
A UNIFIED CONDITIONAL DISENTANGLEMENT FRAMEWORK 
FOR MULTIMODAL BRAIN MR IMAGE TRANSLATION

Xiaofeng Liu, Fangxu Xing, Georges El Fakhri, Jonghye Woo
Dept. of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 
USA

Abstract

Multimodal MRI provides complementary and clinically relevant information to probe tissue 

condition and to characterize various diseases. However, it is often difficult to acquire sufficiently 

many modalities from the same subject due to limitations in study plans, while quantitative 

analysis is still demanded. In this work, we propose a unified conditional disentanglement 

framework to synthesize any arbitrary modality from an input modality. Our framework hinges 

on a cycle-constrained conditional adversarial training approach, where it can extract a modality­

invariant anatomical feature with a modality-agnostic encoder and generate a target modality 

with a conditioned decoder. We validate our framework on four MRI modalities, including T1­

weighted, T1 contrast enhanced, T2-weighted, and FLAIR MRI, from the BraTS’18 database, 

showing superior performance on synthesis quality over the comparison methods. In addition, we 

report results from experiments on a tumor segmentation task carried out with synthesized data.
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1. INTRODUCTION

Multimodal magnetic resonance (MR) images are often required to provide complementary 

information for clinical diagnosis and scientific studies [1, 2]. For example, multimodal 

MR imaging (MRI) with T1-weighted, T1ce (contrast enhanced), T2-weighted, and 

FLAIR (FLuid-Attenuated Inversion Recovery) MRI can offer greater sensitivity to tumor 

heterogeneity and growth pattern than single modality, T1ce MRI, thereby benefiting 

diagnosis, staging, and monitoring of brain metastasis [3]. However, in practice, it is often 

difficult to acquire sufficiently many modalities due to limitations in study plans, and some 

modalities could be missing due to imaging artifacts [4, 5].

In recent years, cross-modality synthesis of brain MR images using generative adversarial 

networks (GANs) has gained its popularity [1]. For example, Yu et al. [5] adopted a pair­

wise image-to-image network via Pix2Pix [6, 2] for transferring T1-weighted to either T2­
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weighted or FLAIR MRI. Also, a cycle-reconstruction approach via CycleGAN for unpaired 

image translation [7] was introduced in [4, 8] to stabilize the training. These methods [1, 

5, 4, 8, 2] aimed at modeling the mapping between two specific modalities, requiring two 

inverse autoencoders to achieve the cycle-reconstruction [7].

However, the aforementioned approaches have a limitation in that they dealt with the 

cross-modality synthesis problem which cannot be easily scalable to multiple modalities 

(i.e., more than two modalities). In other words, in order to learn all mappings among 

M modalities, M(M − 1) different generators have to be trained and deployed (e.g., 12 

possible cross-modality networks for T1-weighted, T1ce, T2-weighted, and FLAIR MRI) 

[9]. Moreover, each translator cannot fully use the entire training data, but can only learn 

from a subset of data (two out of M modalities). Failure to fully use the whole training 

data is likely to limit the quality of generated images. To address this, recently, Xin et al. 

[10] proposed to construct a 1-to-3 network to translate T2-weighted to T1-weighted/T1ce/

FLAIR MRI based on Pix2Pix [6]. The improvement over Pix2Pix was achieved by utilizing 

3× training pairs for one translator [10]. Besides, the closely related multiple tasks mutually 

reinforced each other [11]. Yet, with the 1-to-3 network, the number of models to be trained 

was still limited to the number of modalities.

In this paper, we propose to achieve all of the pair-wise translation using a single set of 

conditional autoencoder and discriminator. Our framework is scalable to many modalities 

and can effectively use all of possible paired cross-modality training data. Several unpaired 

multi-domain synthesis methods are inherently multimodal translation, while they usually 

require multiple domain-specific autoencoders [12] and discriminators [13], and do not 

consider pair-wise training data [12, 13, 14, 11]. Without the pair-wise supervision, the 

largely unconstrained image generation tends to alter important characteristics of an input 

modality for generating diverse outputs. Unlike image-to-image translation in computer 

vision, in medical domain, it is of paramount importance not to introduce unnecessary 

changes and artifacts to carry out quantitative analyses [15].

In addition, these methods ignore the inherent connection between different MR modalities 

[16, 16]. Since multiple MR modalities are acquired with different scan parameters for the 

same subject, there should be a shared modality-invariant anatomical feature space [16]. 

Accordingly, we propose to configure a pair-wise disentanglement approach [17, 18] to 

extract an anatomical feature with a modality-agnostic encoder, and then inject a modality­

specific appearance with a conditional decoder.

Specifically, our unified multimodal translation framework hinges on the autoencoder, where 

the decoder is conditioned on the target modality to utilize the paired training data. After 

the feedforward processing of the autoencoder conditioned on any modality label, the same 

autoencoder is called again, which conditioned on the modality label of the original input for 

the cycle-reconstruction. The anatomical information disentanglement is simply enforced by 

the similarity of the output feature map of the encoder [18, 17].

We empirically validate its effectiveness on the BraTS’18 database, showing superior 

performance over the comparison methods.
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2. METHODOLOGY

Given a set of co-registered M MR modalities, a sample x with modality mx has M − 1 

pixel-wise aligned samples with the other modalities. The target modality of image synthesis 

and the corresponding ground truth sample are denoted as my and xy, respectively. Given 

the pair of input sample and target modality {x, my}, we propose to learn a parameterized 

mapping f: x, my xy from {x, my} to the generated corresponding sample with modality 

my to closely resemble xy.my denotes a four-dimensional one-hot vector to represent the 

four MR modalities available in the BraTS’18 database. Of note, my = mx indicates the 

self-reconstruction. The proposed framework is shown in Fig. 1.

2.1. Disentangled United Multimodal Translation

A straightforward baseline network structure for paired two-modality translation is an 

autoencoder, which is constructed with an encoder Enc and a decoder Dec. Briefly, it first 

maps x to a latent feature z via the Enc, and then decode z to reconstruct the target image 

via the Dec. The target ground truth image serves as a strong supervision signal, while the 

unpaired translation cannot benefit from such regularization [7, 19, 12, 11, 13].

However, the autoencoder has a limitation in that the generated images are likely to be 

blurry [2], which is partly caused by the element-wise criteria such as the ℒ1 or ℒ2 loss 

[20]. Although recent studies [21] have substantially improved the predicted log-likelihood 

in the autoencoder, the image generation quality of the autoencoder is still inferior to 

GANs. In addition, enforcing pixel-wise similarity is likely to distract the autoencoder from 

understanding the underlying anatomical structure, when inputting slightly misregistered 

data.

In order to enforce high-level semantic similarity and improve quality of generated textures, 

recent cross-modality translation models [4, 5, 10] adopted an additional adversarial loss 

ℒadv with a discriminator Dis following Pix2Pix [6, 2], where the training objectives consist 

of both the ℒ1 loss and adversarial GAN loss:

min
Enc,Dec

max
Dis

ℒ1 xy, xy = |xy − xy|, (1)

min
Enc,Dec

max
Dis

ℒadv = Elog Dis xy + Elog 1 − Dis xy . (2)

To extend the Pix2Pix basenet to multimodal translation, we adopt the conditional decoder 

structure that takes both the feature map extracted by the encoder Enc(x) and the target 

modality code my as input. The target modality code is spatially replicated and concatenated 

with the input image. Of note, the unpaired multi-domain synthesis network takes the 

modality code as input to the encoder [12, 13, 14, 11]; therefore it cannot achieve the 

disentanglement of modality-agnostic anatomic and modality-specific factors [16, 17, 18]. 

Then, a single autoencoder model can be switched to all possible pair-wise cross-modality 

translations. Therefore, xy in Eqs. (1–2) can be Dec(Enc(x), my).
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Instead of configuring M Dis for all modalities, we introduce an auxiliary modality classifier 

Dismc [22] on top of Dis that allows a single Dis to control multiple modalities. The to be 

minimized modality classification loss can be formulated as:

ℒmc = xy
E −logDismc xy, my + xE −logDismc x, mx . (3)

The objective of conditional GAN with multi-task discriminator can induce an output 

distribution of over xy ∣ my  that matches the empirical distribution of real images with 

modality my, i.e., xy. However, the mapping between two distributions can be largely 

unconstrained and have many possible translations f to induce the same distribution over 

f({x, my}) [7]. Therefore, the learned f cannot guarantee that the individual inputs {x, my} 

and outputs xy are paired up as expected. To mitigate this, CycleGAN [7] is proposed 

to introduce an additional cycle-reconstruction constraint for unpaired two-domain image 

translation. Specifically, the generated output is mapped back to the original image with 

an inverse translator, and the ℒ1 loss is explicitly used as a loss function to measure the 

similarity between the mapped back image and the original input. In this way, the shape 

structure can be better maintained. Note that both Pix2Pix [6] and CycleGAN [7] are used 

as the two-domain translators, and there are two inverse autoencoders to achieve the cycle 

reconstruction [7].

In addition, rather than configuring two autoencoders with inverse direction [7], we can 

simply recall the same autoencoder twice with a different conditional modality code in a 

feedforward processing. Specifically, the second time translation always uses the modality of 

original input sample mx to achieve the reconstruction of x, given by

min
Enc,Dec

ℒ1 xx, xx = |xx − x|, (4)

where xx = Dec Enc xy , mx  is expected to reconstruct x.

To achieve the disentanglement of anatomical information and modality-specific factors 

without the anatomical label, we propose to enforce the similarity between Enc(xx) and 

Enc xx  which are the two encoder outputs in a cycle, given by

min
Enc

ℒ1
disen = |Enc xy − Enc(x)|, (5)

which explicitly requires that the paired co-registered two-modality images have the same 

feature map. Their shared factors can be the anatomical information [16], and have the 

difference between modality-specific imaging parameters [16]. The feature vector is also 

required to be combined with the target modality label to reconstruct the target image, which 

encourages them to be independent and complementary to each other [17]. Therefore, the 

latent feature space can be anatomically related and modality-invariant (i.e., disentangled 

with a modality factor) [18, 17]. In addition, the feature-level similarity is also related to the 

perception loss [23], which enhances the textures.
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2.2. Training Strategy

For simpler implementation, we reformulate the min-max terms to minimization only in 

a consistent manner. The objective of our conditional autoencoder and the adversarial cycle­

reconstruction streams can be formulated as:

min
Enc,Dec

ℒ1 xy, xy + αℒ1 xx, xx + βℒadv + λ1ℒmc, (6)

min
Dis

− ℒadv + λ2ℒmc, (7)

where α, β, λ1, and λ2 are the weighting hyperparameters. Enc and Dec minimize ℒadv, 

while Dis minimize −ℒadv to play a round-based adversarial game to improve each other 

to find a saddle point. In practice, we sample the same number of x from each modality in 

training [6].

2.3. Testing Translation

After training, we can obtain the translation functions by assembling a subset of the 

subnetworks, i.e., Enc and Dec. Note that our translation can be agnostic to an input 

modality. Therefore, with an input sample x and a target modality my, we can generate 

its corresponding xy = Dec Enc(x), my . With generated images with a target modality, we 

concatenate them for further tumor segmentation [10, 8].

3. RESULTS AND DISCUSSION

We evaluated our framework on the BraST’18 multimodal brain tumor database [9], which 

contains a total of 285 subjects with four MRI modalities: T1-weighted, T1ce, T2-weighted, 

and FLAIR MRI, with the size of 240×240×155. The intensity of slices was linearly scaled 

to [−1, 1] as in [10, 5], which was then processed by 2D networks. The axial slices with less 

than 2,000 pixels in the brain area were filtered out as in [10].

For a fair comparison, we followed [10] to use 100 subjects for the training translator, 

85 subjects for testing, and 100 subjects for a training segmentor. We adopted the same 

backbone for Enc, Dec, and Dis for all comparisons [10]. In addition, the reimplemented 

Pix2Pix [6] was used as the two-modality transfer baseline model. In order to align the 

absolute value of each loss, we set weights α = 1, β = 0.5, λ1 = 1, and λ2 = 1. We used 

Adam optimizer with a batch-size of 64 for 100 epochs training. The learning rate was set 

at lrEnc,Dec = 1e–3 and lrDis = 1e–4 and the momentum was set at 0.5. Our framework was 

implemented using Py-Torch. The training on an NVIDIA V100 GPU took about 8 hours. 

In practice, translating one test image with our unified Enc and Dec only took about 0.1 

seconds.

3.1. Qualitative Evaluations

In Fig. 2, we illustrated the multimodal generation results of 12 cross-modality translation 

tasks and 4 self-reconstruction tasks. The proposed framework successfully synthesized 

any modality by simply configuring the target modality, which is consistent with the 
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target ground truth MR images. We note the self-supervision was not used for the 

subsequent segmentation, but was used for checking the image generation quality in our 

implementation.

The qualitative comparisons with the 1-to-1 translator Pix2Pix [6] and 1-to-3 translator [10] 

are shown in Fig. 3 along with our proposed framework. The proposed framework was 

able to generate visually pleasing results with better shape and structure consistency when 

visually assessed. From the red box in the first row, we can see that the tumor area was 

better maintained with the help of the cycle-constraint compared with [10] which uses the 

additional tumor-consistent loss. Also, the artifact shown in the T1-weighted MR image (i.e., 

stripes indicated by the blue circle) yielded similar stripes as shown in the T2-weighted 

MR image with TCMGAN and Pix2Pix. Our disentangled encoder was able to eliminate 

the artifact and enforce the latent representation following the distribution of normal MR 

images.

3.2. Quantitative Evaluations

The synthesized images were expected to have realistic-looking textures, and to be 

structurally coherent with its corresponding ground truth images xy. For quantitative 

evaluation, we adopted the widely used metrics including mean L1 error, structural 

similarity index measure (SSIM), peak signal-to-noise ratio (PSNR), and inception score 

(IS).

Table 1 lists numerical comparisons between the proposed framework, Pix2Pix [6], 

and TCMGAM [10] for the 85 testing subjects using the BraTS’18 database. Of note, 

proposed-ℒ1
disen indicates the proposed model without the disentanglement constraint 

ℒ1
disen. The proposed unified conditional disentanglement framework outperformed the 

other comparison methods w.r.t. these metrics, and the performance with the proposed 

framework was better than the proposed framework without the ℒ1
disen.

3.3. Tumor Segmentation Results

In Table 2, we followed [10] to use the synthesized images by different methods to boost 

the tumor segmentation accuracy. Specifically, we sampled a slice with any modality in the 

testing data, and used our unified translation framework to generate its complementary three 

modalities [10]. Then, we concatenated the real slice and its generated three modalities as 

input to the segmentor. We note that only using the additional generated complementary 

slices can achieve improvements over only using one real slice [10]. For example, the DICE 

score was 0.7404 using only T2-weighted MRI for segmentation. We also computed the 

DICE score using the entire four real modalities, which served as an “upper bound”.

The proposed unified conditional disentanglement framework yielded better segmentation 

performance than the baseline model Pix2Pix [6] and TCMGAN [10]. In addition, the DICE 

score of our conditional disentanglement framework was close to the upper bound which 

was computed using four real modalities. It was seen from our experiments that using all of 

the pairs in our training and the use of the cycle-constraint provided more accurate tumor 

shape recovery, thus leading to the better segmentation results.
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4. CONCLUSION

This work presented a unified conditional disentanglement framework for co-registered 

multimodal translation based on a single set of target modality conditioned autoencoder 

and multi-task discriminator. The encoder is learned to extract the disentangled anatomical 

information by enforcing the consistency of two co-registered images with different 

modalities. The autoencoder is simply recalled twice to form a circular processing flow 

to enforce the cycle-constraint. Our framework is scalable to many modalities and effective 

to utilize the entire paired training data. In addition, our framework demonstrated superior 

performance on the tumor segmentation task over the compared methods using the generated 

images.
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Fig. 1. 
Illustration of the proposed unified conditional adversarial framework for multimodal co­

registered brain MR image translation. Note that only one Enc-Dec set is recalled twice, and 

only the gray masked subnets are used for testing.
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Fig. 2. 
Illustration of the results of our proposed framework. We use the first row as input, and 

configure four target modalities. The diagonal results are obtained using self-translation (i.e., 

my = mx).
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Fig. 3. 
Comparison of different methods for the T1-weighted and T2-weighted MR translation. GT 

indicates the ground truth xy.

Liu et al. Page 11

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2021 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liu et al. Page 12

Table 1.

Numerical comparisons of four methods in testing

Methods L1 ↓ SSIM ↑ PSNR ↑ IS ↑

12×Pix2Pix [6] 171.3±0.4 0.9206±0.0013 24.12±0.02 15.65±0.16

4×TCMGAN [10] 168.6±0.2 0.9413±0.0010 24.87±0.01 16.73±0.15

Proposed-ℒ1
disen 159.8±0.3 0.9594±0.0016 25.21±0.02 18.10±0.13

Proposed 157.2±0.2 0.9625±0.0012 25.92±0.01 18.54±0.15
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Table 2.

Comparisons of the segmentation accuracy

Methods DICE

12×Pix2Pix[6] 0.7436±0.0017

4×TCMGAN[10] 0.7673±0.0014

Proposed-ℒ1
disen 0.7791±0.0013

Proposed 0.7862±0.0015

Original 4 Modalities 0.8142±0.0012
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