P = 1).

When considering subsets of genes at increasing thresholds of gene constraint using 

the probability of loss-of-function intolerance (pLI), we replicate3,8,37,38 the relationship 

of increasing burden of LGD variants in probands with increasing gene constraint for 

the discovery, replication, and combined cohort (Fig. 2a, Supplementary Figs. 4 and 

8-10, Supplementary Table 9, and Supplementary Note). A similar trend was reported in 

Satterstrom et al. when considering ultra-rare variants (cohort AC ≤ 5) in a case–control 
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cohort and in ~6,305 families. We note the larger effect size reported in Satterstrom et al. 

for the case–control cohort is likely due to the presence of DNMs in these samples, and the 

smaller effect size reported for families is likely due to the higher allele frequency threshold 

used (Supplementary Fig. 11).

We expect this increased burden to be the result of a transmission bias and used a rare 

variant transmission disequilibrium test to confirm an overtransmission of LGD variants to 

probands (pLI ≥ 0.99, Bonferroni-corrected P = 0.0137 in probands, Bonferroni-corrected 

P = 0.52 in siblings; Supplementary Table 10). Surprisingly, we observe a significant 

undertransmission of LGD variants in multiplex families with two probands and find no 

significant increase in allele sharing among affected siblings, suggesting an LGD variant 

in one child with autism is not predictive of a second child with autism (Supplementary 

Fig. 12). We do not observe an increased burden of missense or synonymous variants 

using pLI gene constraint thresholds. However, we observe an increase in potentially 

pathogenic, private missense variants in genes with increasing intolerance to missense 

mutation (Supplementary Fig. 13).

We estimate that the effect size of private, transmitted variants is ~8x smaller than the 

effect size of DNMs (OR = 11.67 for LGD DNMs in genes enriched for DNMs in 

ASD patients vs. 1.43 for private, transmitted LGD variants in genes with pLI ≥ 0.99). 

We specifically excluded DNM-enriched genes in ASD cases as part of this calculation 

to estimate the effect size excluding well-established genes with an excess of DNM. In 

contrast, we compare the burden of private LGD variants among various autism risk gene 

sets to examine whether the private inherited and DNM signals were exclusive. These 

included genes shown to be enriched for DNMs in ASD and NDD cases10,11,39 and 845 

genes from the Simons Foundation Autism Research Initiative (SFARI) (Online Methods). 

All gene sets show a trend toward enrichment of private LGD variants among probands 

when compared to unaffected siblings but to varying degrees. The Coe et al. gene set39 

shows nominal significance for enrichment in our discovery (Fig. 2b, Supplementary Figs. 

5 and 14, Supplementary Table 11, and Supplementary Note; OR = 1.36, nominal P = 

0.040) and combined cohorts (Fig. 2b, Supplementary Table 11, and Supplementary Note; 

OR = 1.29, nominal P = 0.018). The trends are consistent between replication and discovery 

cohorts, suggesting larger sample sizes are required to achieve significance that survives 

multiple-test correction. In general, DNM-derived gene sets show greater enrichment than a 

more general set of autism risk genes (i.e., SFARI). DNM-enriched gene sets derived from 

ASD and NDD studies perform as well (if not better) than those derived strictly from autism 

cohorts. Importantly, all trends disappear if we consider variants at higher allele counts in 

the parent population (Supplementary Fig. 15), indicating that the signal is strongest for 

inherited private variants.

Based on the initial sequencing of the SPARK autism families, Feliciano et al. reported most 

of the rare LGD variant transmission bias could not be accounted for by known ASD/NDD 

genes24. We reevaluated the burden of private, transmitted LGD variants at increasing 

thresholds of gene constraint, excluding genes enriched for DNMs to quantify this effect. 

We find that 95.4% of private, transmitted LGD variant burden in probands remains (Fig. 

3a and Supplementary Table 12) at pLI ≥ 0.99 in the discovery cohort. We estimate that 

Wilfert et al. Page 5

Nat Genet. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



private LGD variants in these DNM-enriched genes account for 1.45% of ASD risk, whereas 

private transmitted LGD variants in the remaining genes at pLI ≥ 0.99 account for 2.64% 

of ASD risk (Table 2). Unlike de novo LGD mutations associated with autism, we estimate 

that most of the attributable risk for private variants awaits discovery and this risk will 

be identified among genes not already associated with DNM burden. Taken together, these 

results confirm that DNM-enriched genes confer substantial risk for ASD; however, there 

is additional burden in the less penetrant set of constrained genes (pLI ≥ 0.99) yet to be 

discovered.

Simplex versus multiplex and a multi-hit model for ASD.

Both our discovery and replication cohorts consist of simplex families and multiplex 

families. Simplex families have been shown2,26 to be enriched for sporadic or de novo 
genetic events20, while multiplex families are more likely to inherit ASD-predisposing 

variants40. We compared the proportion of probands versus siblings carrying at least one 

private LGD variant at increasing thresholds of gene constraint considering simplex and 

multiplex families independently (n = 2,700 simplex vs. 774 multiplex families; Table 1 and 

Supplementary Table 1). Despite having 3.5-fold fewer families, multiplex families show a 

25.7% higher burden of private, transmitted LGD variants in probands when compared to 

simplex families, with the greatest effect in less constrained genes (Fig. 3b, Supplementary 

Figs. 6 and 17, and Supplementary Table 15; multiplex vs. simplex OR = 1.37 vs. 1.09, 

permuted P = 0.004 at pLI ≥ 0.1). Among simplex families, significant burden is observed, 

in contrast, among genes intolerant to mutation (pLI > 0.99).

Previous CNV work and analysis of putative noncoding DNMs14,19 have shown enrichment 

of multiple deleterious mutations in autism probands, while other recent studies have 

reported an additive effect between common and rare risk variants18. If the signal we 

observed was relevant to the genetic etiology of autism, we hypothesized that affected 

children would be more likely to carry multiple private LGD variants, partially explaining 

why both parents are unaffected or less severely affected in multiplex families. We compared 

the transmission of two or more private LGD variants in probands and unaffected siblings 

conditioning on intolerance to mutation. We find that probands are significantly more 

likely to carry multiple inherited LGD variants in less constrained genes when compared 

to unaffected siblings (Fig. 3c, Supplementary Fig. 18, Supplementary Table 16, and 

Supplementary Note; OR = 1.29, Bonferroni-corrected P = 0.026 at pLI ≥ 0.1). Under 

an additive model, which represents independent assortment and random segregation, we 

would expect the odds ratio for the two-hit model to equal the square of the odds ratio for 

the one-hit model. This is exactly what we observe, and the effect becomes stronger if we 

restrict the analysis to individuals of European ancestry (Supplementary Fig. 12), indicating 

that this signal is not an artifact of population stratification.

Novel candidate genes and interconnected functional networks.

We investigated whether highly constrained genes not enriched for DNMs showed 

enrichment for expression or protein-protein interaction (PPI) networks. Previous 

studies8,10,41 typically performed such analyses by integrating candidates with DNM

enriched genes as opposed to considering them separately. We focus on 163 highly 
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constrained genes (pLI ≥ 0.99, Supplementary Table 17) where private LGD variants are 

exclusively transmitted to probands and have not been reported in SFARI or as DNM 

enriched in three ASD/NDD studies10,11,39. Among these genes, there are a total of 276 

LGD variants and 28 genes with independent LGD variants observed in two or more 

unrelated families.

Gene ontology (GO) analysis shows that the candidate gene set is highly enriched for 

encoded phosphoproteins (Supplementary Table 18; KW-0597, 129/163 genes, q = 1.93 × 

10−20), and the genes are more likely to be interconnected as part of PPI networks (Fig. 

4; 102 observed vs. 75 expected edges, P = 0.00164). A subset of the genes (74/163 

genes), including half the genes with events in multiple families, converge on several 

functional pathways (Fig. 4 and Supplementary Table 18). This includes a small network 

of genes enriched for the E3 ubiquitin-protein ligase pathway by both the GO and Reactome 

databases, which are involved in proteasome degradation (HSA-98316) and regulation of 

protein modification by small protein conjugation or removal (GO:1903320). Similarly, 

there is a set of more than a dozen genes associated with internal cellular transport and 

specifically transport between the Golgi and endoplasmic reticulum. Other subnetworks are 

significantly enriched for nucleobase-containing compound metabolic process (GO:006139) 

and Erb signaling (hsa04012).

This proband candidate gene set is also enriched for cell-type-specific expression at the 

early and mid-fetal cortical stages of human brain development (Supplementary Fig. 19). We 

observe no enrichment in a set of 83 genes in siblings ascertained using the same criteria 

(not DNM enriched, pLI ≥ 0.99, no private LGD variants in probands) (Supplementary 

Fig. 19). If we focus our expression analyses from brain regions to individual cell types 

in the adult human cortex, we find that our candidate genes are significantly enriched for 

expression in both excitatory and inhibitory neurons (Supplementary Fig. 20; excitatory P = 

4.7 × 10−4, inhibitory P = 5.0 × 10−4) but not enriched for expression in non-neuronal cell 

types (Supplementary Fig. 20; P = 0.24) as compared to control sets. There is no difference 

between proband and sibling genes ascertained using the same criteria. It should be noted 

that these pathway enrichments are only observed when compared to the whole genome. 

If we compare to only genes intolerant to mutation (pLI ≥ 0.99), no pathways remain 

significant.

Private LGD variants in children with autism are evolutionarily younger.

Classical population genetics predicts that deleterious variants, such as disease-associated 

alleles, should be, on average, younger than neutral alleles of the same allele frequency 

due to purifying selection42. Focusing on children of European ancestry, we applied a 

genome-wide genealogy method developed by Speidel and colleagues43 that uses the local 

ancestry (i.e., linkage disequilibrium) surrounding a single-nucleotide polymorphism (SNP) 

of interest to construct a coalescent tree and estimate the generational age of the allele based 

on the coalescent branch length. We selected 101 private LGD variants transmitted only 

to children with autism where none of the 163 candidate genes were previously associated 

with ASD. We compare them to a random subset of ~500 private LGD variants in other 

genes obtained from both probands and siblings. We estimate the average age of disease
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associated LGD variants to be 2.5 generations and find these are significantly younger than 

other classes of private LGD variants (Fig. 5). We estimate that other proband-associated 

LGD variants in highly constrained genes (pLI ≥ 0.99) outside the candidate gene set 

have a median age of 3.7 generations and are significantly older (Mann-Whitney U test, 

Bonferroni-corrected P = 0.0133). Sibling LGD variants in highly constrained genes (pLI 

≥ 0.99) are estimated to be almost two generations older (4.3 generations; Mann-Whitney 

U test, Bonferroni-corrected P = 0.000255 candidate vs. sibling). As a negative control, we 

do not observe any difference between the age of private LGD variants in genes outside of 

the candidate gene set between probands and siblings (Fig. 5; Mann-Whitney U test, P = 

0.139) or for synonymous or private variants mapping to intergenic regions (Supplementary 

Figs. 21 and 22). Since alleles in these candidate genes are carried in unaffected parents, we 

hypothesize that these variants are under weaker selection than deleterious DNMs but under 

stronger selection than a neutral allele. Specifically, if we assume mutation-selection balance 

under an additive (e.g., two-hit; h = 0.5) model42, we can apply gene-specific mutation rates 

and allele frequencies within the cohort to estimate the median selection coefficient for the 

101 private, transmitted LGD variants in probands of European ancestry. We estimate a 

rather strong selection coefficient of 0.27 (s.d. = 0.24) for private candidate LGD variants 

transmitted to only autism probands in this study.

Contribution of known and novel ASD-associated variation.

Since common variants are implicated in autism risk, we calculated the polygenic risk 

score (PRS) from our larger sample set and assessed transmission disequilibrium as recently 

described17. We find an even larger difference in the transmission of polygenic risk between 

probands and unaffected siblings when compared to Weiner and colleagues, observing the 

signal in both multiplex and simplex families (Supplementary Fig. 23). We quantified the 

relative increase in risk for ASD conferred by common variants, DNMs, private SNVs, 

and a set of CNVs previously implicated in autism and NDD. Using a multivariate logistic 

regression, we estimated the effect size of these four variant categories and computed the 

population attributable risk (PAR) (Supplementary Table 19). We restricted this analysis to 

the Simons Simplex Collection (SSC; n = 1,765 quads) where we had variant calls across 

all four mutation classes for all samples. We find that children with de novo LGD mutations 

in DNM-enriched genes are 11.7 times more likely to have autism, accounting for 4.4% 

of the PAR for ASD. Although CNVs associated with ASD and NDD are, collectively, 

the rarest events included here, children with such an event are 2.7 times more likely to 

have autism, accounting for 0.9% of the PAR. Carrying one or more private, LGD variants 

in highly constrained genes increases the likelihood of developing autism by 1.4-fold. We 

estimate that these events account for 3.3% of the PAR, which is comparable to the amount 

of risk associated with LGD DNMs. Lastly, we find a 1.1-fold increase in the likelihood of 

developing autism as polygenic risk increases, further supporting a polygenic transmission 

disequilibrium. While PRS accounts for a large fraction of ASD heritability, we estimate that 

having a PRS in the top 10% of all children accounts for 1.8% of the PAR for ASD. We 

note that the contribution of polygenic risk is likely an underestimate as ASD genome-wide 

association studies to date are underpowered. Only a small number of robust loci have been 

identified, so we are likely missing much of the common variant liability for ASD17. These 
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four categories of risk variants only account for 10.4% of the PAR for autism, suggesting 

many more risk factors for autism are yet to be discovered.

DISCUSSION

Despite the high heritability of autism, most gene discovery in autism research has been 

driven by studies of de novo variation2,8-10,26. Our analysis shows that ultra-rare transmitted 

LGD variants are not only significantly enriched in children with autism but contribute to 

at least 4.5% of autism risk in the human population. This estimate is in line with other 

studies3,37 and suggests this understudied class of variation may confer almost as much 

risk as de novo SNVs and indels (6-9% of cases using the same PAR estimator)2,3. While 

the burden of private LGD variants in affected children is higher in multiplex families, 

both simplex and multiplex families show evidence of biased transmission of private LGD 

variants. This effect is significant in simplex families only for genes intolerant to mutation, 

while in multiplex families the effect is larger and significant for genes more tolerant to 

mutation (Fig. 3b). This may explain why we observe a significant excess of multiple 

private LGD variants in probands as multiple gene disruptions may be required to reach the 

diagnostic threshold for ASD.

Some studies focused on identifying risk genes have combined de novo and ultra-rare variant 

risk burden to improve sensitivity, such as the Transmission And De novo Association 

(TADA)41 analysis employed by Ruzzo and colleagues8. Because a significant fraction of 

DNM-enriched genes have been discovered8,11,39, we sought to tease apart these effects by 

excluding known DNM-enriched genes. We estimate that about half of private LGD risk 

is conferred from genes identified through DNM enrichment studies, and excluding known 

DNM-associated risk genes has a marginal effect on the burden we observe. To enrich for 

pathogenicity, we identified a set of 163 candidate genes according to gene constraint (pLI 

≥ 0.99) and the absence of private LGD variants in unaffected siblings. Although there has 

been no reported evidence of DNM enrichment in these genes, we find that several of our 

candidate genes and gene networks identify pathways previously implicated in autism.

For example, we identified three independent private LGD variants in HDAC9 transmitted 

exclusively to probands. Pinto et al. identified a transmitted HDAC9 deletion in a patient 

with ASD and five additional gene deletions in patients with intellectual disability and 

schizophrenia44, supporting the role of private, transmitted LGD variants in HDAC9 in 

ASD pathogenesis. Several other HDAC genes have also been implicated in ASD, including 

HDAC845 and HDAC446, and the chromatin-remodeling pathway is known to play a key 

role in autism9,26,47. Another gene in our network, TOP2A, is part of the topoisomerase 

gene family thought to be critical in regulating the expression of ASD-related genes48. 

Although this specific topoisomerase has not yet been reported as enriched for DNMs 

in autism cases, inhibitors of this gene alter the expression of imprinted genes, and 

the topoisomerase acts by resolving transcription-associated supercoiling of long genes, 

including ASD-related genes critical for synaptic function. Our findings suggest that private 

inherited variants may identify a subset of genes with variants of smaller effect sizes; 

however, we and others have shown39 that more than half of all genes enriched for DNMs 

have yet to be discovered, and none of the inherited genes reach gene-level significance. 
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This is in large part due to sample size and the locus heterogeneity underlying autism. 

With greater sample sizes, there will likely be more extensive overlap between inherited 

risk and DNM-risk genes. The case–control study design may be particularly well suited to 

validate individual candidate genes with an increased burden of private, transmitted variants 

in autism family studies.

Additionally, we identified a small network of seven genes in the E3 ubiquitin-protein ligase 

pathway, which has a well-characterized role in autism49,50. There are several genes in this 

pathway enriched for DNMs in children with autism10,39, indicating that DNMs and private, 

transmitted LGD variants converge on the same pathway but may be hitting distinct sets of 

genes. An interesting finding from this study is the discovery of a subnetwork of genes (e.g., 

dyneins, kinesins, and coatomer subunits) related to vesicular intracellular transport between 

the Golgi and endoplasmic reticulum (Fig. 4). This process is important in the transport of 

synaptic molecules, such as neurexins and neuroligins, to the cell surface, endocytic cycling 

of receptors, and vesicular cargo transport along microtubules51-53. Mutations in related 

genes in both autosomal recessive and dominant form have been implicated in autism, 

peripheral neuropathies, and NDD. Disruptions in gene function alter synaptic plasticity 

and morphology of neuronal dendrites and axons. While these associations are exciting, we 

caution that network and enrichment analyses are often biased toward the most well-studied 

genes and pathways54, and thus, more than half the genes that failed to associate with a 

functional network likely await discovery.

Finally, we report evidence supporting a multi-hit model of autism. We find that private 

truncating variants in different genes are 50% more likely to occur in autism probands than 

siblings—a signal consistent with the pathogenicity of this class of variant (Figs. 2a and 

3c, Supplementary Table 11, and Supplementary Note). There are other instances of such 

models reported in ASD ranging from a simple two-hit model55 to an oligogenic model 

of disease4,13,14,19,55. For example, the 16p12.1 deletion14,55 is often inherited but requires 

a secondary CNV to reach the genetic liability threshold for disease. Similarly, carrying 

three or more potentially deleterious DNMs (in the absence of an LGD DNM or large 

CNV) can be attributed to about 7.3% of autism cases4. A targeted study of seven genes 

identified a significant overrepresentation of probands with two or more nonsynonymous 

variants and suggests multiple moderate impact events in the same pathway are necessary to 

cause nonsyndromic forms of autism13. Efforts focusing on patient recontact, not only for 

the purpose of re-phenotyping families as diagnostic criteria evolve but also for providing 

additional counseling as novel genetic candidates are identified, will be critical in the 

task of understanding genotype–phenotype relationships and has already been proposed by 

others56. Understanding the diversity of genetic etiologies underlying autism as well as their 

corresponding phenotypic outcomes will be critical for providing accurate risk assessments 

for family planning and genetic counseling.

These findings highlight some key considerations for future ASD studies. Specifically, 

family composition of the cohort will influence what types of and to what degree different 

variant classes contribute to ASD risk. This is important for replication of the findings 

reported here as well as findings from other groups8-10. Most autism families characterized 

by exomes and genomes are simplex in origin, and a greater effort must be taken to recruit 
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and characterize multiplex families as part of large-scale sequencing efforts. Additionally, 

these results highlight the weakness of assuming de novo and rare transmitted variants 

will impact genes in a similar manner (e.g., monogenic and highly penetrant mutations 

in constrained genes)38,41,57. Although we find de novo and private variants converge on 

related pathways, our data suggest these two variant classes may act through different 

genetic mechanisms and modulate distinct sets of genes in ASD pathogenesis. Our allele 

age estimates are consistent with the action of strong selection operating on these variants. 

Our analysis suggests that the variants we identify in candidate genes persist for two to 

three generations before being removed from the gene pool by selection. In contrast, most of 

the LGD variants associated with de novo-enriched genes are removed from the gene pool 

almost immediately due to the action of stronger purifying selection.

ONLINE METHODS

Sequencing and quality control of cohorts.

Individuals enrolled in the Autism Genetic Resource Exchange (AGRE), SSC, The 

Autism Simplex Collection (TASC), and Study of Autism Genetics Exploration (SAGE) 

studies were whole-genome sequenced at the New York Genome Center (NYGC) 

as part of the CCDG (http://ccdg.rutgers.edu/) (Table 1 and Supplementary Table 

1). This study was approved for sequencing by the local institutional review board 

(IRB) at NYGC (Biomedical Research Alliance of New York (BRANY) IRB File # 

17-08-26-385). All participants provided informed consent prior to participation in the 

study (SSC: IRB STUDY00001619, SAGE: IRB protocol #44219, TASC: STUDY00002514 

at the University of Washington). Sequencing was performed on an Illumina HiSeq 

X Ten platform using 1 μg of DNA and an Illumina PCR-free library protocol. Post

sequencing, the data were processed using the standard pipeline for the CCDG58 and 

the GRCh38_full_analysis_set_plus_decoy_hla.fa reference genome. Briefly, raw reads 

were aligned to the GRCh38 reference genome (BWA-MEM, v0.7.15)59, duplicate reads 

were marked (Picard v2.5.0, http://broadinstitute.github.io/picard/), base scores recalibrated 

(GATK v3.8.0)60, and indels were realigned (GATK). CRAM quality control (QC) metrics 

for the SAGE cohort have been previously published21; SSC, TASC, and AGRE QC metrics 

were determined using Picard WGS metrics, Picard insert-size metrics, and SAMtools61 

flagstat. The average sequence depths for SSC, TASC, and AGRE were 34.99 ± 4.09-fold, 

33.89 ± 5.46-fold, and 33.03 ± 4.31-fold, respectively. The average insert sizes for SSC, 

TASC, and AGRE were 444.9 ± 17.86 bp, 455.1 ± 6.40 bp, and 384.8 ± 26.39 bp, 

respectively.

Individuals enrolled in the SPARK study were whole-exome sequenced at Regeneron 

(unpublished) (Table 1). Exomes were sequenced to an average coverage of 61.84 ± 14.99

fold. QC analysis included HybridizationMetrics (Picard) and SAMtools flagstat.

Variant calling.

We called SNVs and indels in families using four different callers: GATK HaplotypeCaller 

(v.3.5.0)62, FreeBayes (v1.1.0)63, Platypus (v0.8.1)64, and Strelka2 (Illumina, v2.9.2). In 

addition, multi-nucleotide variants were called using FreeBayes and Platypus. Post-calling, 
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BCFtools (v1.3.1)65 norm was used to left-align and normalize indels. Following variant 

calling, we partitioned the genome into the high-quality regions, consisting of unique space 

as well as ancient repeats and the recent repeat regions, which consisted of repeats <10% 

diverged from the consensus in RepeatMasker. Variants in high-quality portions of the 

genome retained for analysis and recent repeat region variants were removed from the study.

Kinship and sample redundancy.

All samples from both the discovery and validation cohorts were merged together and 

kinship coefficients were calculated with KING (v1.4)66. Samples with kinship coefficients 

that did not match their reported relationship were identified as potential sample swaps or 

contamination and were either removed or, when possible, their relationships were corrected. 

Samples with kinship coefficients greater than 0.35 were identified as potential sample 

duplicates (Supplementary Table 20). We first checked whether potential duplicates were 

known monozygotic twin pairs or known duplicates within a cohort (some individuals had 

both blood and cell line DNA sequenced for QC purposes). We retained one sample from 

each of the known duplicate pairs, preferentially retaining the sample generated from blood 

DNA when possible and randomly selecting the retained sample if there was no difference 

in DNA source. The remaining duplicates, which represented samples sequenced as part 

of multiple cohorts, were retained for one and only one of the cohorts according to the 

following prioritization scheme: (1) sample was sequenced as part of an SSC family; (2) 

the sample was from a complete family, their DNA was from blood, and was WGS; (3) the 

sample was from a complete family and sample was WGS; or (4) the sample was from a 

complete family and contained unaffected siblings. Families with twins were retained for 

private variant discovery but excluded from all statistical analyses.

Principal component analysis (PCA).

In addition to our discovery and validation cohorts, we included two reference cohorts, 

1000 Genomes Project (1KG, 20140818 release)35 and Simons Genome Diversity Project 

(SGDP, available at NCBI under BioProject ID PRJNA522307)67, in our PCA. Each cohort 

was cleaned separately (described below), merged together, and then cleaned additionally. 

Reference data from the SGDP and 1KG were prepared for PCA by left normalizing variants 

with BCFtools (v1.9), followed by filtering for individual missingness (<10% missing 

genotypes within an individual), SNP missingness (<50% missing genotypes across a SNP), 

minor allele frequency (>5%), and linkage disequilibrium pruning with PLINK 1.9068. Sites 

were then converted from hg19 to GRCh38 using UCSC liftOver. Since the 1KG data were 

generated with a lower density SNP array than SPARK, the remaining 1KG sites were 

the only sites considered in the remaining cohorts. The SSC, SAGE, TASC, and AGRE 

samples were prepared using GATK joint-genotype files provided by the NYGC and then 

iteratively merged together within the respective cohort (most cohorts had to be processed 

in multiple batches). Each joint-genotype file was prepared as described above. The SPARK 

samples were prepared using the joint-genotype generated by Regeneron using Illumina 

InfiniumCoreExome-24_v1.1 array data. Intensity data files were processed using Illumina 

Genome Studio Software. Since this data set was already in plink format, it did not undergo 

additional processing. Prior to merging all six cohorts together, the 1KG target sites were 

extracted from each cohort. After merging, the combined autism and reference cohorts were 
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filtered for genotype missingness within the individual and SNP (both < 5%). Finally, the 

data were input into EIGENSTRAT (v5.0.1)69,70 for PCA. The results of this analysis are 

summarized in Supplementary Figure 24.

ADMIXTURE and ancestry assignment.

The files we used for PCA input were split by reference cohort (SGDP and 1KG) and 

discovery cohort (SSC, SAGE, TASC, and AGRE) and filtered for sites present in the 

reference cohort and individual-level missingness a second time. We ran the software 

ADMIXTURE (v1.3.0)71 with 10-fold cross validation (CV) on our reference cohort of 

1,964 unrelated individuals to determine the optimal value for the K parameter. We found 

that K = 10 resulted in the smallest CV error (Supplementary Fig. 2); however, there is 

little difference in CV error for values of K between 8 and 14, and we recognize that a 

lower value of K would result in similar population assignments. We assessed the quality of 

our inferences for our reference cohort by visualizing the proportion of ancestry from each 

cluster for a random subset of 15 individuals from each known population (250 individuals 

total).

Due to the underlying relationships between individuals in our autism cohort, we chose to 

use the allele frequencies learned by ADMIXTURE from our reference cohort to assess 

the ancestry of our discovery cohort in a supervised manner by using projection with 

ADMIXTURE. We assigned each individual to the cluster that contributed the largest 

proportion of ancestry and then grouped clusters into six super populations (EUR, European; 

AFR, African; EAS, East Asian; SAS, South Asian; AMR, Amerindian; OCN, Oceanian) 

according to membership of known populations from the reference cohort (Supplementary 

Fig. 2). We were unable to assign ancestry to 1.01% of our discovery cohort due to missing 

data in the joint-genotype files and find that the majority of our cohort (85.9%) is European 

ancestry (Supplementary Fig. 2 and Supplementary Table 6).

De novo mutation (DNM) calls.

DNMs in the SSC, SAGE, and TASC cohorts were called using a custom pipeline. DNMs 

were not called in AGRE because DNA for most samples in this cohort was derived from 

cell lines, which are prone to introducing artifacts in DNM analyses. First, variants that 

were de novo based on genotype (father and mother genotypes were equal to 0/0 and the 

genotype in the child was 0/1 or 1/1) were retained for further assessment. Second, variants 

from Platypus with a filter of LowGQX or NoPassedVariantGTs were removed, and Strelka2 

variants had to have the filter field equal to PASS. Third, variants needed to have the support 

of at least two of the four callers. Fourth, variants were regenotyped with FreeBayes using 

default settings and needed to remain as de novo. Fifth, variants in a homopolymer A or 

T of length 10 or greater were removed. Sixth, we removed all variants in low-complexity 

regions, recent repeats, or centromeres. Finally, we applied the following sample-level 

filters: the father alternate allele count = 0, mother alternate allele count = 0, child allele 

balance > 0.25, father depth > 9, mother depth > 9, child depth > 9, and either child 

genotype quality (GQ) > 20 (GATK) or sum of quality of the alternate observations (QA) > 

20 (FreeBayes). For variants on the X chromosome, we separately considered variants in the 
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pseudoautosomal regions (chrX:10000-2781479, chrX:155701382-156030895) and the X/Y 

duplicatively transposed region (chrX:89201803-93120510).

We performed random Sanger validation and combined these data with published validations 

to look at a total of 3,233 sites in a conditional inference analysis (Supplementary Table 

2). The metrics we included in this analysis included: (1) the mer150 mappability, which 

we calculated on build 38 of the human genome using a workflow originally designed as 

part of the ENCODE project; (2) the average mapping quality of the read +/−100 base 

pairs (bp) around the variant in the child; (3) the average mismatch in the reads +/−25 bp 

around the variant in the child; and (4) the callers that supported the event as de novo. 

Based on this analysis, the final dataset for de novo SNVs and indels were sites that either 

had the support of all four callers or were supported by three callers and had an average 

mapping quality greater than 57 for the reads in the 100 bp region around the variant. For 

the multi-nucleotide variants, we also inspected all sites using SAMtools tview, and the sites 

had to have visual inspection support of de novo status and an average mapping quality 

greater than 57 for the reads +/−100 bp around the variant. We estimate our validation rate 

in this dataset at 99.5% and our false negative rate at 3.5%. In addition, we removed samples 

that were statistically defined as outliers, in terms of de novo counts, based on the boxplot 

function in R.

Private SNV calls.

Each cohort was assessed separately to identify ultra-rare, inherited variants using a custom 

pipeline. Briefly, SNVs and indels were called using FreeBayes (v1.1.0) and GATK on a 

per-family basis. Sites were left-aligned, normalized, and multiallelic sites were split into 

separate lines using BCFtools (v1.9). Sites from the two callers were merged using GATK 

CombineVariants. To ensure a high level of specificity, we counted all alleles in the parent 

population that were present in the union set of the two callers and passed the following QC 

filters: (1) site quality score (QUAL) > 50, and (2) read depth (DP) ≥ 10 for genomes and 

DP ≥ 20 for exomes. We used slightly different DP filters for the exome and genome data to 

account for differences in sequencing depth between the two sequencing platforms. All sites 

that were heterozygous and observed only once in the parent population were designated 

as candidate private variants (cohort-level parental frequency ≤ 7 × 10−5; approximate 

equivalent ExAC frequency ≤ 2.5 × 10−5).

The set of private variants for each cohort was comprised of candidate private variants 

that were present in the intersection set of GATK and FreeBayes and did not violate the 

rules of Mendelian inheritance. We annotated variants using SnpEff (v4.3t)72,73 with gene 

and transcript information (GRCh38.86), predicted effect of the variant on the transcript, 

ExAC (r0.3, non-neuropsych subset) lifted over to GRCh38 using the UCSC liftOver 

tool, and dbSNP (v150). Finally, variants were filtered against recent repeats (see DNM 

methods for details), low-complexity regions, centromeres and gaps, and pseudoautosomal 

regions (hg38 chrY:10,000-2,781,479, chrY:56,887,902-57,217,415, chrX:10,000-2,781,479, 

chrX:155,701,382-156,030,895) using BEDTools (v2.24.0)74,75.

The set of private variants from each cohort was compared to all variants observed in the 

other cohorts. Candidate private variants not observed in any other cohorts were retained 
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for our final set of private variants. For example, the discovery cohort private variants are 

comprised of sites unique to one parent across only the WGS cohorts, whereas the combined 

set private variants are comprised of sites unique to one parent across both the WES and 

WGS cohorts. When combining the WES and WGS cohorts, we only included regions with 

an average coverage of 20-fold in the exomes.

Private CNV calls.

WES CNVs were called from 21,442 individuals among 5,904 complete families (including 

6,582 probands and 3,045 siblings) in SPARK_WES_1 release using CoNIFER (v0.2.2)76 

and XHMM (version statgen-xhmm-3c57d886bc96)77, as described previously24. An 

independent SNP microarray dataset from 99.2% of the samples (21,271/21,442) was 

generated using Illumina Infinium Global Screening Array-24v1 (GSA-24v1), SNP CNVs 

were detected using CNVPartition (Illumina, v3.2.0), PennCNV (v1.0.4)78, and CRLMM 

(v1.38.0)79 as described previously24. We assessed inheritance using both SNP and WES 

data and filtered putative valid private CNVs based on the inheritance (paternal or maternal), 

CNV frequency in parents (n = 1), number of exome probes (> 4), percentage of overlap 

with segmental duplication (< 75%), and microarray validation (support by at least one 

of CNVPartition, PennCNV, and CRLMM approaches). In addition, we required the CNV 

to only interrupt a single gene to detect “gene-killing” CNVs. A pLI score was assigned 

to each gene spanned by a private CNV, and CNVs were binned by pLI scores and copy 

number type (deletions and duplications). Fisher’s exact test (two-sided) was performed 

to compare the number of probands and siblings carrying “gene-killing” private CNVs. 

Whole-genome structural variant (SV) calling was conducted on short-read WGS data from 

the SSC cohort, comprised of 8,617 samples from 2,276 families, after SV calling and QC, 

and the SAGE cohort. Calling and merging of SVs was done as described in Turner et al.4, 

with the exception that this study used Delly280 instead of VariationHunter81. Each genome 

underwent SV calling by six different callers, and merging across callers was done in the 

following order, representing most to least accurate breakpoint callers: WhamG82, Lumpy83, 

Delly280, GenomeSTRiP84, dCGH85, and CNVnator86.

De novo burden and enrichment.

DNMs were integrated from CCDG genomes (SSC, SAGE, and TASC) in this study, 

unpublished SPARK exomes (SPARK_WES_1), and three other major published autism 

exome or genome studies. DNMs, if on hg38, were lifted over to hg19 to enable a merged 

DNM set. DNMs were restricted to a high-coverage (average > 20x) coding regions87 to 

combine exome and genome datasets. We also removed mutations that fell within known 

segmental duplication regions and known recent repeat and low-complexity regions. Sample 

duplicates, in cohorts like CCDG genomes and SPARK where the underlying sequencing 

data are available, were identified using King software to estimate pairwise relatedness 

between samples. Any samples with a kinship value > 0.35 were considered identical and 

counted only once. Identical samples from the same cohort were also checked for reported 

monozygotic twin status. Note, samples in SPARK that overlapped with SSC samples were 

already removed in the final release by the SPARK Consortium. For other published cohorts 

where the underlying exome data are unavailable, we relied on the published studies to 

eliminate within-study overlap. For example, we excluded any potential sample overlap 
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across the CCDG genomes in this study with samples in published literature. This included 

all SSC samples in the ASC study15 that overlap with CCDG SSC genomes. We also 

excluded CCDG TASC genomes (n = 246) to avoid overlap with the TASC samples in 

the ASC study and only retained TASC samples in the ASC study (n = 855) as it has 

a larger sample size. We further excluded samples with ten or more coding DNMs, and 

removed DNMs seen in five or more different individuals after above filtering. These 

measures yielded a total of 15,182 unique ASD trios in the integrated de novo enrichment 

analysis (Supplementary Table 4). Annotation by VEP (Ensembl GRCh37 release 94)88 

and Combined Annotation Dependent Depletion (CADD) score (v1.3)89 were applied to 

ensure uniformity, and the analysis was restricted to the canonical transcript with the 

most deleterious annotation. A chimpanzee–human divergence model (CH model)26 and 

denovolyzeR27,28 were used to identify genes with an excess of DNMs. Genes were 

considered to have an excess of DNMs if both models were significant after multiple test 

correct (Benjamini-Hochberg FDR < 5% or Bonferroni).

Transmission bias and burden.

We partition variants from protein-encoding regions of the genome into three classes: (1) 

likely gene disrupting, which we define as any mutation that introduces a stop codon, ablates 

a stop, changes the frame of the open reading frame, or introduces a change at a predicted 

splice donor or splice acceptor site; (2) missense, which is any mutation that causes an 

amino acid change, or (3) synonymous, or any mutation that results in no amino acid 

change. We quantified the number of private, transmitted variants observed in probands and 

unaffected siblings by gene set and variant type and compared the proportion of carriers 

using both a Fisher’s exact test and logistic regression (one model for each variant type 

and pLI threshold). For the DNM-enriched gene set analyses, we compared the proportion 

of carriers between probands and siblings using Fisher’s exact test and logistic regression 

(Supplementary Table 22). Multi-hit analyses and simplex versus multiplex analyses were 

conducted using a Fisher’s exact test to compare the proportion of individuals carrying two 

or more hits in probands and siblings. We applied Bonferroni and FDR corrections to all 

P-values using the R function p.adjust for each analysis.

Rare variant transmission disequilibrium test (rvTDT).

To perform the rvTDT, each child and their parents represented a separate trio. We used the 

following formula from He et al.90 to compare the rate of transmitted variants within each 

set of genes to the expected transmission rate of 0.5. We applied the rvTDT separately to 

affected and unaffected children. Finally, we calculated an approximate odds ratio based on 

the fraction of observed transmissions over the expected number of 0.5 transmissions if there 

was no bias.

b = # children with reference allele transmitted

c = # children with alternate allele transmitted

rvTDT :χ2 = (b ‐ c)2 ∕ (b + c), df = 1
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Population attributable risk (PAR).

PARs were calculated using the following formula published by Cole and MacMahon91. 

Our calculations assume that siblings are representative of the general population. Even if 

siblings are sub-threshold for ASD, these estimates would serve as a lower bound for PAR.

Pe = proportion of population (controls) exposed

RR = relative risk or ratio of the risk between the exposed and unexposed

PAR ( % ) =
Pe × (RR − 1)

(1 + Pe × (RR − 1))

Polygenic risk scores (PRS).

PRS were calculated using the additive model implemented in PLINK (v1.9)68. Briefly, 

genome-wide association study summary statistics from Grove et al.17 were linkage 

disequilibrium pruned, and variants with a study P < 0.01 were retained for scoring. Each 

genotype in a sample was weighted with the variant’s odds ratio, and all of the weighted 

variants were summed together into a PRS (Supplementary Table 21). To ensure risk scores 

are comparable across studies, each cohort was quantile normalized before combining across 

cohorts.

Polygenic transmission disequilibrium test (pTDT).

To estimate the burden of common variation in probands and siblings, we performed a pTDT 

as described in Weiner et al.18. We used the following formulas to calculate the pTDT:

n = number of trios/cases

PRSMP = PRSmother + PRSfather ∕ 2
pTDT deviation = PRSc ‐ PRSMP ∕ SD(PRSMP)
tpTDT = mean(pTDT deviation)/SD(pTDT deviation) ∕ n

P-values were calculated using a two-sided, one-sample t-test with the null hypothesis 

defined as the mean pTDT deviation equal to zero. All P-values were Bonferroni corrected 

for 14 tests and two conditions (probands and siblings).

Allele age estimation.

We estimate the age of a private, transmitted variant at a site of interest using the software 

Relate43. In short, Relate reconstructs the local genealogy of the region of interest using 

a scalable computation, which guarantees the inferred genealogy exactly producing the 

observed data under the infinite-sites model and, thus, can effectively apply to datasets 

with thousands of individuals while taking into account recombination. Mutations are then 

mapped onto the branches of the resulting local tree to estimate mutation age. Each private, 

transmitted variant is annotated as LGD, synonymous, or intergenic as described above 

and then classified into one of the three datasets for candidate gene, affected proband, 

and unaffected sibling depending on the carrier of the private variant. To reduce the 
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computational burden for the inferences for synonymous and intergenic sets, we divided 

the genome into 100,000-bp windows and randomly selected a locus of interest from up to 

550 windows (up to 25 windows per chromosome). We removed sites where the derived 

allele could not be determined and only included alleles carried by individuals of European 

descent. For the 163 candidate genes, we included sites within genes where there is a 

transmitted event within only one family, as well as genes where there are transmitted 

events of different variants across multiple families. Additionally, we required the genes to 

carry private LGD variants to have been transmitted only to autism children and previously 

associated with ASD. This left us with 101 variants for this gene set.

For a site of interest, we first generated phased haplotypes for the 100,000-bp region 

surrounding the site of interest for all samples using BEAGLE (v5.1)92 without imputation. 

For our analysis, we included only one individual from each family, where the family was 

of European descent, and removed samples that are likely related (see Methods for kinship 

above). To model recombination wherever applicable, we used the HapMap genetic map. 

Ancestral and derived states for individual sites are based on the sequences downloaded 

from Ensembl. To ensure the quality of the genotypes, we masked sites that are within 

segmental duplications, low-complexity, and repeat masker sequences (see Methods for 

private SNV calls above). The software Relate outputs two age estimates: the lower and 

upper ages represent the ages of the coalescence events below and above the mutation of 

interest, respectively. We determine the age of a given variant by taking the average of 

the two estimates. Note that we recognize the presence of natural selection at sites where 

deleterious mutations occur would affect the inference of allele age, and thus, the age 

estimates for deleterious alleles inferred in this study are overestimated and can be deemed 

as an upper bound for their ages. We compare the distributions of allele age among different 

datasets using the Mann-Whitney U test, and P-values are all Bonferroni corrected using 

p.adjust. Potential caveats, such as phasing errors and cryptic relatedness, might affect the 

individual age estimates but are expected to have limited impacts on the observation of 

differences among the variant sets because the same procedure was applied to individual 

sets.

Selection coefficient estimation.

We apply the classic mutation-selection balance model to estimate selection coefficients 

for the 101 private, transmitted variants in the candidate gene set. Our rationale is that 

because these variants are predominantly recent (on the order of 1/s)42, selection must act 

relatively strong on these variants, and thus, the presence of these variants are primarily 

due to mutation. Assuming the multi-hit, additive model (h = 0.5), the individual selection 

coefficient (s) can be approximated as mu/qh, where mu is gene-specific mutation rate, h 

is the dominance coefficient, and q is the observed allele frequency in the entire population 

sample.

Gene expression analyses.

Cell-type specific expression analyses (CSEA) were conducted using the CSEA tool93. 

Candidate genes from probands and siblings were uploaded to the available web server for 

CSEA across brain regions and development in humans. Gene expression was identified in a 
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published set of transcriptomically defined cell types in the human temporal cortex94. Gene 

sets were tested for enriched expression in three broad cell classes—inhibitory neurons, 

excitatory neurons, and non-neuronal cells—by counting the number of cell types within 

each class that expressed each gene with average counts per million greater than 1. For 

each gene set, the number of cell types with expression were calculated, and gene sets 

were visually compared by plotting cumulative distributions. For each cell class, Wilcoxon 

rank-sum tests were used to identify statistically significant differences in the number of cell 

types with expression for ASD and control gene sets. P-values were adjusted for multiple 

comparisons using Bonferroni correction.

PPI network analysis.

We used the STRING database (STRING, v11)95 to perform PPI network analyses via 

Cytoscape (v3.7.2)96,97. We used the multiple protein input option with all default settings 

except we required interactions to be limited to those which were high confidence (0.700). 

Disconnected nodes were hidden from the network output (but not from enrichment 

analyses). In addition, we also used STRING to calculate network statistics and run 

functional enrichment analyses from the Gene Ontology resource, KEGG, and the Reactome 

pathway database to identify shared functions across the full set of genes and three 

subnetworks. A subnetwork was identified as any group of genes that contained at least 

five genes. The genes KIAA0430 and ATP5B are also known as MARF1 and ATP5F1B, 

respectively.

Statistics.

All statistics were calculated using R versions 3.5.1 and 3.5.2.

DATA AVAILABILITY

The WGS data used in this study are available from the following resources. The AGRE 

study is available at the Database of Genotypes and Phenotypes (dbGaP) under accession 

phs001766. Access to the AGRE WGS data is subject to approval by Autism Speaks 

and AGRE. All sequencing and phenotype data for the SSC are available through the 

Simons Foundation for Autism Research Initiative (SFARI) and are available to approved 

researchers at SFARI Base (http://base.sfari.org, accession IDs: SFARI_SSC_WGS_p, 

SFARI_SSC_WGS_1, and SFARI_SSC_WGS_2). The genomic and phenotypic data for 

the SPARK study are available by request from SFARI Base (http://base.sfari.org, accession 

ID: SFARI_SPARK_WES_1). Data from the SAGE study are available at dbGaP under 

accession phs001740.v1.p1. Data from the TASC study are available at dbGaP under 

accession phs001741. Family-level FreeBayes and GATK VCF files for SAGE, SSC, and 

TASC are available at dbGaP accession phs001874.v1.p1 and also at SFARI Base under 

accession SFARI_SSC_WGS_2a
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CODE AVAILABILITY

All software used in this study is publicly available. Code for the ultra-rare transmitted 

variant pipeline can be found here: https://github.com/EichlerLab/ultra_rare_transmitted.git. 

Code for figures and analyses are available upon request.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1 ∣. Overview of private variants in discovery cohort.
Private variants are defined as variants observed in one and only one parent in the cohort. 

a, Distribution of likely gene-disruptive (LGD), missense (MIS), and synonymous (SYN) 

private variants per child (probands and unaffected siblings). b, The cumulative number of 

each variant class by assigned population group (EUR, European (n = 5,685); AFR, African 

(n = 290); EAS, East Asian (n = 252); AMR, Amerindian (n = 193); SAS, South Asian (n 
= 103)), excluding SAS. c, Private, transmitted variant counts per child grouped by ancestry 

before (All) and after (No dbSNP) filtering with dbSNPv150. Excess of private variants is 

partially but not fully resolved after excluding sites observed in dbSNP. We were unable to 

assign ancestry to one of these five population groups for 74 of the children in this study. 

The y-axis was truncated at 20,000 variants per child; however, both the AFR and EUR 

populations had a small number of children with variant counts above this threshold (see 

Supplementary Tables 6 and 7 for details). Black lines indicate the average variant count per 

population in b and c.
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Figure 2 ∣. Burden of private LGD variants in affected children.
a, Burden of private LGD variants in probands as compared to siblings was quantified 

(odds ratio (OR)) at increasing thresholds of gene constraint (pLI) in our discovery (n = 

4,201 affected and 2,191 unaffected children), replication (n = 6,453 affected and 3,007 

unaffected children), and combined discovery and replication (n =10,657 affected and 5,199 

unaffected children) cohorts. Filled circles indicate Bonferroni-corrected P < 0.05 (42 tests 

per cohort), unfilled circles indicate nominal P < 0.05, and shaded areas indicate 95% 

confidence intervals around the OR estimate. OR and confidence intervals were calculated 

using logistic regression (see Supplementary Table 11 for details). b, Enrichment of private, 

LGD variant transmission to probands for five autism risk gene sets (FWER, COE, ASC, 

SANDERS, SFARI). With the exception of SFARI, most gene sets were identified based 

on an excess of de novo mutations (DNMs) in parent–child trios (see Online Methods). OR 

was based on a comparison of the proportion of carriers between probands and siblings in 

our discovery (n = 4,201 affected and 2,191 unaffected children), replication (n = 6,453 

affected and 3,007 unaffected children), and combined (n = 10,657 affected and 5,199 

unaffected children) cohorts using a two-sided Fisher’s exact test (see Supplementary Table 

5 for details). Dashed black line indicates OR = 1, which represents no difference between 

probands and siblings. Families with monozygotic twins (n = 75 in discovery, n = 63 in 

replication, and n = 138 in combined) were removed from analysis. For the combined 

set, variants were restricted to regions with at least 20x average coverage in the exomes. 

Reported P-values are nominal, points indicate the OR estimate, and error bars indicate 95% 

confidence intervals around the OR estimate.
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Figure 3 ∣. Genetic properties of inherited LGD variant burden.
a, At least 95.4% of private, transmitted LGD variant burden resides outside of genes 

identified with an excess of DNMs in ASD/NDD cases (321 genes considered and 154 

genes with transmissions) based on analysis of CCDG autism genomes (n = 4,201 affected 

and 2,191 unaffected children). We observe 141 DNM-enriched genes with transmissions 

to probands and 85 genes with transmissions to siblings (Supplementary Table 12). OR for 

five cumulative pLI bins were compared before and after excluding DNM-enriched genes in 

ASD/NDD cases. The percentage of remaining burden is calculated as quotient of the OR 

for the pLI bin after removing genes enriched for DNMs in ASD/NDD cases and the OR for 

all genes in that pLI bin. Families with monozygotic twins (n = 75) were excluded from this 

analysis. OR and associated P-values were calculated using a two-sided Fisher’s exact test. 

Points indicate the OR estimate, and error bars indicate the 95% confidence interval around 

the OR estimate. b, Multiplex families (n = 1,268 families, 2,691 probands, 533 siblings) 

show a higher burden of private, transmitted LGD variants in probands as compared to 

siblings across three pLI thresholds compared to simplex families (n = 7,962 families, 7,962 

probands, 4,666 siblings). c, We observe a significant enrichment of probands carrying 

two private, transmitted LGD variants (2 LGD) when compared to unaffected siblings 
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at various levels of gene constraint (3 cumulative pLI bins considered) based on CCDG 

genomes sequenced from autism families (n = 4,201 probands, 2,191 siblings). Families 

with monozygotic twins (n = 75) were excluded from this analysis. OR was calculated using 

a two-sided Fisher’s exact test, and reported P-values are Bonferroni corrected for nine (b) 

and three (c) tests (see Supplementary Tables 7 and 8 for details).
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Figure 4 ∣. PPI network for autism candidate genes.
We identified 163 constrained genes (pLI ≥ 0.99) carrying private LGD variants transmitted 

only to autism probands based on combined dataset and not previously identified as a 

DNM-enriched ASD gene (Supplementary Table 9). STRING network shows a significant 

excess of PPI (P = 0.00164). Gene names are colored if observed in two (blue) or three or 

more (red) probands and labeled if observed in two independent families (*) or more (**). 

Families with monozygotic twins (n = 138) were removed from analysis. Analyses were 

restricted to regions with at least 20x average coverage in the exomes.

Wilfert et al. Page 30

Nat Genet. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5 ∣. Estimate of allele age.
The software Relate was used to estimate the coalescent age (in generations) for private 

LGD (red) and SYN (blue) variants in 163 candidate genes, private LGD varianrs (green) 

in 83 sibling-only genes, and ~500 sites from all remaining genes for European probands 

(yellow, n = 3,776) and siblings (pink, n = 1,909). P-values were calculated using a two

sided t-test and Bonferroni corrected for six tests. Plot was truncated at 20 generations. 

Data points older than this are included in calculating represented statistics (e.g., boxplots, 

medians, P-values) but are not visualized. To view all data points, see Supplementary Figure 

14. Boxplot whiskers represent 1.5 times the upper and lower interquartile ranges. Upper 

and lower hinges correspond to the 25th and 75th percentiles, and the middle line represents 

the median. Mean values are noted on the plot.
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Table 2 ∣

Population attributable risk for de novo and private LGD variants

Variant class Genes enriched for
DNMs in ASD/NDD

Remaining
genes, pLI ≥ 0.99

De novo * 4.39% 1.45%

Private 1.45% 2.64%

Population attributable risk (PAR) percentages were calculated in our discovery cohort for de novo and private LGD variants in children (Methods). 

DNM calculations do not include the AGRE study. We defined the DNM-enriched ASD/NDD gene set as the genes reported in Coe et al.39, 

Sanders et al.10, and Satterstrom et al.11

*
Does not include AGRE cohort.
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