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A B S T R A C T

Explainable Artificial Intelligence (XAI) is an emerging research topic of machine learning aimed at unboxing
how AI systems’ black-box choices are made. This research field inspects the measures and models involved
in decision-making and seeks solutions to explain them explicitly. Many of the machine learning algorithms
cannot manifest how and why a decision has been cast. This is particularly true of the most popular deep
neural network approaches currently in use. Consequently, our confidence in AI systems can be hindered by
the lack of explainability in these black-box models. The XAI becomes more and more crucial for deep learning
powered applications, especially for medical and healthcare studies, although in general these deep neural
networks can return an arresting dividend in performance. The insufficient explainability and transparency in
most existing AI systems can be one of the major reasons that successful implementation and integration of AI
tools into routine clinical practice are uncommon. In this study, we first surveyed the current progress of XAI
and in particular its advances in healthcare applications. We then introduced our solutions for XAI leveraging
multi-modal and multi-centre data fusion, and subsequently validated in two showcases following real clinical
scenarios. Comprehensive quantitative and qualitative analyses can prove the efficacy of our proposed XAI
solutions, from which we can envisage successful applications in a broader range of clinical questions.
. Introduction

Recent years have seen significant advances in the capacity of Arti-
icial Intelligence (AI), which is growing in sophistication, complexity
nd autonomy. A continuously veritable and explosive growth of data
ith a rapid iteration of computing hardware advancement provides a
urbo boost for the development of AI.

AI is a generic concept and an umbrella term that implies the use of
machine with limited human interference to model intelligent actions.

t covers a broad range of research studies from machine intelligence
or computer vision, robotics, natural language processing to more
heoretical machine learning algorithms design and recently re-branded
nd thrived deep learning development (Fig. 1).

.1. Born of AI

AI changes almost every sector globally, e.g., enhancing (digital)
ealthcare (e.g., making diagnosis more accurate, allowing improved
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E-mail addresses: g.yang@imperial.ac.uk (G. Yang), q7ye@ucsd.edu (Q. Ye), xiajun@email.szu.edu.cn (J. Xia).

disease prevention), accelerating drug/vaccine development and re-
purposing, raising agricultural productivity, leading to mitigation and
adaptation in climate change, improving the efficiency of manufactur-
ing processes by predictive maintenance, supporting the development
of autonomous vehicles and programming more efficient transport
networks, and in many other successful applications, which make sig-
nificant positive socio-economic impact. Besides, AI systems are being
deployed in highly-sensitive policy fields, such as facial recognition
in the police or recidivism prediction in the criminal justice system,
and in areas where diverse social and political forces are presented.
Therefore, nowadays, AI systems are incorporated into a wide variety
of decision-making processes. As AI systems become integrated into all
kinds of decision-making processes, the degree to which people who
develop AI, or are subject to an AI-enabled decision, can understand
how the resulting decision-making mechanism operates and why a
specific decision is reached, has been increasingly debated in science
and policy communities.
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Fig. 1. Left: Terminology and historical timeline of AI, machine learning and deep learning. Right: We are still at the stage of narrow AI, a concept used to describe AI systems
that are capable of handling a single or limited task. General AI is the hypothetical wisdom of AI systems capable of comprehending or learning any intelligent activity a human
being might perform. Super AI is an AI that exceeds human intelligence and skills.
A collection of innovations, which are typically correlated with
human or animal intelligence, is defined as the term ‘‘artificial intel-
ligence’’. John McCarthy, who coined this term in 1955, described
it as ‘‘the scientific and technical expertise in the manufacture of
intelligent machines", and since then many different definitions have
been endowed.

1.2. Growth of machine learning

Machine learning is a subdivision of AI that helps computer systems
to intelligently execute complex tasks. Traditional AI methods, which
specify step by step how to address a problem, are normally based on
hard-coded rules. Machine learning framework, by contrast, leverages
the power of a large amount of data (as examples and not examples)
for the identification of characteristics to accomplish a pre-defined
task. The framework then learns how the target output will be better
obtained. Three primary subdivisions of machine learning algorithms
exist:

• A machine learning framework, which is trained using labelled
data, is generally categorised as supervised machine learning. The
labels of the data are grouped into one or more classes at each
data point, such as ‘‘cats’’ or "dogs’’. The supervised machine
learning framework exploits the nature from these labelled data
(i.e., training data), and forecasts the categories of the new or so
called test data.

• Learning without labels is referred to as unsupervised learning.
The aim is to identify the mutual patterns among data points,
such as the formation of clusters and allotting data points to these
clusters.

• Reinforcement learning on the other hand is about knowledge
learning, i.e., learning from experience. In standard reinforcement
learning settings, an agent communicates with its environment,
and is given a reward function that it tries to optimise. The
purpose of the agent is to understand the effect of its decisions,
and discover the best strategies for maximising its rewards during
the training and learning procedure.

It is of note that some hybrid methods, e.g., semi-supervised learn-
ing (using partially labelled data) and weakly supervised (using indirect
labels), are also under development.

Although not achieving the human-level intelligence often associ-
ated with the definition of the general AI, the capacity to learn from
knowledge increases the amount and sophistication of tasks that can
be tackled by machine learning systems (Fig. 1). A wide variety of
technologies, many of which people face on a daily basis, are nowadays
enabled by rapid developments in machine learning, contributing to
current advancements and dispute about the influence of AI in society.
30
Many of the concepts that frame the existing machine learning systems
are not new. The mathematical underpinnings of the field date back
many decades, and since the 1950s, researchers have developed ma-
chine learning algorithms with varying degrees of complexity. In order
to forecast results, machine learning requires computers to process a
vast volume of data. How systems equipped with machine learning can
handle probabilities or uncertainty in decision-making is normally in-
formed by statistical approaches. Statistics, however, often cover areas
of research that are not associated with the development of algorithms
that can learn to make forecasts or decisions from results. Although
several key principles of machine learning are rooted in data science
and statistical analysis, some of the complex computational models do
not converge with these disciplines naturally. Symbolic approaches,
compared to statistical methods, are also used for AI. In order to create
interpretations of a problem and to reach a solution, these methods use
logic and inference.

1.3. Boom of deep learning

Deep learning is a relatively recent congregation of approaches that
have radically transformed machine learning. Deep learning is not an
algorithm per se, but a range of algorithms that implements neural
networks with deep layers. These neural networks are so deep that
they can only be implemented on computer node clusters – modern
methods of computing – such as graphics processing units (GPUs), are
needed to train them successfully. Deep learning functions very well
for vast quantities of data, and it is never too difficult to engineer the
functionality even if a problem is complex (for example, due to the
unstructured data). When it comes to image detection, natural language
processing, and voice recognition, deep learning can always outperform
the other types of algorithms. Deep learning assisted disease screening
and clinical outcome prediction or automated driving, which were not
feasible using previous methods, are well manifested now. Actually,
the deeper the neural network with more data loaded for training, the
higher accuracy a neural network can produce. The deep learning is
very strong, but there are a few disadvantages to it. The reasoning
of how deep learning algorithms reach to a certain solution is almost
impossible to reveal clearly. Although several tools are now available
that can increase insights into the inner workings of the deep learning
model, this black-box problem still exists. Deep learning often involves
long training cycles, a lot of data and complex hardware specifications,
and it is not easy to obtain the specific skills necessary to create a new
deep learning approach to tackle a new problem.

Although acknowledging that AI includes a wide variety of scientific
areas, this paper uses the umbrella word ‘AI’ and much of the recent
interest in AI has been motivated by developments in machine learning
and deep learning. More importantly, we should realise that there is
not one algorithm, though, that will adapt or solve all issues. Success
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Fig. 2. Left: Trustable AI or Trustworthy AI includes Valid AI, Responsible AI, Privacy-Preserving AI, and Explainable AI (XAI). Right: EU General Data Protection Regulation
(GDPR) highlights the Fairness, Privacy, Transparency and Explainability of the AI.
normally depends on the exact problem that needs to be solved and the
knowledge available. A hybrid solution is often required to solve the
problem, where various algorithms are combined to provide a concrete
solution. Each issue involves a detailed analysis into what constitutes
the best-fit algorithm. Transparency of the input size, capabilities of
the deep neural network and time efficiency should also be taken into
consideration, since certain algorithms take a long time to train.

1.4. Stunt by the black-box and promotion of the explainable AI

Any of today’s deep learning tools are capable of generating ex-
tremely reliable outcomes, but they are often highly opaque, if not fully
invisible, making it difficult to understand their behaviours. For even
skilled experts to completely comprehend these so-called ’black-box’
models may be still difficult. As these deep learning tools are applied
on a wide scale, researchers and policymakers can challenge whether
the precision of a given task outweighs more essential factors in the
decision-making procedure.

As part of attempts to integrate ethical standards into the design and
implementation of AI-enabled technologies, policy discussions around
the world increasingly involve demands for some form of Trustable AI,
which includes Valid AI, Responsible AI, Privacy-Preserving AI, and
Explainable AI (XAI), in which the XAI want to address the fundamental
question about the rationale of the decision making process including
both human level XAI and machine level XAI (Fig. 2). For example,
in the UK, such calls came from the AI Committee of the House of
Lords, which argued that the development of intelligible AI systems is a
fundamental requirement if AI will be integrated as a trustworthy tool
for our society. In the EU, the High-Level Group on AI has initiated
more studies on the pathway towards XAI (Fig. 2). Similarly, in the
USA, the Defence Advanced Research Projects Agency funds a new re-
search effort aiming at the development of AI with more explainability.
These discussions will become more urgent as AI approaches are used to
solve problems in a wide variety of complicated policy making areas, as
experts increasingly work alongside AI-enabled decision-making tools,
for example in clinical studies, and as people more regularly experience
AI systems in real life when decisions have a major impact. Meanwhile,
research studies in AI continue to progress at a steady pace. XAI is a
vigorous area with many on-going studies emerging and several new
strategies evolving that make a huge impact on AI development in
various ways.

While the usage of the term is inconsistent, ‘‘XAI’’ refers to a class
of systems that have insight into how an AI system makes decisions
and predictions. XAI explores the reasoning for the decision-making
process, presents the positives and drawbacks of the system, and offers
31

a glimpse of how the system will act in the future. By offering accessible
explanations of how AI systems perform their study, XAI can allow
researchers to understand the insights that come from research results.
For example, in Fig. 3, an additional explainable surrogate module
can be added to the learnt model to achieve a more transparent and
trustworthy model. In other words, for a conventional machine or deep
learning model, only generalisation error has been considered while
adding an explainable surrogate, both generalisation error and human
experience can be considered and a verified prediction can be achieved.
In contrast, a learnt black-box model without an explainable surrogate
module will cause concerns for the end-users although the performance
of the learnt model can be high. Such a black-box model can always
cause confusions like ‘‘Why did you do that?", ‘‘Why did you not do
that?", ‘‘When do you succeed or fail?", ‘‘How do I correct an error?",
and ‘‘Can I trust the prediction?". The XAI powered model, on the
other hand, can provide clear and transparent predictions to reassure ‘‘I
understand why.", ‘‘I understand why not.", ‘‘I know why you succeed
or fail.", ‘‘I know how to correct an error.", and ‘‘I understand, therefore
I trust". A typical feedback loop of the XAI development can be found
in Fig. 4, which includes seven steps from training, quality assurance
(QA), deployment, prediction, split testing (A/B test), monitoring, and
debugging.

A variety of terms are used to define certain desired characteristics
of an XAI system in research, public, and policy debates, including:

• Interpretability: it means a sense of knowing how the AI technol-
ogy functions.

• Explainability: it provides an explanation for a wider range of
users that how a decision has been drawn.

• Transparency: it measures the level of accessibility to the data or
model.

• Justifiability: it indicates an understanding of the case to support
a particular outcome.

• Contestability: it implies how the users can argue against a deci-
sion.

Comprehensive surveys on general XAI can be found elsewhere,
e.g., [1–4]; therefore, here we provide an overview of most impor-
tant concepts of the XAI. Broadly speaking, XAI can be categorised
into model-specific or model-agnostic based approaches. Besides, these
methods can be classified into local or global methods that can be either
intrinsic or post-hoc [1]. Essentially, there are many machine learning
models that are intrinsically explainable, e.g., linear models, rule-based
models and decision trees, which are also known as transparent models
or white-box models. However, these relatively simple models may
have a relatively lower performance (Fig. 5). For more complex models,

e.g., support vector machines (SVM), convolutional neural networks
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Fig. 3. Schema of the added explainable surrogate module for the normal machine or deep learning procedure that can achieve a more transparent and trustworthy model.
Fig. 4. A typical feedback loop of the XAI development that includes seven steps from training, quality assurance (QA), deployment, prediction, split testing (A/B test), monitoring,
and debugging.
(CNN), recurrent neural networks (RNN) and ensemble models, we can
design model-specific and post-hoc XAI strategies for each of them.
For example, commonly used strategies include explanation by simpli-
fication, architecture modification, feature relevance explanation, and
visual explanation [1]. In general, these more complex models may
achieve better performance while the explainability becomes lower
(Fig. 5). It is of note that due to the nature of the problems, less
complicated models may still perform well compared to deep learning
based models while preserving the explainability. Therefore, Fig. 5
just depicts a preliminary representation inspired by [1], in which
XAI demonstrates its ability to enhance the trade-off between model
interpretability and efficiency.

Recently, model-agnostic based approaches attract great attention
that rely on a simplified surrogate function to explain the predic-
tions [3]. Model-agnostic approaches are not attached to a specific
machine learning model. This class of techniques, in other words, dis-
tinguishes prediction from explanation. Model-agnostic representations
are usually post-hoc that are generally used to explain deep neural
32
networks with interpretable surrogates that can be local or global [2].
Below is some summary for XAI in more complex deep learning based
models.

1.4.1. Model-specific global XAI
By integrating interpretability constraints into the procedure of deep

learning, these model-specific global XAI strategies can improve the
understandability of the models. Structural restrictions may include
sparsity and monotonicity, where fewer input features are leveraged or
the correlation between features and predictions is confined as mono-
tonic). Semantic prior knowledge can also be impelled to restrict the
higher-level abstractions derived from the data. For instance, in a CNN
based brain tumour detection/classification model using multimodal
MRI data fusion, constraints can be imposed by forcing disengaged
representations that are recognisable to each MRI modality (e.g., T1,
T1 post-contrast and FLAIR), respectively. In doing so, the model can
identify crucial information from each MRI modality and distinguish
brain tumours and sub-regions into necrotic, more or less infiltrative
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Fig. 5. Model explainability vs. model performance for widely used machine learning
and deep learning algorithms. The ideal solution should have both high explainability
and high performance. However, existing linear models, rule-based models and decision
trees are more transparent, but with lower performance in general. In contrast, complex
models, e.g., deep learning and ensembles, manifest higher performance while less
explainability can be obtained. HBN: Hierarchical Bayesian Networks; SLR: Simple
Linear Regression; CRF: Conditional Random Fields; MLN: Markov Logic Network;
SVM: Support Vector Machine; AOG: Stochastic And-Or-Graphs; XGB: XGBoost; CNN:
Convolutional Neural Network; RNN: Recurrent Neural Network; and GAN: Generative
Adversarial Network.

that can provide vital diagnosis and prognosis information. On the
contrary, simple aggregation based information fusion (combining all
the multimodal MRI data like a sandwich) would not provide such
explainability.

1.4.2. Model-specific local XAI
In a deep learning model, a model-specific local XAI technique

offers an interpretation for a particular instance. Recently, novel at-
tention mechanisms have been proposed to emphasise the importance
of different features of the high-dimensional input data to provide
an explanation of a representative instance. Consider a deep learning
algorithm that encodes an X-ray image into a vector using a CNN and
then use an RNN to produce a clinical description for the X-ray image
by using the encoded vector. For the RNN, an attention module can
be applied to explain to the user what image fragments the model
focuses on to produce each substantive term for the clinical description.
For example, the attention mechanism will represent the appropriate
segments of the image corresponding to the clinical key words derived
by the deep learning model when a clinician is baffled to link the
clinical key words to the regions of interest in the X-ray image.

1.4.3. Model-agnostic global XAI
In model-agnostic global XAI, a surrogate representation is devel-

oped to approximate an interpretable module for the black-box model.
For instance, an interpretable decision tree based model can be used
to approximate a more complex deep learning model on how clinical
symptoms impact treatment response. A clarification of the relative
importance of variables in affecting treatment response to clinical
symptoms can be given by the IF-THEN logic of the decision tree.
Clinical experts can analyse these variables and are likely to believe the
model to the extent that particular symptomatic factors are known to be
rational and confounding noises can be accurately removed. Diagnostic
33

methods can also be useful to produce insights into the significance
of individual characteristics in the predictions of the model. Partial
dependence plots can be leveraged to determine the marginal effects of
the chosen characteristics vs. the performance of the forecast, whereas
individual conditional expectation can be employed to obtain a gran-
ular explanation of how a specific feature affects particular instances
and to explore variation in impacts throughout instances. For example,
a partial dependency plot can elucidate the role of clinical symptoms
in reacting favourably to a particular treatment strategy, as observed
by a computer-aided diagnosis system. On the other hand, individual
conditional expectation can reveal variability in the treatment response
among subgroups of patients.

1.4.4. Model-agnostic local XAI
For this type of XAI approaches, the aim is to produce model-

agnostic explanations for a particular instance or the vicinity of a
particular instance. Local Interpretable Model-Agnostic Explanation
(LIME) [5], a well-validated tool, can provide an explanation for a com-
plex deep learning model in the neighbourhood of an instance. Consider
a deep learning algorithm that classifies a physiological attribute as a
high-risk factor for certain diseases or cause of death, for which the
clinician requires a post-hoc clarification. The interpretable modules
are perturbed to determine how the predictions made by the change of
those physiological attributes. For this perturbed dataset, a linear model
is learnt with higher weights given to the perturbed instances in the
vicinity of the physiological attribute. The most important components
of the linear model can indicate the influence of a particular physio-
logical attribute that can suggest a high-risk factor or the contrary can
be implied. This can provide comprehensible means for the clinicians
to interpret the classifier.

2. Related studies in AI for healthcare and XAI for healthcare

2.1. AI in healthcare

AI attempts to emulate the neural processes of humans, and it intro-
duces a paradigm change to healthcare, driven by growing healthcare
data access and rapid development in analytical techniques. We survey
briefly the present state of healthcare AI applications and explore their
prospects. For a detailed up to date review, the readers can refer to
Jiang et al. [6], Panch et al. [7], and Yu et al. [8] on general AI
techniques for healthcare and Shen et al. [9], Litjens et al. [10] and
Ker et al. [11] on medical image analysis.

In the medical literature, the effects of AI have been widely de-
bated [12–14]. Sophisticated algorithms can be developed using AI
to ‘read’ features from a vast amount of healthcare data and then
use the knowledge learnt to help clinical practice. To increase its
accuracy based on feedback, AI can also be fitted with learning and
self-correcting capabilities. By presenting up-to-date medical knowl-
edge from journals, manuals and professional procedures to advise
effective patient care, an AI-powered device [15] will support clinical
decision making. Besides, in human clinical practice, an AI system may
help to reduce medical and therapeutic mistakes that are unavoidable
(i.e., more objective and reproducible) [12,13,15–19]. In addition, to
help render real-time inferences for health risk warning and health
outcome estimation, an AI system can handle valuable knowledge
collected from a large patient population [20].

As AI has recently re-emerged into the scientific and public con-
sciousness, AI in healthcare has new breakthroughs and clinical envi-
ronments are imbued with novel AI-powered technologies at a break-
neck pace. Nevertheless, healthcare was described as one of the most
exciting application fields for AI. Researchers have suggested and built
several systems for clinical decision support since the mid-twentieth
century [21,22]. Since the 1970s, rule-based methods had many
achievements and have been seen to interpret ECGs [23], identify
diseases [24], choose optimal therapies [25], offer scientific logic ex-
planations [26] and assist doctors in developing diagnostic hypotheses
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and theories in challenging cases of patients [27]. Rule-based systems,
however, are expensive to develop and can be unstable, since they
require clear expressions of decision rules and, like any textbook, re-
quire human-authored modifications. Besides, higher-order interactions
between various pieces of information written by different specialists
are difficult to encode and the efficiency of the structures is constrained
by the comprehensiveness of prior medical knowledge [28]. To nar-
row down the appropriate psychological context, prioritise medical
theories, and prescribe treatment, it was also difficult to incorporate
a method that combines deterministic and probabilistic reasoning
procedures [29,30].

Recent AI research has leveraged machine learning approaches,
which can account for complicated interactions [31], to recognise
patterns from the clinical results, in comparison to the first generation
of AI programmes, which focused only on the curation of medical
information by experts and the formulation of rigorous decision laws.
The machine learning algorithm learns to create the correct output for a
given input in new instances by evaluating the patterns extracted from
all the labelled input–output pairs [32]. Supervised machine learning
algorithms are programmed to determine the optimal parameters in
the models in order to minimise the differences between their training
case predictions and the effects observed in these cases, with the hope
that the correlations found are generalisable to cases not included
in the dataset of training. The model generalisability can be then
calculated using the test dataset. For supervised machine learning
models, grouping, regression and characterisation of the similarity
between instances with similar outcome labels are among the most
commonly used tasks. For the unlabelled dataset, unsupervised learn-
ing infers the underlying patterns for discovering sub-clusters of the
original dataset, for detecting outliers in the data, or for generating
low-dimensional data representations. However, it is of note that in a
supervised manner, the recognition of low-dimensional representations
for labelled dataset may be done more effectively. Machine-learning
approaches allow the development of AI applications that promote
the exploration of previously unrecognised data patterns without the
need to define decision-making rules for each particular task or to
account for complicated interactions between input features. Machine
learning has therefore been the preferred method for developing AI
utilities [31,33,34].

The recent rebirth of AI has primarily been motivated by the ac-
tive implementation of deep learning – which includes training a
multi-layer artificial neural network (i.e., a deep neural network) on
massive datasets – to wide sources of labelled data [35]. Existing
neural networks are getting deeper and typically have > 100 layers.

ulti-layer neural networks may model complex interactions between
nput and output, but may also require more data, processing time,
r advanced architecture designs to achieve better performance. Mod-
rn neural networks commonly have tens of millions to hundreds of
illions of parameters and require significant computing resources

o perform the model training [8]. Fortunately, recent developments
n computer-processor architecture have empowered the computing
esources required for deep learning [36]. However, in labelled in-
tances, deep-learning algorithms are incredibly ’data hungry.’ Huge
epositories of medical databases that can be integrated into these
lgorithms have only recently become readily available, due to the
stablishment of a range of large-scale research (in particular the
ancer Genome Atlas [37] and the UK Biobank [38]), data collection
latforms (e.g., Broad Bioimage Benchmark Collection [39] and the
mage Data Resources [40]) and the Health Information Technology
or Economic and Clinical Health (HITECH) Act, which has promised
o provide financial incentives for the use of electronic health records
EHRs) [41,42]. In general, deep learning based AI algorithms have
een developed for image-based classification [43], diagnosis [44–46]
nd prognosis [47,48], genome interpretation [49], biomarker discov-
ry [50,51], monitoring by wearable life-logging devices [52], and
34

utomated robotic surgery [53] to enhance the digital healthcare [54].
Fig. 6. A non-exhaustive map of the AI in healthcare applications.

The rapid explosion of AI has given rise to the possibilities of using
aggregated health data to generate powerful models that can automate
diagnosis and also allow an increasingly precise approach to medicine
by tailoring therapies and targeting services with optimal efficacy
in a timely and dynamic manner. A non-exhaustive map of possible
applications is showing in Fig. 6.

While AI is promising to revolutionise medical practice, several
technological obstacles lie ahead. Because deep learning based ap-
proaches rely heavily on the availability of vast volumes of high-quality
training data, caution must be taken to collect data that is repre-
sentative of the target patient population. For example, data from
various healthcare settings, which include different forms of bias and
noise, may cause a model trained in the data of one hospital to
fail to generalise to another [55]. Where the diagnostic role has an
incomplete inter-expert agreement, it has been shown that consensus
diagnostics could greatly boost the efficiency of the training of the
deep learning based models [56]. In order to manage heterogeneous
data, adequate data curation is important. However, achieving a good
quality gold standard for identifying the clinical status of the patients
requires physicians to review their clinical results independently and
maybe repeatedly, which is prohibitively costly at a population scale. A
silver standard [57] that used natural-language processing methods and
diagnostic codes to determine the true status of patients has recently
been proposed [58]. Sophisticated algorithms that can handle the id-
iosyncrasies and noises of different datasets can improve the efficiency
and safety of prediction models in life-and-death decisions.

Most of the recent advancement in neural networks has been limited
to well-defined activities that do not require data integration across sev-
eral modalities. Approaches for the application of deep neural networks
to general diagnostics (such as analysis of signs and symptoms, prior
medical history, laboratory findings and clinical course) and treatment
planning are less simple. While deep learning has been effective in im-
age detection [59], translation [60], speech recognition [61,62], sound
synthesis [63] and even automated neural architecture search [64],
clinical diagnosis and treatment tasks often need more care (e.g., pa-
tient interests, beliefs, social support and medical history) than the
limited tasks that deep learning can be normally adept. Moreover, it
is unknown if transfer learning approaches will be able to translate
models learnt from broad non-medical datasets into algorithms for the
study of multi-modality clinical datasets. This suggests that more com-
prehensive data-collection and data-annotation activities are needed to
build end-to-end clinical AI programmes. It is of note that one most
recent study advocated for the use of Graph Neural Networks as a tool
of choice for multi-modal causability knowledge fusion [65].
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edge distillation, and surrogate representations), reference, key

plication

ug side effect estimation
ain tumour classification using MRS
ng cancer patients stratification
ll-type specific enhancers prediction
ng-term survival prediction for glioblastoma multiforme
rly diagnosis of type 2 diabetes

t and skin microbiota/inflammatory bowel diseases diagnosis
mortality prediction (all-cause)

lice site detection
cision-supporting for prostate cancer
hthalmic diagnosis

nical risk prediction (cardiac failure/cataract)
R based future hospitalisation prediction
art failure prediction
dictions of clinical events in ICU

quential organ failure assessment/in-hospital mortality
diction of HIV genome integration site

ain tumour localisation
cromolecular complexes

stologic tumour subtype classification
ute intracranial haemorrhage detection
east neoplasm ultrasonography analysis
agnosis of appendicitis
G based hypoglycaemia detection
VID-19 classification

diction of pneumonia risk and 30-day readmission forecast
oke prediction

outcome prediction (acute lung injury)
nical diagnosis and classification (breast cancer, diabetes)
diction of the heart failure caused hospital readmission
hospital mortality prediction (all-cause)
east mass classification
oke Prediction

recast of central precocious puberty
tism spectrum disorder diagnosis
rvival models construction
ng lesion segmentation
diction of patient readmission, diagnosis and medications
diction of acute critical illness from EHR
Table 1
Summary of various XAI methods in digital healthcare and medicine including their category (XAI via dimension reduction, feature importance, attention mechanism, knowl
idea, type (Intrinsic or Post-hoc, Local or Global, and Model-specific or Model-agnostic) and specific clinical applications.

XAI Category Reference Method Intrinsic/
Post-hoc

Local/Global Model-specific/
Model-agnostic

Ap

Dimension Reduction Zhang et al. [66] Optimal feature selection Intrinsic Global Model-specific Dr
Yang et al. [67] Laplacian Eigenmaps Intrinsic Global Model-specific Br
Zhao and Bolouri [68] Cluster analysis and LASSO Intrinsic Global Model-agnostic Lu
Kim et al. [69] Optimal feature selection Intrinsic Global Model-agnostic Ce
Hao et al. [70] Sparse deep learning Intrinsic Global Model-agnostic Lo
Bernardini et al. [71] Sparse-balanced SVM Intrinsic Global Model-agnostic Ea

Feature Importance Eck et al. [72] Feature marginalisation Post-hoc Global, Local Model-agnostic Gu
Ge et al. [73] Feature weighting Post-hoc Global Model-agnostic ICU
Zuallaert et al. [74] DeepLIFT Post-hoc Global Model-agnostic Sp
Suh et al. [75] Shapley value Post-hoc Global, Local Model-agnostic De
Singh et al. [76] DeepLIFT and others Post-hoc Global, Local Model-agnostic Op

Attention Mechanism Kwon et al. [77] Attention Intrinsic Global, Local Model-specific Cli
Zhang et al. [78] Attention Intrinsic Local Model-specific EH
Choi et al. [79] Attention Intrinsic Local Model-specific He
Kaji et al. [80] Attention Intrinsic Global, Local Model-specific Pre
Shickel et al. [81] Attention Intrinsic Global, Local Model-specific Se
Hu et al. [82] Attention Intrinsic Local Model-specific Pre

Izadyyazdanabadi et al. [83] MLCAM Intrinsic Local Model-specific Br
Zhao et al. [84] Respond-CAM Intrinsic Local Model-specific Ma
Couture et al. [85] Super-pixel maps Intrinsic Local Model-specific Hi
Lee et al. [86] CAM Intrinsic Local Model-specific Ac
Kim et al. [87] CAM Intrinsic Local Model-specific Br
Rajpurkar et al. [88] Grad-CAM Intrinsic Local Model-specific Di
Porumb et al. [89] Grad-CAM Intrinsic Local Model-specific EC
Hu et al. [43] Multiscale CAM Intrinsic Local Model-specific CO

Knowledge Distillation Caruana et al. [90] Rule-based system Intrinsic Global Model-specific Pre
Letham et al. [91] Bayesian rule lists Intrinsic Global Model-specific Str
Che et al. [92] Mimic learning Post-hoc Global, Local Model-specific ICU
Ming et al. [93] Visualisation of rules Post-hoc Global Model-specific Cli
Xiao et al. [94] Complex relationships distilling Post-hoc Global Model-specific Pre
Davoodi and Moradi [95] Fuzzy rules Intrinsic Global Model-specific In-
Lee et al. [96] Visual/textual justification Post-hoc Global, Local Model-specific Br
Prentzas et al. [97] Decision rules Intrinsic Global Model-specific Str

Surrogate Models Pan et al. [98] LIME Post-hoc Local Model-agnostic Fo
Ghafouri-Fard et al. [99] LIME Post-hoc Local Model-agnostic Au
Kovalev et al. [100] LIME Post-hoc Local Model-agnostic Su
Meldo et al. [101] LIME Post-hoc Local Model-agnostic Lu
Panigutti et al. [102] LIME like with rule-based XAI Post-hoc Local Model-agnostic Pre
Lauritsen et al. [103] Layer-wise relevance propagation Post-hoc Local Model-agnostic Pre
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The design of a computing system for the processing, storage and ex-
change of EHRs and other critical health data remains a problem [104].
Privacy-preserving approaches, e.g., via federated learning, can allow
safe sharing of data or models across cloud providers [105]. However,
the creation of interoperable systems that follow the requirement for
the representation of clinical knowledge is important for the broad
adoption of such technology [106]. Deep and seamless incorporation
of data across healthcare applications and locations remains ques-
tionable and can be inefficient. However, new software interfaces for
clinical data are starting to show substantial adoption through sev-
eral EHR providers, such as Substitutable Medical Applications and
Reusable Technologies on the Fast Health Interoperability Resources
platform [107,108]. Most of the previously developed AI in health-
care applications were conducted on retrospective data for the proof
of concept [109]. Prospective research and clinical trials to assess
the efficiency of the developed AI systems in clinical environments
are necessary to verify the real-world usefulness of these medical AI
systems [110]. Prospective studies will help recognise the fragility of
the AI models in real-world heterogeneous and noisy clinical settings
and identify approaches to incorporate medical AI for existing clinical
workflows.

AI in medicine would eventually result in safety, legal and ethi-
cal challenges [111] with respect to medical negligence attributed to
complicated decision-making support structures, and have to face the
regulation hurdles [112]. If malpractice lawsuits involving medical AI
applications occur, the judicial system will continue to provide specific
instructions as to which agency is responsible. Health providers with
malpractice insurance have to be clear on coverage as health care
decisions are taken in part by the AI scheme [8]. With the deployment
of automatic AI for particular clinical activities, the criteria for diagnos-
tic, surgical, supporting and paramedical tasks will need to be revised
and the functions of healthcare practitioners will begin to change as
different AI modules are implemented into the quality of treatment,
and the bias needs to be minimised while the patient satisfaction must
be maximised [113,114].

2.2. XAI in healthcare

Despite deep learning based AI technologies will usher in a new
era of digital healthcare, challenges exist. XAI can play a crucial role,
as an auxiliary development (Fig. 6), for potentially solving the small
sample learning by filter out clinically meaningless features. Moreover,
many high-performance deep learning models produce findings that
are impossible for unaided humans to understand. While these models
can produce better-than-human efficiency, it is not easy to express
intuitive interpretations that can justify model findings, define model
uncertainties, or derive additional clinical insights from these computa-
tional ’black-boxes.’ With potentially millions of parameters in the deep
learning model, it can be tricky to understand what the model sees in
the clinical data, e.g., radiological images [115]. For example, research
investigation has explicitly stated that being a black box is a ‘‘strong
limitation’’ for AI in dermatology since it is not capable of doing a
personalised evaluation by a qualified dermatologist that can be used to
clarify clinical facts [116]. This black-box design poses an obstacle for
the validation of the developed AI algorithms. It is necessary to demon-
strate that a high-performance deep learning model actually identifies
the appropriate area of the image and does not over-emphasise unim-
portant findings. Recent approaches have been developed to describe
AI models including the visualisation methods. Some widely used levers
include occlusion maps [117], salience maps [118], class activation
maps [119], and attention maps [120]. Localisation and segmentation
algorithms can be more readily interpreted since the output is an image.
Model understanding, however, remains much more difficult for deep
neural network models trained on non-imaging data other than images
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that is a current open question for ongoing research efforts [5].
Deep learning-based AI methods have gained popularity in the
medical field, with a wide range of work in automatic triage, di-
agnosis, prognosis, treatment planning and patient management [6].
We can find many open questions in the medical field that have
galvanised clinical trials leveraging deep learning and AI approaches
(e.g., from grand-challenge.org). Nevertheless, in the medical field,
the issue of interpretability is far from theoretical development. More
precisely, it is noted that interpretabilities in the clinical sectors in-
clude considerations not recognised in other areas, including risk and
responsibilities [7,121]. Life may be at risk as medical responses are
made, and leaving those crucial decisions to AI algorithms that without
explainabilities and accountabilities will be irresponsible [122]. Apart
from legal concerns, this is a serious vulnerability that could become
disastrous if used with malicious intent.

As a result, several recent studies [120,123–127] have been devoted
to the exploration of explainability in medical AI. More specifically,
specific analyses have been investigated, e.g., chest radiography [128],
emotion analysis in medicine [129], COVID-19 detection and classifica-
tion [43], and the research encourages understanding of the importance
of interpretability in the medical field [130]. Besides, the exposition
argues [131] that a certain degree of opaqueness is appropriate, that
is, it would be more important for us to deliver empirically checked
reliable findings than to dwell too hard on how to unravel the black-
box. It is advised that readers consider these studies first, at least for
an overview of interpretability in medical AI.

An obvious XAI approach has been taken by many researchers is to
provide their predictive models with interpretability. These methods
depend primarily on maintaining the interpretability of less compli-
cated AI models while improving their performance by techniques of re-
finement and optimisation. For example, as Fig. 5 shows, decision tree
based methods are normally interpretable, research studies have been
done using automated pruning of decision trees for various classifica-
tions of illnesses [132] and accurate decision trees focused on boosting
patient stratification [133]. However, such model optimisation is not
always straightforward and it is not a trivial task.

Previous survey studies on XAI in healthcare can be found else-
where, e.g., Tjoa and Guan [134] in medical XAI and Payrovnaziri
et al. [135] in XAI for EHR. For specific applications, e.g., digital
pathology, the readers can refer to Pocevivciute et al. [136] and Tosun
et al. [137]. The research studies in XAI and medical XAI have been
increased exponentially especially after 2018 alongside increasingly
development of multimodal clinical information fusion (Fig. 7). In
this mini-review, we only surveyed the most recent studies that were
not covered by previous more comprehensive review studies. In this
mini-review, we classified XAI in medicine and healthcare into five cat-
egories, which synthesised the approach by Payrovnaziri et al. [135],
including (1) XAI via dimension reduction, (2) XAI via feature im-
portance, (3) XAI via attention mechanism, (4) XAI via knowledge
distillation, and (5) XAI via surrogate representations (Table 1).

2.2.1. XAI via dimension reduction
Dimension reduction methods, e.g., using principal component anal-

ysis (PCA) [138], independent component analysis (ICA) [139], and
Laplacian Eigenmaps [140] and other more advanced techniques, are
commonly and conventionally used approaches to decipher AI models
by representing the most important features. For example, by integrat-
ing multi-label k-nearest neighbour and genetic algorithm techniques,
Zhang et al. [66] developed a model for drug side effect estimation
based on the optimal dimensions of the input features. Yang et al. [67]
proposed a nonlinear dimension reduction method to improve unsu-
pervised classification of the 1H MRS brain tumour data and extract
the most prominent features using Laplacian Eigenmaps. Zhao and
Bolouri [68] stratified stage-one lung cancer patients by defining the
most insightful examples via a supervised learning scheme. In order to
recognise a group of ‘‘exemplars’’ to construct a "dense data matrix’’,

they introduced a hybrid method for dimension reduction by combining



Information Fusion 77 (2022) 29–52G. Yang et al.

t
A
A

p
i
o
m
t
c
s
p
u
p

r
d
t
e
s
c
b

2

c
r
p
u
m
c
w
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attern recognition with regression analytics. Then they used examples
n the final model that are the most predictive for the outcome. Based
n domain knowledge, Kim et al. [69] developed a deep learning
ethod to extract and rank the most important features based on

heir weights in the model, and visualised the outcome for predicting
ell-type-specific enhancers. To explore the gene pathways and their as-
ociations in patients with the brain tumour, Hao et al. [70] proposed a
athway-associated sparse deep learning method. Bernardini et al. [71]
sed the least absolute shrinkage and selection operator (LASSO) to
rompt sparsity for SVMs for the early diagnosis of type 2 diabetes.

Simplifying the information down to a small subset using dimension
eduction methods can make the underlying behaviour of the model un-
erstandable. Besides, with potentially more stable regularised models,
hey are less prone to overfitting, which may also be beneficial in gen-
ral. Nevertheless, the possibility of losing crucial features, which may
till be relevant for clinical predictions on a case-by-case basis, can be
ommon and these important features may be neglected unintentionally
y the dimensional reduced models.

.2.2. XAI via feature importance
Researchers have leveraged the feature importance to explain the

haracteristics and significance of the extracted features and the cor-
elations among features and between features and the outcomes for
roviding interpretability for AI models [2,141,142]. Ge et al. [73]
sed feature weights to rank the top ten extracted features to predict
ortality of the intensive care unit. Suh et al. [75] developed a risk

alculator model for prostate cancer (PCa) and clinically significant PCa
ith XAI modules that used Shapley value to determine the feature
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o

mportance [143]. Sensitivity analysis of the extracted features can
epresent the feature importance, and essentially the more important
eatures are those for which the output is more sensitive [144]. Eck
t al. [72] defined the most significant features of a microbiota-based
iagnosis task by roughly marginalising the features and testing the
ffect on the model performance.

Shrikumar et al. [145] implemented the Deep Learning Impor-
ant FeaTures (DeepLIFT)—a backpropagation based approach to re-
lise interpretability. Backpropagation approaches measure the out-
ut gradient for input through the backpropagation algorithm to re-
ort the significance of the feature. Zuallaert et al. [74] developed
he DeepLIFT based method to create interpretable deep models for
plice site prediction by measuring the contribution score for each nu-
leotide. A recent comparative study of different models of XAI, includ-
ng DeepLIFT [145], Guided backpropagation (GBP) [146], Layer wise
elevance propagation (LRP) [147], SHapley Additive exPlanations
SHAP) [148] and others, was conducted for ophthalmic diagnosis [76].

XAI, by the extraction of feature importance, can not only explain
ssential feature characteristics, but may also reflect their relative
mportance to clinical interpretation; however, numerical weights are
ither not easy to understand or maybe misinterpreted.

.2.3. XAI via attention mechanism
The core concept behind the attention mechanism [149] is that

he model ‘‘pays attention’’ only to the parts of the input where the
ost important information is available. It was originally proposed

or tackling the relation extraction task in machine translation and
ther natural language processing problems. Because certain words are
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more relevant than others in the relation extraction task, the attention
mechanism can assess the importance of the words for the purpose
of classification, generating a meaning representation vector. There
are various types of attention mechanisms, including global attention,
which uses all words to build the context, local attention, which
depends only on a subset of words, or self-attention, in which several
attention mechanisms are implemented simultaneously, attempting to
discover every relation between pairs of words [150]. The attention
mechanism has also been shown to contribute to the enhancement
of interpretability as well as to technical advances in the field of
visualisation [151].

Kaji et al. [80] demonstrated particular occasions when the input
features have mostly influenced the predictions of clinical events in
ICU patients using the attention mechanism. Shickel et al. [81] pre-
sented an interpretable acuity score framework using deep learning
and attention-based sequential organ failure assessment that can assess
the severity of patients during an ICU stay. Hu et al. [82] provided
‘‘mechanistic explanations’’ for the accurate prediction of HIV genome
integration sites. Zhang et al. [78] also built a method to learn how
to represent EHR data that could document the relationship between
clinical outcomes within each patient. Choi et al. [79] implemented
the Reverse Time Attention Model (RETAIN), which incorporated two
sets of attention weights, one for visit level to capture the effect of
each visit and the other at the variable-level. RETAIN was a reverse
attention mechanism intended to maintain interpretability, to replicate
the actions of clinicians, and to integrate sequential knowledge. Kwon
et al. [77] proposed a visually interpretable cardiac failure and cataract
risk prediction model based on RETAIN (RetainVis). The general in-
tention of these research studies is to improve the interpretability of
deep learning models by highlighting particular position(s) within a
sequence (e.g., time, visits, DNA) in which those input features can
affect the prediction outcome.

Class activation mapping (CAM) [152] method and its variations
have been investigated for XAI since 2016, and have been subsequently
used for digital healthcare, especially the medical image analysis areas.
Lee et al. [86] developed an XAI algorithm for the detection of acute
intracranial haemorrhage from small datasets that is one of the most
famous studies using CAM. Kim et al. [87] summarised AI based
breast ultrasonography analysis with CAM based XAI. Zhao et al. [84]
reported a Respond-CAM method that offered a heatmap-based saliency
on 3D images obtained from cryo-tomography of cellular electrons.
The region where macromolecular complexes were present was marked
by the high intensity in the heatmap. Izadyyazdanabadi et al. [83]
developed a multilayer CAM (MLCAM), which was used for brain
tumour localisation. Coupling with CNN, Couture et al. [85] proposed
a multi-instance aggregation approach to classify breast tumour tissue
microarray for various clinical tasks, e.g., histologic subtype classifica-
tion, and the derived super-pixel maps could highlight the area where
the tumour cells were and each mark corresponded to a tumour class.
Rajpurkar et al. [88] used Grad-CAM for the diagnosis of appendicitis
from a small dataset of CT exams using video pretraining. Porumb
et al. [89] combined CNN and RNN for electrocardiogram (ECG) anal-
ysis and applied Grad-CAM for the identification of the most relevant
heartbeat segments for the hypoglycaemia detection. In Hu et al. [43], a
COVID-19 classification system was implemented with multiscale CAM
to highlight the infected areas. By the means of visual interpretability,
these saliency maps are recommended. The clinician analysts who
examine the AI output can realise that the target is correctly identified
by the AI model, rather than mistaking the combination of the object
with the surrounding as the object itself.

Attention based XAI methods do not advise the clinical end user
specifically of the response, but highlight the areas of greater concern to
facilitate easier decision-making. Clinical users can, therefore, be more
tolerant of imperfect precision. However, it might not be beneficial
to actually offer this knowledge to a clinical end user because of the
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major concerns, including information overload and warning fatigue.
It can potentially be much more frustrating to have areas of attention
without clarification about what to do with the findings if the end
user is unaware of what the rationale of a highlighted segment is, and
therefore the end user can be prone to ignore non-highlighted areas
that could also be critical.

2.2.4. XAI via knowledge distillation and rule extraction
Knowledge distillation is one form of the model-specific XAI, which

is about eliciting knowledge from a complicated model to a simplified
model—enables to train a student model, which is usually explainable,
with a teacher model, which is hard to interpret. For example, this
can be accomplished by model compression [153] or tree regulari-
sation [154] or through a coupling approach of model compression
and dimension reduction [141]. Research studies have investigated this
kind of technique for several years, e.g., Hinton et al. [155], but has
recently been uplifted along with the development of AI interpretabil-
ity [156–158]. Rule extraction is another widely used XAI method
that is closely associated with knowledge distillation and can have a
straightforward application for digital healthcare, for example, decision
sets or rule sets have been studied for interpretability [159] and Model
Understanding through Subspace Explanations (MUSE) method [160]
has been developed to describe the projections of the global model
by considering the various subgroups of instances defined by user
interesting characteristics that also produces explanation in the form
of decision sets.

Che et al. [92] introduced an interpretable mimic-learning ap-
proach, which is a straightforward knowledge-distillation method that
uses gradient-boosting trees to learn interpretable structures and make
the baseline model understandable. The approach used the information
distilled to construct an interpretable prediction model for the outcome
of the ICU, e.g., death, ventilator usage, etc. A rule-based framework
that could include an explainable statement of death risk estimation
due to pneumonia was introduced by Caruana et al. [90]. Letham
et al. [91] also proposed an XAI model named Bayesian rule lists, which
offered certain stroke prediction claims. Ming et al. [93] developed a
visualisation approach to derive rules by approximating a complicated
model via model induction at different tasks such as diagnosis of breast
cancer and the classification of diabetes. Xiao et al. [94] built a deep
learning model to break the dynamic associations between readmission
to hospital and possible risk factors for patients by translating EHR
incidents into embedded clinical principles to characterise the general
situation of the patients. Classification rules were derived as a way
of providing clinicians interpretable representations of the predictive
models. Davoodi and Moradi [95] developed a rule extraction based
XAI technique to predict mortality in ICUs and Das et al. [161] used
a similar XAI method for the diagnosis of Alzheimer’s disease. In the
LSTM-based breast mass classification, Lee et al. [96] incorporated the
textual reasoning for interpretability. For the characterisation of stroke
and risk prediction, Prentzas et al. [97] implemented the argumen-
tation theory for their XAI algorithm training process by extracting
decision rules.

XAI approaches, which rely on knowledge distillation and rule
extraction, are theoretically more stable models. The summarised rep-
resentations of complicated clinical data can provide clinical end-users
with the interpretable results intuitively. However, if the interpretation
of these XAI results could not be intuitively understood by clinical end-
users, then the representations are likely to make it much harder for the
end-users to comprehend.

2.2.5. XAI via surrogate representation
An effective application of XAI in the medical field is the recog-

nition of individual health-related factors that lead to disease predic-
tion using the local interpretable model-agnostic explanation (LIME)
method [5] that offers explanations for any classifier by approximat-

ing the reference model with a surrogate interpretable and ‘‘locally
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faithful’’ representation. LIME disrupts an instance, produces neigh-
bourhood data, and learns linear models in the neighbourhood to
produce explanations [162].

Pan et al. [98] used LIME to analyse the contribution of new
instances to forecast central precocious puberty in children. Ghafouri-
Fard et al. [99] have applied a similar approach to diagnose autism
spectrum disorder. Kovalev et al. [100] proposed a method named
SurvLIME to explain AI base survival models. Meldo et al. [101] used
a local post-hoc explanation model, i.e., LIME, to select important fea-
tures from a special feature representation of the segmented lung suspi-
cious objects. Panigutti et al. [102] developed the ‘‘Doctor XAI’’ system
that could predict the readmission, diagnosis and medications order for
the patient. Similar to LIME, the implemented system trained a local
surrogate model to mimic the black-box behaviour with a rule-based
explanation, which can then be mined using a multi-label decision tree.
Lauritsen et al. [103] tested an XAI method using Layer-wise Relevance
Propagation [163] for the prediction of acute critical illness from EHR.

Surrogate representation is a widely used scheme for XAI; however,
the white-box approximation must accurately describe the black-box
model to gain trustworthy explanation. If the surrogate models are
too complicated or too abstract, the clinician comprehension might be
affected.

3. Proposed method

3.1. Problem formulation

In this study, we have demonstrated two typical but important
applications of using XAI, which have been developed for classification
and segmentation—two mostly widely discussed problems in medical
image analysis and AI-powered digital healthcare. Our developed XAI
techniques have been manifested using CT images classification for
COVID-19 patients and segmentation for hydrocephalus patients using
CT and MRI datasets.

3.2. XAI for classification

In this subsection, we provide a practical XAI solution for explain-
able COVID-19 classification that is capable of alleviating the domain
shift problem caused by multicentre data collected for distinguishing
COVID-19 patients from other lung diseases using CT images. The main
challenge for multicentre data is that hospitals are likely to use different
scanning protocols and parameters for CT scanners when collecting
data from patients leading to distinct data distribution. Moreover, it can
be observed that images obtained from various hospitals are visually
different although they are imaging the same organ. If a machine
learning model is trained on data from one hospital and tested on the
data from another hospital (i.e., another centre), the performance of
the model often degrades drastically. Besides, another challenge is that
only patient-level annotations are available commonly but image-level
labels are not since it would take a large amount of time for radiologists
to annotate them [164]. Therefore, we propose a weakly supervised
learning based classification model to cope with these two problems.
Besides, an explainable diagnosis module in the proposed model can
also offer the auxiliary diagnostic information visually for radiologists.
The overview of our proposed model is illustrated in Fig. 8.

3.2.1. Explainable diagnosis module (EDM)
As the predicting process of deep learning models is in a black-box,
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it is desirable to develop an explainable technique in medical image
diagnosis, which provides an explainable auxiliary tool for radiologists.
For common practice, CAM can generate the localisation maps for
the prediction through the weighted sum of feature maps from the
backbone networks such as ResNet [165]. Suppose 𝐹 𝑘 ∈ R𝐻 ′×𝑊 ′ is the
𝑘th feature map with the shape of 𝐻 ′ ×𝑊 ′, and 𝑊 𝑓𝑐 ∈ R𝐾×𝐶 , where
𝐾 is the number of feature maps. Therefore, the class score for class 𝑐
can be computed as

𝑠𝑐 =
𝐾
∑

𝑘=1
𝑊 𝑓𝑐

𝑘,𝑐

⎛

⎜
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∑
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∑

𝑗=1
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𝑖,𝑗

⎞

⎟

⎟

⎠

. (1)

Therefore, the activation map 𝐴𝑓𝑐
𝑐 for class 𝑐 can be defined by

(𝐴𝑓𝑐
𝑐 )𝑖,𝑗 =

𝐾
∑

𝑘=1
𝑊 𝑓𝑐

𝑘,𝑐 𝐹
𝑘
𝑖,𝑗 . (2)

However, generating CAMs is not an end-to-end process, in which
he network should be firstly trained on the dataset and utilises the
eights of the last fully connected layer to compute the CAMs, bring-

ng extra computation. To tackle this drawback, in our explainable
iagnosis module (EDM), we replace the fully connected layer with a
× 1 convolutional layer of which the weight 𝑊 𝑐𝑜𝑛𝑣 shares the same
athematical form as 𝑊 𝑓𝑐 . So we can reformulate Eq. (1) as
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(𝐴𝑐𝑜𝑛𝑣
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here 𝐴𝑐𝑜𝑛𝑣
𝑐 is the activation map for class 𝑐 that can be learnt adap-

ively during the training procedure. The activation map produced by
he EDM can not only accurately indicate the importance of the region
rom CT images and locate the infected parts of the patients, but can
lso offer the explainable results which are able to account for the
rediction.

.2.2. Slice integration module (SIM)
Intuitively, each COVID-19 patient case has a different severity.

ome patients are severely infected with large lesions, while most
f the positive cases can be mild of which only a small portion of
he CT volume is infected. Therefore, if we directly apply the patient
evel annotations as the labels for the image slices, the data would be
xtremely noisy leading to poor performance as the consequence. To
vercome this problem, instead of relying on single images, we propose
slice integration module (SIM) and use the joint distribution of the

mage slices to model the probability of the patient being infected or
ot. In our SIM, we assume that the lesions are consecutive and the
istribution of the lesion positions is consistent. Therefore, we adopt a
ection based strategy to handle this problem and fit this into a Multiple
nstance Learning (MIL) framework [166]. In the MIL, each sample is
egarded as a bag, which is composed of a set of instances. A positive
ag contains at least one positive instance, while the negative bag solely
onsists of negative instances. In our scenario, only patient annotations
bag labels) are provided, and the sections can be regarded as instances
n the bags.

Given a patient  = [1,2,… ,𝑛] with 𝑛 CT slices, we divide them
into disjoint sections  = {𝑆𝑖}

|𝑆|
𝑖=1, where |𝑆| is the total amount of

ections for patient  , that is

|𝑆| = max
(

1,
⌊

𝑛
𝑙𝑠

⌋)

. (4)

Here 𝑙𝑠 is the section length, which is a designed parameter. Then
we integrate the probability of each section as the probability of the
patient, that is

𝑃 (𝑐 | ) = 𝑃 (𝑐 | {𝑆𝑖}
|𝑆|
𝑖=1) =

1
1 +

∏

|𝑆|
𝑖=1(

1
𝑃 (𝑐 | 𝑆𝑖)

− 1)
, (5)

where 𝑃 (𝑐 | 𝑆𝑖) is the probability of the 𝑖th section 𝑆𝑖 that belongs to
class 𝑐. By taking the 𝑘-max probability of the images for each class to
compute the section probability, we can mitigate the problem that some
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Fig. 8. The overview of our proposed model. 𝑃 (𝑐 | 𝑆𝑖) denotes the probability of the Section 𝑆𝑖, and 𝑃 (𝑐 | ) represents the probability of the patient who is COVID-19 infected
or not. 𝑄 ∈ R2×2×𝐶 indicates the noise transaction from the probability of the true label 𝑃 (𝑦𝑐 | ) to the noise label 𝑃 (𝑧𝑐 | ). Besides, 𝜙(⋅) is a non-linear feature transformation
function, which projects the feature into embedding space.
slices may contain few infections, which can hinder the prediction for
the section. The 𝑘-max selection method can be formulated as

𝑃 (𝑐 | 𝑆𝑖) = 𝜎

(

1
𝑘

max
𝑠(𝑗)∈𝑀

𝑘
∑

𝑗=1
𝑠(𝑗)𝑐

)

,

𝑠.𝑡. 𝑀 ⊂ 𝑆𝑖, |𝑀| = 𝑘. (6)

where 𝑠(𝑗)𝑐 is the top 𝑗th class score of the slice in the 𝑖th section for the
class 𝑐, and 𝜎(⋅) represents the Sigmoid function. Then we apply the
patient annotations 𝐲 to compute the classification loss, which can be
formulated as

𝑐𝑙𝑠 = −
1
∑

𝑐=0

[

𝑦𝑐 log𝑃 (𝑐 | ) + (1 − 𝑦𝑐 ) log(1 − 𝑃 (𝑐 | ))
]

. (7)

3.2.3. Noisy correction module (NCM)
In real-world applications, radiologists would only diagnose the dis-

ease from one image. Therefore, it is also significant for improving the
prediction accuracy on single images. However, the image-level labels
are extremely noisy since only patient-level annotations are available.
To further alleviate the negative impact of patient-level annotations, we
propose a noisy correction module (NCM). Inspired by [167], we model
the noise transaction distribution 𝑃 (𝑧𝑐 = 𝑖 | 𝑦𝑐 = 𝑗,), which transforms
the true posterior distribution 𝑃 (𝑦𝑐 | ) to the noisy label distribution
𝑃 (𝑧𝑐 | ) by

𝑃 (𝑧𝑐 = 𝑖 | ) =
∑

𝑗
𝑃 (𝑧𝑐 = 𝑖 | 𝑦𝑐 = 𝑗,)𝑃 (𝑦𝑐 = 𝑗 | ). (8)

In practice, we estimate the noise transaction distribution 𝑄𝑐
𝑖𝑗 =

𝑃 (𝑧𝑐 = 𝑖 | 𝑦𝑐 = 𝑗,) for the class 𝑐 via

𝑄𝑐
𝑖𝑗 = 𝑃 (𝑧𝑐 = 𝑖 | 𝑦𝑐 = 𝑗,) =

exp(𝑤𝑐
𝑖𝑗𝜙() + 𝑏𝑐𝑖𝑗 )

∑

𝑖 exp(𝑤
𝑐
𝑖𝑗𝜙() + 𝑏𝑐𝑖𝑗 )

, (9)

where 𝑖, 𝑗 ∈ {0, 1}; 𝜙(⋅) is a nonlinear mapping function implemented by
convolution layers; 𝑤𝑐

𝑖𝑗 and 𝑏𝑐𝑖𝑗 are the trainable parameters. The noise
transaction score 𝑇 𝑐

𝑖𝑗 = 𝑤𝑐
𝑖𝑗𝜙() + 𝑏𝑐𝑖𝑗 represents the confidence score of

the transaction from the true label 𝑖 to the noise label 𝑗 for the class 𝑐.
Therefore, Eq. (8) can be reformulated as

𝑃 (𝑧𝑐 = 𝑖 | ) =
∑

𝑗
𝑄𝑐

𝑖𝑗𝑃 (𝑦𝑐 = 𝑗 | ). (10)

By estimating the noisy label distribution 𝑃 (𝑧𝑐 |) for patient  , the
noisy classification loss can be computed by

𝑛𝑜𝑖𝑠𝑦 = − 1
𝑁

𝑁
∑

𝑛=1

1
∑

𝑐=0
[𝑦𝑛𝑐 log𝑃 (𝑧𝑐 = 1 | 𝑛)

+ (1 − 𝑦𝑛) log𝑃 (𝑧 = 0 |  )]. (11)
40

𝑐 𝑐 𝑛
By combining Eqs. (7) and (11), we can obtain the total loss function
for our XAI solution of an explainable COVID-19 classification, that is

 = 𝑐𝑙𝑠 + 𝜆𝑛𝑜𝑖𝑠𝑦, (12)

where 𝜆 is a hyper-parameter to balance the classification loss 𝑐𝑙𝑠 and
the noisy classification loss 𝑛𝑜𝑖𝑠𝑦.

3.3. XAI for segmentation

In this subsection, we introduce an XAI model that is applicable
for the explainable brain ventricle segmentation using multimodal
MRI data acquired from the hydrocephalus patients. Previous meth-
ods [168,169] have conducted experiments using images with a slice
thickness of less than 3 mm. This is because the smaller of the image
thickness, the more images could be obtained, which helps improve the
representation power of the model. However, in a real-world scenario,
it is not practical for clinicians to use these models because labelling
these image slices is extremely labour-intensive and time-consuming.
Therefore, it is more common for the annotations of images with larger
slice thicknesses, which are easily available while those images with
smaller slice thickness are not. Besides, models trained only on thick-
slice images have poor generalisation on thin-slice images. To alleviate
these problems, we proposed a thickness agnostic image segmentation
model, which can be applicable for both thick-slice and thin-slice
images, but only requires the annotations of thick-slice images during
the training procedure.

Suppose we have a set of thick-slice images  = {(𝑥𝑠, 𝑦𝑠)|𝑥𝑠 ∈
R𝐻×𝑊 ×3, 𝑦𝑠 ∈ R𝐻×𝑊 } and a set of thin-slice images  = {𝑥𝑡|𝑥𝑡 ∈
R𝐻×𝑊 ×3}. The main idea of our model is to utilise the unlabelled
thin-slice images  to minimise the model performance gap between
thick-slice and thin-slice images while a post-hoc XAI can also be
developed.

3.3.1. Segmentation network
With the wide applications of deep learning methods, the encoder–

decoder based architectures are usually adopted in automated high ac-
curacy medical image segmentation. The workflow of our proposed seg-
mentation network is illustrated in Fig. 9. Inspired by the U-Net [170]
model, we replace the original encoder with ResNet-50 [165] pre-
trained on ImageNet dataset [171] since it can provide better feature
representation for the input images. In addition, the decoder of the U-
Net has at least a couple of drawbacks: 1) the increase of low-resolution
feature maps can bring a large amount of computational complexity,
and 2) interpolation methods [172] such as bilinear interpolation and
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Fig. 9. Overview of our proposed XAI model for explainable segmentation. Here ResBlock represents the residual block proposed in the ResNet [165].
bicubic interpolation do not bring extra information to improve the seg-
mentation. Instead, the decoder of our model adopts sub-pixel convo-
lution for constructing segmentation results. The sub-pixel convolution
can be represented as

𝐹𝐿 = 𝑆𝑃 (𝑊𝐿 ∗ 𝐹𝐿−1 + 𝑏𝐿), (13)

where 𝑆𝑃 (⋅) operator transforms and arranges a tensor shaped in 𝐻 ×
𝑊 × 𝐶 × 𝑟2 into a tensor with the shape of 𝑟𝐻 × 𝑟𝑊 × 𝐶, and 𝑟
is the scaling factor. 𝐹𝐿−1 and 𝐹𝐿 are the input feature maps and
output feature maps. 𝑊𝐿 and 𝑏𝐿 are the parameters of the sub-pixel
convolution operators for the layer 𝐿.

3.3.2. Multimodal training
As aforementioned, the thick-slice images with annotations are

available. Therefore, in order to minimise the performance gap between
thick-slice images and thin-slice images. We apply a multimodal train-
ing procedure to jointly optimise for both types of images. Overall,
the objective function of our proposed multimodal training can be
computed as

(𝑥𝑡, 𝑥𝑠) =  (𝑝𝑠, 𝑦𝑠) + 𝛽 (𝑝𝑡), (14)

where 𝛽 is a hyper-parameter for weighting the impact of  and  . 𝑝𝑠
and 𝑝𝑡 are the prediction of the segmentation probability maps shaped
in 𝐻 ×𝑊 ×𝐶 for thick-slice images and thin-slices images, respectively.
In particular,  is the cross-entropy loss defined as follows

 (𝑝𝑠, 𝑦𝑠) = − 1
𝐻𝑊𝐶

𝐻𝑊
∑

𝑛=1

𝐶
∑

𝑐=1
𝑦𝑛,𝑐𝑠 log 𝑝𝑛,𝑐𝑠 . (15)

For the unlabelled thin-slice images, we assume that  can push
the features away from the decision boundary of the feature distribu-
tions of the thick-slice images, thus achieving distribution alignment.
Besides, according to [173], minimising the distance between the pre-
diction distribution 𝑝 and the uniform distribution  = 1

𝐶 can diminish
the uncertainty of the prediction. To measure the distance of these
two distributions, the objective function  can be modelled by the
𝑓 -divergence, that is

 (𝑝𝑡) = − 1
𝐻𝑊𝐶

𝐻𝑊
∑

𝑛=1

𝐶
∑

𝑐=1
𝐷𝑓 (𝑝

𝑛,𝑐
𝑡 ∥ ) = − 1

𝐻𝑊𝐶

𝐻𝑊
∑

𝑛=1

𝐶
∑

𝑐=1
𝑓 (𝐶𝑝𝑛,𝑐𝑡 ). (16)

Most existing methods [173,174] tend to choose 𝑓 (𝑥) = 𝑥 log 𝑥,
which is alternatively named as KL-divergence. However, one of the
main obstacle is that when adopting 𝑓 (𝑥) = 𝑥 log 𝑥, the gradient of 
would be extremely imbalanced. To be more specific, it can assign a
large gradient to the easily classified samples, while assigning a small
gradient to hardly classified samples. Therefore, in order to mitigate the
unbalancing problem during the optimisation, we incorporate Pearson
41
𝜒2-divergence (i.e., 𝑓 (𝑥) = 𝑥2 − 1) rather than using the KL-divergence
for  , that is

 (𝑝𝑡) = − 𝐶
𝐻𝑊

𝐻𝑊
∑

𝑛=1

𝐶
∑

𝑐=1
(𝑝𝑛,𝑐𝑡 )2. (17)

After applying the Pearson 𝜒2-divergence, the gradient imbalanced
issue can be mitigated since the slope of the gradient is constant, which
can be verified by taking the second order derivative of  .

During the training procedure, (𝑥𝑡, 𝑥𝑠) is optimised alternatively
for both thick-slice and thin-slice images.

3.3.3. Latent space explanation
Once the model is trained using multimodal datasets, the perfor-

mance of the network can be quantitatively evaluated by volumetric or
regional overlapping metrics, e.g., Dice scores. However, the relation
between network performance and input samples remains unclear. In
order to provide information about the characteristics of data and
their effect on model performance, through which users can set their
expectations accordingly, we investigate the feature space and their
correlation with the model performance. For feature space visualisa-
tion, we extract the outputs of the encoder module of our model,
and then decompose them into a two-dimensional space via Principal
Component Analysis (PCA). For estimating the whole space, we use
a multi-layer perceptron to fit the decomposed samples and their
corresponding Dice scores, which can provide an understanding of Dice
scores for particular regions of interests in the latent space where there
is no data available. Therefore, through analysing the characteristics of
the samples in the latent space, we can retrieve the information about
the relationships between samples and their prediction power.

3.4. Implementation details

For both our classification and segmentation tasks, we used ResNet-
50 [165] as the backbone network pre-trained on ImageNet [171].
For classification, we resized these images into a spatial resolution of
224 × 224. During the training procedure, we set 𝜆 = 1 × 10−4, the
dropout rate as 0.7, and the 𝐿2 weight decay coefficient as 1 × 10−5.
Besides, 𝑙𝑠 was set to 16, and 𝑘 was set to 8 for the sake of computing
the patient-level probability. For segmentation, we set 𝛽 = 1 × 10−2 for
balancing the impact of supervised loss and unsupervised loss. During
the training, Adam [175] optimiser was utilised with a learning rate
1×10−3. The training procedure is terminated after 4,000 iterations with
batch size 8. All of the experiments were conducted on a workstation
with 4 NVIDIA RTX GPUs using PyTorch framework with version 1.5.
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Fig. 10. Class distribution of the collected CT data. The numbers in the sub-figures (a) and (b) represent the counts for the patient-level statistics and image-level statistics,
respectively. The data collected from several clinical centres can result in great challenges in learning discriminative features from those class-imbalanced centres.
4. Experimental settings and results

4.1. Showcase I: Classification for COVID-19

4.1.1. Datasets
We collected CT data from four different local hospitals in China

and removed the personal information to ensure data privacy. The in-
formation of our collected data is summarised in Fig. 10. In total, there
were 380 CT volumes of the patients who tested COVID-19 positive
(reverse transcription polymerase chain reaction test confirmed) and
424 COVID-19 negative CT volumes. For a fair comparison, we trained
the model on the cross-centre datasets collected from hospital A, B,
C, and D. For an unbiased independent testing, CC-CCII data [176],
a publicly available dataset, which contained 2,034 CT volumes with
130,511 images, was adopted to verify the effectiveness of the trained
models.

4.1.2. Data standardisation, pre-processing and augmentation
Following the protocol described in [176], we used the U-Net

segmentation network [170] to segment the CT images. Then, we ran-
domly cropped a rectangular region whose aspect ratio was randomly
sampled in [3∕4, 4∕3], the area was randomly sampled in [90%, 100%],
and the region was then resized into 224 × 224. Meanwhile, we
randomly flipped the input volumes horizontally with 0.5 probability.
The input data would be a set of CT volumes, which were composed of
consecutive CT image slices.

4.1.3. Quantitative results
We compared our proposed classification model with several state-

of-the-art COVID-19 CT classification models [165,177–179]. Table 2
summarises the experimental results of COVID-19 classification on
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the CC-CCII data. For image-level annotations, ResNet-50 [165] and
COVID-Net [177] simply treated patient-level labels as the image la-
bels. Different from methods proposed by [165,177,178], VBNet [179]
utilised the 3D residual convolutional neural network to train with
patient-level annotations on the whole CT volumes rather than single
slices. Besides, COVNet [178] extracted prediction scores from each
slice in the CT volumes with ResNet and aggregated the prediction
scores via a max-pooling operator to get the patient-level probability.

In Table 2, we can find that our method achieved the best perfor-
mance among these SOTA methods. In particular, our method obtained
a better performance by 7.2% on AUC compared to VB-Net [179]
on the patient-level indicating that our method can be applicable for
the real-world scenario. This also verified the benefit of modelling
section information in the CT volumes via our proposed SIM, which
we believe is also vital to the improvement of the classification perfor-
mance. Besides, our method significantly outperformed other methods
by at least 40% with respect to the specificity while maintaining high
sensitivity, which is also a crucial indication for diagnosing COVID-19.
In addition, models trained on patient-level annotations could achieve
better performance compared to those trained on image-level labels.
This is because the noise in the image labels could have a negative
impact during the training, which might degrade the representation
ability of the model. According to [180], models trained on images may
rely on learning the textures of images that were highly discriminative
among multiple centres. Therefore, these trained models might be
overfitted and biased to the texture features of the images collected
from different centres, which could explain the phenomenon that these
methods (i.e., [165,177]) were poorly performed on the unseen centres.

In another aspect, for CT volumes, the sequential ordering of CT
image slices is also informative. COVID-Net [178] took the most dis-

criminative slice as the representation of the whole CT volume, which
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Table 2
Comparison results of our method vs. state-of-the-art methods performed on the CC-CCII dataset.
Annotation Method Patient Acc. (%) Precision (%) Sensitivity (%) Specificity (%) AUC (%)

Patient-level

ResNet-50 [165] 53.44 64.45 63.03 35.71 53.24
COVID-Net [177] 57.13 62.53 84.70 6.16 49.58
COVNet [178] 69.96 70.20 93.33 26.75 81.61
VB-Net [179] 76.11 75.84 92.73 45.38 88.34
Ours 89.97 92.99 91.44 87.25 95.53

Image-level

ResNet-50 [165] 52.56 61.60 71.27 18.06 50.19
COVID-Net [177] 60.03 64.81 83.91 15.98 58.39
COVNet [178] 75.55 79.90 83.24 61.37 79.48
Ours 80.41 88.56 80.15 80.89 86.06
ignored the encoding of adjacent slices. This would enforce the model
only detect the most discriminative slice, leading to the bias towards
positive cases, which could impede the detecting of negative cases
that resulted in a low specificity. On the contrary, VBNet proposed by
Ouyang et al. [179] preserved the sequential information by training
on the whole CT volumes. In contrast, we partitioned the CT volume
into several sections in order to preserve the sequential information to
some extent. Besides, VB-Net was trained with stronger supervision that
it utilised additional masks for its supervised training. For our method,
we only used patient-level annotations that were much more efficient.
More importantly, our method achieved better performance on both
AUC and accuracy compared to VBNet [179] and COVNet [178].

In addition, we also provided the Precision–Recall (PR) and Re-
ceiver Operating Characteristic (ROC) curves to compare different
methods on patient-level annotations and image-level annotations
(Figs. 11 and 12). From the figure, we can observe that models trained
on image-level annotations (e.g., ResNet [165] and COVID-Net [177])
were poorly performed since their AUCs were close to 50% which
indicated a random guess. In contrast, models trained on patient-
level was more reliable since their AUCs were greater than 50%. In
particular, we found that overall our proposed method remained the
best-performed algorithm with an AUC of 95.53% at the patient-level
and 86.06% at the image-level. These results verified our assumption
that for mild COVID-19 cases, most of the image slices are disease-free.
It is of note that the AUC of the ROC or the AUC of the precision recall
curve could be too general because they contain unrealistic decision
thresholds, while metrics like accuracy, sensitivity or the F1 score
are measured at a single threshold that reflects an individual single
probability or predicted risk, rather than a range of individuals or risk.
Further study using deep ROC analysis will be investigated [181].

4.1.4. Qualitative results
In order to make the prediction to be more explainable, we used

the trained model to visualise the CAMs and bounding boxes generated
by our EDM as described above. Fig. 13 shows the visualisation results
of the derived CAMs (i.e., 𝐴𝑐𝑜𝑛𝑣). In this figure, we can clearly observe
hat our method tended to pay more attention to the discriminative
art of the images so as to make the predictions. For example, in the
irst column, the lower left part of the lung was seriously infected
nd had a large area of lesions. Therefore, our method would make
he predictions that the image was classified as COVID-19 positive,
emonstrating the capability of our XAI model to make explainable
redictions.

In addition, based on the results of the derived CAMs, we also
xtracted the lesion bounding boxes from the CAMs. It can be found
hat our method was capable of yielding accurate bounding boxes from
he salient part of the CAMs, as illustrated in Fig. 13, which further
onfirmed that our XAI method was applicable to be an auxiliary
iagnosis tool for the clinicians.

To further illustrate the learnt features from our proposed method,
e extracted the feature from the backbone network of our architec-

ure, and used T-SNE [182] visualisation technique to transform the
eatures extracted from the backbone network of our proposed model,
43

nd visualised the distribution of the classified images as shown in
Fig. 14. In this figure, we can find the distinctive visual characteristics
of the CT images from different hospitals (i.e., Hospital A, B, C, and
D). Besides, it can be observed that the COVID-19 positive images were
mostly clustered together, and negative images were mainly distributed
in another cluster. More interestingly, in the cluster of the negative
images, we can find several positive images in this cluster since these
images were scanned from patients who were tested COVID-19 positive.
In our intuition, we assume that for some mild cases, lesions were not
presented in all of the CT slices. Therefore, there were indeed disease-
free CT slices that could be falsely labelled as COVID-19 positive, which
verified our assumption.

Additionally, in order to explain each individual prediction, we
adopted the LIME method [5] to investigate the contribution of each
pixel for the prediction. Instead of using the individual pixel, we
divided an image into super-pixels, which were composed of inter-
connected pixels with similar imaging patterns. Fig. 15 shows the
explanations via LIME for COVID-19 positive images. In each pair of
images, we visualised the super-pixels that contributed to the COVID-19
positive prediction results. We can observe that the lesion parts would
explain for the positive prediction, which is reasonable to our deep
learning model.

However, the LIME method could only quantitatively estimate the
importance according to how close the combination of super-pixels was
to the original instance. It discarded the global view of the individual
feature contributed by the super-pixels. To overcome this drawback,
we further leveraged Kernel SHapley Additive exPlanations (Kernel
SHAP) method [183] to estimate the contribution of each super-pixel
quantitatively by the SHAP value. Samples explained by the Kernel
SHAP are demonstrated in Fig. 16. We can observe that the super-pixels
contained lesion areas positively contributed to the positive prediction,
while those super-pixels related to the backgrounds or disease-free
areas would reflect the contribution to negative prediction.

4.2. Showcase II: Segmentation for hydrocephalus

4.2.1. Datasets
The studied cohort included 20 normal elderly people, 20 patients

with cerebral atrophy, 64 patients with normal pressure hydrocephalus,
and 51 patients with acquired hydrocephalus (caused by subarachnoid
haemorrhage, brain trauma or brain tumour). CT scans of the head
were performed using two CT instruments, one of which was the
SOMATOM Definition Flash from Siemens, Germany, and the other
was the SOMATOM Emotion 16 from Siemens, Germany. Secondly,
MRI examinations were conducted using a 1.5T MR scanner(Avanto,
Siemens, Erlangen, Germany) and a 3.0T MRI scanner(Prisma, Siemens,
Erlangen, Germany). The slice thickness of the CT images includes:
0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm, 4.8 mm, 5.0 mm. The slice thickness
of the MRI images includes: 1.0 mm, 7.8 mm, 8.0 mm. For experiments,
we randomly split the thick-slice and thin-slice images into training,
validation and testing sets. The details of the dataset are summarised

in Table 3.
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Fig. 11. The Receiver Operating Characteristic (ROC) curves of different compared methods.
Fig. 12. The Precision–Recall (PR) curves of different compared methods.
Fig. 13. Examples of the CAMs 𝐴𝑐𝑜𝑛𝑣 generated by our proposed EDM for classifying COVID-19 positive patients. The first row contains the original CT-scan image slices, and the
second row illustrates the heatmaps of CAMs 𝐴𝑐𝑜𝑛𝑣 with bounding boxes confined to the infected areas.
Table 3
The number of thick-slice and thin-slice images used in our study.

Modality Training set Validation set Test set

Thick-slice Thin-slice Thick-slice Thin-slice Thick-slice Thin-slice

MRI 810 1,303 203 326 189 982
CT 2,088 2,076 523 519 309 492

4.2.2. Data standardisation, pre-processing and augmentation
For the pre-processing of these data, we normalised images using

the 𝑧-score normalisation scheme, which was done by subtracting its
mean then divided by its standard deviation. For anomaly pixels, we
clipped them within the range of 1-quantile and 99-quantile. For data
44
augmentation, we resized the images using a bicubic interpolation
method and resized masks with the nearest interpolation. Then we
flipped the images horizontally with 0.5 probability, and scaled the
hue, saturation, and brightness with coefficients uniformly drawn from
[0.8, 1.2].

4.2.3. Quantitative results
Table 4 shows the segmentation performance of various compared

models on different modalities. All of the models were trained on
the thick-slice images with annotations and the unlabelled thin-slice
images. We can observe that our proposed method outperformed all of
the compared state-of-the-art methods by a large margin on the mixed
datasets (i.e., the mixture of thick-slice and thin-slice images) with at
least 4.4% of the Dice scores. It is of note that all three models achieved
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Fig. 14. T-SNE visualisation [182] of the learnt features from CT images. Original images are sampled from four different hospitals and represented in the figure. Besides, a falsely
annotated image is drawn from the negative cluster.
Fig. 15. Visualisation of the super-pixels that are positively contributed to the predictions via the LIME method [5].
similar segmentation performance on thick-slice images. However, our
proposed method gained a significant improvement on the thin-slice
images for both MRI and CT scans. The primary reason is that our
model could diminish the uncertainty of these thin-slice images while
achieving the distribution alignment between thick-slice and thin-slice
images, which could enhance the representation and generalisation
capabilities of our model. Besides, we also investigated the effectiveness
of  and  in Table 5. In the table, we can find that when only
training on thick-slice images, the model performed perfectly on thick-
slice images while performing poorly on thin-slice images, since the
distribution of these two kinds of slices could vary. Moreover, the
performance of the models trained only on unlabelled thin-slice images
degraded sharply because of the lack of annotations to guide the
segmentation. In the Exp.3 as shown in Table 5, our model could gain
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significant improvement on the thin-slice images while preserving good
performance on the thick-slice images, which demonstrated that our
trained model was applicable for both types of images for both CT and
MRI modalities.

Besides, in order to interpret the black-box segmentation model,
we extracted the lowest bottom features and projected them into a
2D latent space using the PCA technique. We then computed the Dice
score for each sample and visualised it in Fig. 17. In this figure, we can
observe that slices sampled from the orange circle all contained a small
region of ventricle where the model could not perform well. However,
images from the green and yellow circle had multiple ventricles, which
took a large proportion of the images. Therefore, these images could be
well-predicted by our model.
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Fig. 16. The SHAP values for different super-pixels of the sampled images. We computed the SHAP values through the Kernel SHAP method [183]. The super-pixel with positive
SHAP value indicates the positive impact to the positive prediction, while the negative value means that the super-pixel contributes to the negative prediction.
Fig. 17. The visualisation of the Dice scores of the projected images. The plane was computed by smoothing the Dice scores. It is of note that images sharing similar characteristics
were clustered together. On the left-hand side and right-hand side, samples from different regions of the plane are presented.
Table 4
Comparison results (Dice scores) of our method vs. other state-of-the-art methods.
Mixed represents the test set containing both thick-slice and thin-slice images.

Method MRI CT

Thick Thin Mixed Thick Thin Mixed

U-Net [170] 0.9226 0.7665 0.8353 0.9351 0.7987 0.8513
U-Net++ [184] 0.9159 0.8495 0.8602 0.9421 0.7797 0.8424
Ours 0.9323 0.9056 0.9099 0.9365 0.8697 0.8954
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Table 5
Dice scores comparison for verifying the effectiveness of each loss term. Mixed
represents the test set containing both thick-slice and thin-slice images.

Exp.   MRI CT

Thick Thin Mixed Thick Thin Mixed

1 ✓ 0.9390 0.8199 0.8391 0.9438 0.8345 0.8767
2 ✓ 0.0034 0.0108 0.0110 0.0109 0.0006 0.0069
3 ✓ ✓ 0.9323 0.9056 0.9099 0.9365 0.8697 0.8954
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4.2.4. Qualitative results
To qualitatively examine the performance of our model and other

state-of-the-art models, we presented some visualisation results of the
CT and MRI images with thin-slices in Fig. 18, and computed the Dice
scores for each segmentation result. For MRI images, our model and
U-Net++ [184] were able to segment four ventricles in the brain. In
particular, our model could predict the third ventricle in the brain
more completely compared to the prediction generated by the U-
Net++ [184] due to the informative feature representation by the
pre-trained encoder. However, for CT images, the performance varied
among different models. The primary reason is that original CT volumes
contained the skull which could cause the brain to be visually unclear,
after removing the skull, the contrast of the images could be largely
distinct. More concretely, for those images with low contrast, (e.g., the
row 1 and row 5 in Fig. 18), all of the three compared methods
were capable of predicting the left lateral and right lateral ventricles.
However, for those images with high contrast (e.g., the row 2 and row
4 in Fig. 18), our proposed method could predict most of the ventricle
part in the brain while U-Net and U-Net++ failed.

In addition, we used the segmentation results generated by com-
pared models to reconstruct the 3D images of each ventricle. The
example is illustrated in Fig. 19. We can observe that U-Net [170] could
hardly predict the ventricles on thin-slice images, while U-Net++ [184]
was able to segment the left lateral and right lateral ventricles by taking
advantage of dense connections of the intermediate feature maps. In
contrast, our proposed method could not only predict the two ventricles
mentioned above, but could also segment the third ventricle and the
fourth ventricle well. One limitation of our model is that it could not
predict the connection region between the third ventricle and fourth
ventricle because the area is too small to be distinguished.

4.3. Discussions

In missions increasingly vital to human healthcare, AI is being
deployed. Automated decisions should be explainable in order to create
trust in AI and prevent an algorithm-based totalitarian society. This is
not just a human right, for example, enshrined in the European GDPR,
but an ultimate goal for algorithm developers who want to know if the
necessary clinical characteristics are captured by the decision support
systems. XAI should be possible to provide explanations in a systematic
manner in order to make the explainability scalable. To construct a
surrogate while-box model for the black-box model used to make a
prediction, a typical solution is to use simpler, more intuitive decision
algorithms. There is a chance, though, that the surrogate model is
too complicated or too abstract for it to be truly understandable for
humans.

In this study, we have firstly provided a mini-review for XAI meth-
ods and their specific applications in medicine and digital healthcare
that is followed by two example showcases that we have developed.
From our two showcases, we have explored the classification model
and segmentation model in terms of sensitivity (i.e., LIME [5] and
Kernel SHAP [183]) and decomposition (i.e., T-SNE [182] and CAMs).
For LIME and Kernel SHAP methods, the individual sample can be
analysed and interpreted with each super-pixel, which is useful for
individual diagnosis. These methods can provide a straightforward
view of how local explanations affect the final predictions. In this
study, although we have not proposed novel XAI methods, the two
showcases have demonstrated new pipelines of using XAI techniques
for COVID-19 classification and segmentation for hydrocephalus. It is
of note that both classification and segmentation are the two most
widely investigated problems in medical data analysis with the arising
of machine learning and deep learning. For example, machine and deep
learning algorithms have been widely used for chest X-ray and CT
images analysis for COVID-19 patients; however, there are still some
common pitfalls in detection, diagnosis and prognosis of using these
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algorithms, e.g., data duplication, image quality issues and labelling
accuracy and reproducibility, and most importantly, the lack of model
interpretability [185–187].

On the other hand, T-SNE provides us with an insight into the
strength and weakness of our proposed models. For example, in Fig. 17,
the distribution of the decomposed image features has an association
with the prediction performance, which indicates the weakness of
the black-box segmentation models. Meanwhile, the distribution of
decomposed image features also reveals the clustered characteristics of
the raw inputs (Fig. 14), which can help us to find the reason why a
model would make such predictions.

In consequence, these methods can also be classified into two
categories named as perceptive interpretability and mathematical inter-
pretability. When visual evidence is not useful or erroneous, the math-
ematical evidence can be used as the complement for interpretability.
Therefore, various methods should be applied simultaneously for the
sake of providing reliable interpretability.

Nevertheless, a significant drawback of the current studies on XAI
is that the interpretations are focused on the intuition of experts rather
than from the demands of the end-users [188]. Current local expla-
nations are typically provided in a feature-importance vector format,
which is a full causal attribution and a low-level interpretation. This
format would be satisfactory if the description viewers were the devel-
opers and analysts, since they could use the mathematical study of the
distribution of features to debug the models. However, this type of XAI
is less accommodating if the description receivers are lay-users of the
AI. XAI can explain the complete judgement logic of the model, which
includes a large amount of repetitive knowledge which can confuse
the lay-users. The presentation of the XAI algorithms should be further
improved to increase customer satisfaction.

The poor abstraction level of explanations is another drawback.
For example, despite XAI derived heatmaps can indicate that individ-
ual pixels are important, there is normally no correlation computed
between these significance regions to more abstract principles such
as the anatomical or pathological regions shown in the images. More
importantly, the explanations ought to be understood by humans to
make sense of them and to grasp the understandable actions of the
model. It is indeed desirable to provide meta-explanations that can
integrate evidence from these low-level heatmaps to describe the be-
haviour of the model at a more abstract, more humanly understandable
level. However, this level of understanding can be hard and erro-
neous. Previously proposed methods have recently been suggested to
aggregate low-level explanations and measure the semantics of neural
representations. Thus, a constructive topic for future study is the devel-
opment of more advanced meta-explanations that leverages multimodal
information fusion.

Because the audiences of XAI results are essentially human users,
an important future research direction is the use of XAI in human–
machine interaction; therefore, research studies in XAI need to explore
human factors. A prerequisite for good human–machine interaction is
to construct explanations for the right user focus, for instance, develop
XAI to ask the correct questions in the proper manner, which is crucial
in the clinical environment. Optimisation of the reasoning procedure
for optimal human use, however, is still a problem that demands
more research. Eventually, a broad open gap in XAI is the use of
interpretabilities beyond using visualisation techniques. Future studies
will demonstrate how to incorporate XAI into a broader optimisation
mechanism in order to, e.g., boost the efficiency of the model and
reduce the model complexity.

5. Conclusion

The recent confluence of large-scale annotated clinical databases,
the innovation of deep learning approaches, open-source software pack-
ages, and inexpensive and rapidly increasing computing capacity and
cloud storage has fuelled the recent exponential growth in AI. This

foretells to change the landscape of medical practice in the near future.
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Fig. 18. The visualisation of the 3D brain ventricles segmentation results using different compared models. The right lateral ventricle is coloured in red; the left lateral ventricle
is coloured in green; the yellow coloured region represents the third ventricle; and the blue region represents the fourth ventricle. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
Fig. 19. Three-dimensional visualisation of the predictions on thin-slice MRI images for each ventricle segmented by different comparison models. The 3D segmentation results
were visualised from the axial plane, the coronal plane, and the sagittal plane. Colouring scheme is consistent with Fig. 18.
AI systems have specialised success in certain clinical activities that
are more able to assess patient prognosis compared to doctors, and
can help in surgical procedures. If deep learning models continue to
advance, there is a growing chance that AI could revolutionise medical
practice and redefine the role of clinicians in the process. Our mini-
review has demonstrated the research trends towards the trustable AI
or trustworthy AI, which promotes the XAI globally, and XAI methods
in medicine and digital healthcare are highly in demand. Additionally,
our two showcases have shown promising XAI results for the two
most widely investigated classification and segmentation problems in
medical image analysis. We can envisage further development of XAI
in medicine and digital healthcare by integrating information fusion
from cross-modalities imaging and non-imaging clinical data can be
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a stepping stone toward a more general acceptance of AI in clinical
practice. Ultimately, the trustable AI will promote confidence and
openness of its deployment in the clinical arena and also make it easier
to comply with the legislation of the GDPR and regulations of the NHS𝑋
in the UK, CE-mark in the EU, FDA in the USA, and NMPA in China.
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