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Abstract

This study aims at assessing the usefulness of deep learning to enhance the diagnostic ability 

of oximetry in the context of automated detection of pediatric obstructive sleep apnea (OSA). 

A total of 3196 blood oxygen saturation (SpO2) signals from children were used for this 
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purpose. A convolutional neural network (CNN) architecture was trained using 20-min SpO2 

segments from the training set (859 subjects) to estimate the number of apneic events. CNN 

hyperparameters were tuned using Bayesian optimization in the validation set (1402 subjects). 

This model was applied to three test sets composed of 312, 392, and 231 subjects from three 

independent databases, in which the apnea-hypopnea index (AHI) estimated for each subject 

(AHICNN) was obtained by aggregating the output of the CNN for each 20-min SpO2 segment. 

AHICNN outperformed the 3% oxygen desaturation index (ODI3), a clinical approach, as well 

as the AHI estimated by a conventional feature-engineering approach based on multi-layer 

perceptron (AHIMLP). Specifically, AHICNN reached higher four-class Cohen’s kappa in the three 

test databases than ODI3 (0.515 vs 0.417, 0.422 vs 0.372, and 0.423 vs 0.369) and AHIMLP 

(0.515 vs 0.377, 0.422 vs 0.381, and 0.423 vs 0.306). In addition, our proposal outperformed 

state-of-the-art studies, particularly for the AHI severity cutoffs of 5 e/h and 10 e/h. This suggests 

that the information automatically learned from the SpO2 signal by deep-learning techniques helps 

to enhance the diagnostic ability of oximetry in the context of pediatric OSA.

Index Terms—

Oximetry; deep learning; convolutional neural networks (CNN); apnea–hypopnea index (AHI); 
pediatric obstructive sleep apnea (OSA)

I. INTRODUCTION

OBSTRUCTIVE sleep apnea (OSA) is a highly prevalent condition among the pediatric 

population (1%−5%) [1]. Pediatric OSA is characterized by recurrent respiratory pauses 

(apneas) and airflow reductions (hypopneas), which leads to oxygen desaturations and 

arousals that cause restless sleep [1], [2]. Untreated OSA is associated to metabolic 

and cardiovascular malfunctioning, as well as neurobehavioral abnormalities that diminish 

children’s health and quality of life, [1], [3].

The gold standard diagnosis test is polysomnography (PSG) [1]. PSG requires children 

to spend the night in a specialized sleep unit while being recorded up to 32 biomedical 

signals [3], [4]. These recordings are used to score apneas and hypopneas in order to obtain 

the apnea-hypopnea index (AHI), which is the clinical variable used to diagnose OSA [2]. 

Despite its effectiveness, several limitations of PSG have been pointed out [5], [6], including 

its complexity, cost, high intrusiveness, and limited availability. This results in a delay in the 

diagnosis and treatment of OSA of the affected children [7].

In order to overcome these limitations, the scientific community has explored the use of 

simplified tests that increase the accessibility and effectiveness of pediatric OSA diagnosis. 

In this respect, the blood oxygen saturation signal (SpO2) from nocturnal oximetry has been 

frequently proposed as a clinically valuable tool for the screening of OSA in children due 

to its simplicity, reliability and suitability [8], [9]. The SpO2 signal measures the oxygen 

content in the hemoglobin of the blood [10], thus containing information of the oxygen 

desaturations associated to apneic events from OSA [2].
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Promising results have been obtained in previous studies from the automated analysis of 

the SpO2 signal following a feature-engineering methodology [11]–[18]. First, a set of hand

crafted features from oximetry was obtained using different signal processing algorithms: 

conventional oximetric indices, statistical parameters, nonlinear methods, and frequency 

domain techniques [11]–[18]. Then, thresholding rules [11], [12] and machine-learning 

algorithms [13]–[18] were used with these features to determine the presence and severity 

of pediatric OSA. Nonetheless, these conventional feature-engineering approaches require 

considerable knowledge in order to identify, a priori, a set of relevant features to extract 

from the data [19]. In addition, the level of abstraction that classical methods provide is low, 

which limits their ability to identify complex patterns in the data [19]. This may result in 

missing relevant information from the SpO2 signals linked to apneic events.

These issues can be solved by using deep-learning algorithms, which automatically learn 

complex patterns for detection or classification tasks from raw data using architectures 

with multiple levels of representation [19]. These algorithms have beaten conventional 

approaches in many fields, such as image recognition, language processing, and time 

series analysis [19]. In the OSA context, recent studies have focused on the application 

of deep-learning techniques to detect sleep stages [20], apneic events [21], and/or estimate 

AHI in adult OSA patients [21]. Their findings suggest that deep-learning algorithms are 

appropriate to analyze different physiological signals from PSG, such as electrocardiogram, 

electroencephalogram, airflow, or oximetry [20], [21].

Specifically, the majority of these studies employed deep-learning architectures based on 

convolutional neural networks (CNN) [21], which are the most widely-used deep-learning 

algorithm [19]. Despite being originally inspired for image analysis, CNNs have proven 

its suitability for time series classification in a big variety of domains [22], including 

biomedical signal analysis [23]–[26]. CNN have a multi-layer architecture, with shared 

weights, sparse connections, and pooling operations, which allows them to identify both 

short- and long-term patterns occurring in different parts of the time series [25], while 

reducing the computational cost of other deep-learning algorithms [19]. This CNN property 

may be useful to identify desaturations in the SpO2 signal associated to apneic events that 

may occur at different times. In addition, CNNs provide higher levels of representation that 

allow to learn more complex features [19], which may be useful to detect complex patterns 

in long segments of the SpO2 signal, such as clusters of desaturations [27].

The novelty of this research is the use of a new deep-learning model based on CNN that 

allows to accurately diagnose pediatric OSA with a high generalization ability from the raw 

oximetry signal. We hypothesize that deep-learning approaches could help to automatically 

extract the relevant information of the oximetry signal in the context of pediatric OSA 

diagnosis. Consequently, the main goal of this study is to evaluate the usefulness of deep

learning to estimate the AHI from ovenight oximetry in children with suspected OSA. To 

achieve this goal, a CNN architecture is trained to estimate the number of apneic events from 

20-min SpO2 segments, which is a novel approach in the context of pediatric OSA. The 

output of the CNN for each segment is then aggregated to estimate the AHI in pediatric OSA 

patients using a large cohort of 3196 SpO2 recordings from three different datasets.
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One related conference paper developed by our own group has already been published 

showing preliminary results [28]. Despite the fact that our previous work also applied CNNs 

to analyze SpO2 recordings, there are some essential differences with this research. Our 

main contribution is that our deep-learning based methodology allows to diagnose pediatric 

OSA using the oximetry signal. In this sense, our previous work showed promising results 

in detecting apneic events (event-based approach) from the oximetry signal using a CNN 

[28]. In the current study, we have investigated whether those indications may be extended 

to obtain a new deep-learning model based on CNN that allows to directly estimate the 

AHI, thus being able to conduct a complete automatic diagnosis (subject-based), including 

the assessment of the pediatric OSA severity degrees. Instead of training a CNN to detect 

individual apneic events (binary output), in this research we have trained a CNN to 

regress the number of apneic events in SpO2 segments (continuous output), which allows 

to accurately analyze SpO2 segments with several apneic events. A two-step aggregation 

procedure (averaging plus linear regression) has been also included to accurately estimate 

the AHI of each subject from the outputs of the CNN. We have also incorporated 

novel elements to improve the training and optimization process of the deep-learning 

model (Huber loss, batch shuffling, learning rate scheduler, early stopping, and Bayesian 

optimization). Additionally, in the present study, we have designed and prospectively 

assessed a new model using three independent datasets, leading to a sample size seven 

times larger than in our preliminary work (3196 vs. 453). This contributes to increase the 

generalization ability of our current proposal. Finally, another contribution of our work 

is that we have performed a thorough comparison with two conventional approaches to 

properly assess the validity of our proposal. Particularly, we have compared the results of the 

proposed approach with the 3% oxygen desaturation index (ODI3), a conventional clinical 

approach commonly used for comparison purposes [11], [13]–[18], as well as with the AHI 

estimated by a classical feature-engineering approach.

II. SUBJECTS AND SIGNALS UNDER STUDY

A total of 3196 sleep studies of children ranging from 0 to 18 years of age 

composed the population under study. Three large datasets were used: (i) the Childhood 

Adenotonsillectomy Trial (CHAT) dataset, a public multicenter database composed of 1638 

sleep studies (clinical trial identifier: NCT00560859) [29], [30]; (ii) the University of 

Chicago (UofC) dataset, a private database composed of 980 pediatric subjects; and (iii) 
the Burgos University Hospital (BUH) dataset, a private database composed of 578 subjects. 

All subjects from the three datasets were referred to overnight PSG due to clinical suspicion 

of OSA. An informed consent was obtained from all legal caretakers of the children and the 

Ethics Committee of the different sleep centers involved in the study approved the protocols.

SpO2 recordings were acquired during PSG using sampling rates ranging from 1 to 512 Hz. 

The guidelines of the AASM were used to quantify sleep and score apneas and hypopneas 

by pediatric sleep specialists from the different centers [2], [31]. The AHI, obtained as the 

number of apneas and hypopneas per hour of sleep, was used to diagnose pediatric OSA [2]. 

Common clinically used AHI cutoffs of 1, 5, and 10 events per hour (e/h) were used in this 

study to classify children into four OSA severity degrees: no-OSA (AHI<1 e/h), mild OSA 
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(1≤AHI<5 e/h), moderate OSA (5≤AHI<10 e/h), and severe OSA (AHI≥10 e/h) [3], [32], 

[33].

Data was divided into three sets: training set, employed to train the deep-learning 

algorithms; validation set, used for hyperparameters optimization; and test set, employed to 

evaluate the diagnostic performance of the deep-learning methods. Only the CHAT database 

contains annotations of time location of apnea and hypopnea events, which are needed in 

the deep-learning models as the output labels for training. Accordingly, the training set was 

composed of 859 SpO2 recordings from the baseline (453 subjects) and follow-up groups 

(406 subjects) of the CHAT database [30]. The subjects from the remaining group of the 

CHAT dataset, nonrandomized (779 subjects), as well as the subjects of the UofC and 

BUH sets, were randomly divided into a validation set (60%) and a test set (40%), being 

60%−40% a common proportion used in previous studies for validation and test purposes 

[14], [17].

In this way, the validation set was composed of 1402 SpO2 recordings from the CHAT 

(467, 60% of the 779 subjects from the nonrandomized group), UofC (588, 60% of the 

980 subjects), and BUH (347, 60% of the 578 subjects) databases, whereas the test set was 

composed of 312 subjects from the CHAT dataset (40% of the nonrandomized group), 392 

subjects from the UofC dataset (40%), and 231 subjects from the BUH dataset (40%). Table 

I shows clinical and demographic data from the subjects under study.

III. METHODOLOGY

A. Proposed CNN model

The proposed solution, depicted in Fig.1, consists of three steps: (1) signals segmentation; 

(2) CNN architecture; and (3) AHI estimation.

1) Signals segmentation—First, SpO2 recordings were down-sampled to a sample rate 

of 1 Hz in order to homogenize the frequency. SpO2 signals from each subject were then 

divided into 20-min segments (1200 samples), as shown in Fig. 1 (a). This segment size (20

min) allows to detect clusters of desaturations, which have a minimum duration of 10-min 

[27]. Finally, each 20-min SpO2 segment in the training set is labelled with the annotations 

provided by sleep technicians [30]. The output label for each segment was obtained as the 

number of apnea and hypopnea events associated to 3% oxygen desaturations occurring in 

these 20 minutes, according to the annotation event files of the CHAT dataset [30].

2) CNN architecture—CNN are the most popular deep-learning technique to process 

multidimensional arrays, such as 1D signals or 2D images. In this study, CNN were used 

to process raw oximetry data. Figure 1 (b) shows the architecture of the proposed CNN. 

The input of the CNN architecture is the 20-min SpO2 segment. The CNN architecture 

processes the input by the use of λC stacked convolutional blocks, each one composed of: 

convolutional layer, batch normalization, activation, pooling, and dropout [19].

The convolutional layer extracts feature maps from the input data a[n] using convolutional 

filters (kernels) [19]:
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xil n = ∑k = 1
LC wk

l ∗ ai n − k + 1 + bk
l , (1)

where xil is the lth feature map (l= 1, …, MC, being MC the number of filters) in the 

convolutional block = 1, …, λC, wk
l  and bk

l  are the weights and biases of each convolutional 

kernel in the convolutional block i, and LC is the kernel size.

After the convolution, batch normalization is applied to normalize the feature maps [19]. 

Then, a non-linear function is used to decide which feature maps are activated, depending 

on a rule or a threshold [19]. In this study, a rectified linear unit (ReLU) activation function, 

which is the standard choice for deep-learning [19], was used:

f x = max 0, x , (2)

The output of the ReLU is fed into a max-pooling layer, which applies a maximum operation 

with a pool factor K=2, which is a widely used value, in order to reduce dimensionality 

as well as computational cost [19]. Finally, dropout operation was included in the training 

phase in order to avoid overfitting [19]. Dropout randomly removes some units with a 

probability pdrop at each batch of a training epoch [19].

After λC convolutional blocks, a flattening layer is used to transform the 2-D feature maps 

into a 1-D series [19]. Then, a linear activation unit is used to obtain the output of the 

network, yCNN
m  which accounts for the apneic events associated to desaturations for the 

corresponding input 20-min SpO2 segment.

3) AHI estimation—Based on the output yCNN
m  of the CNN for each 20-min SpO2 

segment m = 1, 2, 3, …, N, the AHI of each patient can be estimated. First, the average of 

the output of the CNN obtained for each SpO2 segment is computed:

yCNN
avg =

∑m = 1
N yCNN

m

N , (3)

where N is the number of 20-min SpO2 segments of the oximetry signal. This step is 

necessary as the number of 20-min SpO2 segments is different for each patient. Then, the 

AHI is obtained using the following expression, as shown in Fig. 1 (c):

AHI = β ⋅ yCNN
avg + ε, (4)

where β and ε are the intercept and disturbance term of a linear regression model, which 

was fitted using the validation set. This linear regression corrects the trend of the CNN 

to underestimate the AHI, which is caused by [34]: (i) the AHI estimated by the CNN is 

obtained using the total recording time, while the AHI from PSG uses total sleep time; (ii) 
there are apneic events that are not associated to oxygen desaturations, so they cannot be 

detected by the CNN.
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B. CNN training and optimization process

The training data were fed into the CNN in batches of 100 during 500 epochs. He-normal 

method was used to initialize the weights and biases of each layer [35]. Then, the adaptive 

moment estimation (Adam) algorithm was used with an initial learning rate of 0.001 to 

update the weights and biases in each training batch [36]. Huber loss [37] was the function 

used to minimize Adam algorithm in the validation set. This loss function has a tunable 

hyperparameter, delta (δ), that allows to control the importance of outliers [37]:

L ym, yCNN
m =

1
2 ym − yCNN

m 2, ym − yCNN
m ≤ δ

ym ym − yCNN
m − 1

2δ , otℎerwise
(5)

where ym is the target variable and yCNN
m  is the output of the CNN for a segment m. At 

each training epoch, training data were shuffled in order to improve the convergence of the 

optimization algorithm [19], so the batches were different. In addition, the learning rate was 

decreased by a factor of 2 after 10 epochs of non-improvement in the loss function value of 

the validation set, which helps to obtain a converged stable set of final weights [19]. Finally, 

early stopping [19] was applied to stop training after 30 epochs of non-improvement in order 

to reduce the training time, restoring weights to those that achieved the best performance in 

the validation set.

The hyperparameters of the CNN architecture to optimize were the number of filters 

in each convolutional layer (MC), the kernel size of each convolutional layer (LC), the 

number of CNN blocks (λC), the dropout probability (pdrop), and the delta parameter of 

the Huber loss (δ). Bayesian optimization with tree-structured Parzen estimator (BO-TPE) 

[38] implemented in Hyperopt library [39] was used to obtain the optimum values of these 

hyperparameters. BO-TPE is considered more efficient than grid search or random search 

for hyperparameters optimization, since it uses past evaluation results to form a probabilistic 

model that attempts to optimize the objective function in an iterative way [40].

Keras framework with Tensorflow backend was used to implement the CNN-based 

architecture [41]. CNNs were trained on a NVIDIA GeForce RTX 2080 GPU in a Windows 

10 environment.

C. Comparison with conventional approaches

The following conventional methods have been applied in order to compare the diagnostic 

performance of the proposed deep-learning model:

1) Clinical approach: ODI3. ODI3 was estimated as the number of desaturations of at 

least 3% per hour of recording [42]. This parameter has shown its usefulness in the clinical 

OSA context, and is usually employed for comparison purposes [11], [13]–[18].

2) Classical feature-engineering approach: multilayer perceptron (MLP) neural 

network trained using features extracted from the 20-min SpO2 segments. This approach is 

divided into the following common four steps: (i) signal preprocessing, where artifacts were 
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removed from SpO2 recordings following the methodology employed in previous studies 

[14], [15], [17]; (ii) feature extraction, where up to 23 features were extracted from each 

20-min SpO2 segment, the same features as in the previous study by Hornero et al. [14]; (iii) 
segment-based AHI estimation; where a MLP model was trained with the set of 23 SpO2 

features to estimate the number of apneic events associated to desaturations in each segment; 

(iv)subject-based AHI estimation, where the AHI of each subject is obtained from the output 

of the MLP for each 20-min SpO2 segment using the procedure described in (3) and (4).

D. Statistical Analysis

The agreement between the estimated AHI by the CNN architecture (AHICNN) and the 

actual AHI from PSG (AHIPSG) was assessed by means of scatter and error distribution 

plots, as well as the intra-class correlation coefficient (ICC) and root mean square error 

(RMSE). The overall agreement of AHICNN to estimate the severity of OSA was assessed 

by means of the confusion matrices, as well as Cohen’s kappa index (kappa) and 4-class 

accuracy. ICC, RMSE, kappa, and 4-class accuracy were also obtained for ODI3 and the 

AHI estimated by the MLP (AHIMLP). Additionally, the diagnostic ability of AHICNN was 

assessed for each of the AHI cutoffs that define the OSA severity degrees (1, 5, and 10 

e/h) by means of sensitivity (Se, percentage of OSA positive patients rightly classified), 

specificity (Sp, percentage of OSA negative children rightly classified), positive predictive 

value (PPV, proportion of positive test results that are true positives), negative predictive 

value (NPV, proportion of negative test results that are true negatives), positive likelihood 

ratio (LR+, Se/(1-Sp)), negative likelihood ratio (LR-, (1-Se)/Sp), and accuracy (Acc, 

percentage of subjects correctly classified).

IV. RESULTS

A. Training and validation sets

Training and validation sets were used to optimize the CNN architecture. BO-TPE was used 

to find the optimum values of the hyperparameters of the CNN architecture: MC, LC, λC, 

pdrop, and δ. The search space of the BO-TPE is shown in Table II. The training set was 

used to train the CNN models at each iteration of the BO-TPE procedure, whereas kappa 

was obtained in the validation set as the objective function to optimize. The training of most 

of the CNNs was finished by early stopping criterion after 80–120 epochs, thus contributing 

to reduce the training time. The results of the BO-TPE algorithm are shown in Figure 2. For 

each hyperparameter, the values of kappa in the validation set are given. These values are 

represented in a boxplot. It can be seen that there is not a high dependence of kappa on the 

hyperparameter values. Slightly higher overall kappa values are obtained when λC = 6 and 

LC = 5, as well as with increasing values of MC and decreasing values of δ, whereas pdrop 

had little effect on the value of kappa. Finally, MC = 64, LC = 5, λC = 6, pdrop = 0.1, and δ 
= 1.5 were obtained as the optimum values for the hyperparameters, since this combination 

reached the highest kappa, as shown in Table II.

B. Test set

1) Diagnostic performance of the CNN model.—Figure 3 shows the scatter plots 

of AHICNN compared to AHIPSG in the CHAT, UofC and BUH test sets, respectively. 
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ICC and RMSE are also shown. Points of the scatter plot of AHICNN in the CHAT test 

set are more concentrated near the diagonal line, which is reflected in a higher agreement 

(ICC=0.960 and RMSE=2.89) than in the UofC (ICC=0.917 and RMSE=5.45) and BUH test 

sets (ICC=0.583 and RMSE=10.44). Figure 4 shows the error distribution plots of AHICNN 

in the three test sets. Mean error was low in the three test sets. Nonetheless, 95% confidence 

intervals of AHICNN were higher in the UofC (21.69 e/h) and BUH (28.84 e/h) test sets than 

in the CHAT test set (12.80 e/h). In addition, there are some outliers in AHICNN that can be 

observed in the UofC and BUH sets, as reported by the maximum error.

Fig. 5 shows the confusion matrices of AHICNN, evaluated in the three test sets. AHICNN 

rightly assigned 72.8% (227/312), 60.2% (236/392), and 61.0% (141/231) of subjects in 

the three test sets to their actual OSA severity group. Table III shows diagnostic ability 

statistics of AHICNN for the AHI severity cutoffs of 1, 5, and 10 e/h, which are derived 

from the confusion matrix. Notice that AHICNN reached a higher kappa in the CHAT test 

set (0.515) than in the UofC (0.422) and BUH test sets (0.423). Higher performance metrics 

were obtained in the CHAT test set for the three AHI cutoffs, especially for the AHI cutoffs 

of 5 and 10 e/h.

2) Comparison with conventional approaches—Table IV shows the comparison of 

AHICNN with ODI3 and AHIMLP in the three test sets. It can be seen that AHICNN showed a 

higher diagnostic capability than ODI3 and AHIMLP in the CHAT, UofC, and BUH test sets, 

as derived from the values of ICC, RMSE, kappa, and 4-class accuracy.

Table V summarizes the comparison of the performance of our proposal with state-of-the-art 

studies aimed at simplifying the detection of pediatric OSA and its severity using the 

SpO2 signal [11]–[18]. Notice that none of the studies that employed a validation approach 

reported a higher accuracy for the AHI cutoffs of 5 e/h and 10 e/h than the proposed 

CNN-based architecture in the CHAT, UofC, and BUH datasets.

V. DISCUSSION

In the present study, we assessed the potential usefulness of a new CNN architecture to 

enhance the diagnostic ability of the oximetry signal in the context of pediatric OSA. A 

CNN-based deep-learning model was built and trained to estimate pediatric OSA severity 

using raw SpO2 data. This model was validated in a database of 3196 SpO2 recordings 

from three different datasets. The proposed CNN model showed a high diagnostic ability, 

improving the diagnostic performance of ODI3 and AHIMLP.

A. CNN architecture

To the best of our knowledge, this is the first study that provides a deep-learning model able 

to automatically detect pediatric OSA and its severity from the oximetry signal. Our results 

showed that that the proposed CNN-based architecture is able to discern patterns linked 

with apneic events present in the oximetry signal of children with OSA. Recent studies have 

also shown the usefulness of deep-learning to analyze different physiological signals from 

PSG in adult OSA patients [21]. In this regard, the studies developed by Biswal et al. [43], 

Choi et al. [44], Van Steenkiste et al. [45], and Nikkonen et al. [46] reached accuracies in 
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the range 57%−91% to classify subjects into the four adult OSA severity degrees (AHI<5, 

5≤AHI<15, 15≤AHI<30, and AHI≥30 e/h). Despite some of these studies reported higher 

accuracies, they focus on adult patients, whereas our study applies a CNN to the context 

of pediatric OSA. In this respect, scoring rules for apnea and hypopnea events are more 

restrictive in children than in adults [31]. In addition, AHI cutoffs for mild, moderate and 

severe OSA are lower in children (1, 5, and 10 e/h in contrast to 5, 15, and 30 e/h), which 

changes the diagnosis and treatment of these patients [3], [32], [47]. Due to these remarkable 

differences, automated diagnosis of OSA is more challenging in children and thus higher 

performances are commonly reached in adult patients.

These aforementioned studies in the context of adult OSA applied different deep-learning 

architectures to raw PSG signals: recurrent neural networks (RNN) [43], [45], multi-layer 

perceptron (MLP) [46], and CNN [44]. From these architectures, CNN hold advantage 

over RNN and MLP in terms of computational cost, since they do not include recurrent 

and/or fully-connected layers. This facilitates the integration of the proposed architecture 

in wearable and portable devices. In order to corroborate the suitability of CNNs for our 

problem, we also applied the RNN architecture proposed by Van Steenkiste et al. [45]. 

This RNN architecture did not obtain a better performance than our CNN model (AHICNN 

outperformed the RNN architecture in terms of ICC: 0.960 vs 921, 0.917 vs 0.812, and 

0.583 vs 0.480 in the CHAT, UofC, and BUH test sets), while having a higher computational 

cost. This agrees with a recent review of deep learning for time series classification (TSC), 

where CNN-based architectures achieved the highest performance for TSC in an experiment 

where more than 8000 deep-learning models were trained and assessed on 97 different time 

series datasets [22].

With respect to the hyperparameters of the CNN architecture, Fig. 2 shows the low 

dependence of kappa from the validation set on the optimum hyperparameter values, 

which highlights the reliability of the proposed solution to automatically learn OSA-related 

features from the oximetry signal. We also assessed the effect of varying the segment size 

and the overlap between segments. Different values of the segment size (5 min, 10 min, 30 

min, and 60 min), and overlap (50%, and 90%) were tested. Regarding segment size, none 

of the tested values achieved higher kappa in the validation set than the segment size of 

our optimum CNN model (20 min), which is appropriate to detect clusters of desaturations 

[27]. Changing the overlap between segments did not result in a better performance while 

significantly increased training and validation process.

B. Diagnostic performance

As aforementioned, the AHI estimated by our proposed optimum CNN architecture 

(AHICNN) outperformed a conventional clinical index ODI3 as well as a classical feature

engineering approach (AHIMLP) in the three test sets. Our AHICNN achieved a higher 

overall agreement with AHIPSG, as well as a higher diagnostic capability to predict pediatric 

OSA severity. In contrast to traditional clinical (ODI3) and feature-engineering (AHIMLP) 

approaches, AHICNN automatically learns features from the SpO2 recordings associated to 

apneic events through a multi-layer architecture that provides a high level of abstraction. 
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According to our results, CNNs can detect additional information on the OSA-related 

changes occurring in the SpO2 signal that helps to enhance its diagnostic ability.

Looking at the confusion matrices of Fig. 5, it can be seen that 95.2% (BUH), 96.1% 

(UofC), and 100% (CHAT) of class 1 (no-OSA) patients have an estimated AHICNN < 5 

e/h (class 1 or class 2). In addition, 94.4% (BUH), 97.8% (UofC), and 100% (CHAT) of 

subjects with an AHICNN≥5 e/h actually show an AHIPSG ≥1 e/h, whereas 90.6% (BUH), 

96.2% (UofC), and 100% (CHAT) predicted as severe OSA (AHICNN ≥10 e/h) are at least 

moderate OSA patients. Hence, a possible screening protocol can be derived to show the 

clinical usefulness of our proposal as follows: i) if AHICNN <1 e/h, discard the presence of 

OSA because most of these patients (96.2% in BUH, 98.2% in UofC, and 100% in CHAT) 

will have an AHIPSG <5 e/h. If symptoms persist, these children may be eventually referred 

to PSG, as recommended by Alonso-Álvarez et al [3]; ii) if 1≤AHICNN<5 e/h, suggest 

PSG, since doubts arise about the actual diagnosis of the patients; iii) if 5≤AHICNN<10 

e/h, consider treatment, since most probably (86.4% in BUH, 96.7% in UofC, and 100% in 

CHAT) these subjects have at least a mild degree of OSA; iv) if AHICNN≥10 e/h, suggest 

treatment, since most of these children (90.6% in BUH, 96.2% in UofC, and 100% in 

CHAT) have an AHIPSG ≥5 e/h, and also consider a further observation of these patients, 

since they are prone to have residual OSA after PSG [1]. This screening protocol would 

avoid the need for 45.9% (BUH), 50.0% (UofC), and 73.7% (CHAT) of complete PSGs, 

thus contributing to a reduction in the waiting lists and medical costs associated with the 

diagnosis of OSA, as well as to provide a more suitable diagnostic procedure for children.

Comparing the results of the proposed approach in the three test sets, it is important to 

highlight the high diagnostic performance obtained by AHICNN in CHAT, where there is a 

higher increase in the performance of AHICNN with respect to ODI3 and AHIMLP in terms 

of overall accuracy, kappa, RMSE, and ICC. The proposed CNN model also performed well 

in the UofC and BUH datasets. Despite not being as remarkable as in the CHAT dataset, 

AHICNN also outperformed ODI3 and AHIMLP in most of the performance metrics. As it 

can be seen in the scatter plots (Fig. 3), error distribution plots (Fig. 4), and confusion 

matrices (Fig. 5), AHICNN performed better in the CHAT dataset than in the UofC and 

BUH datasets. However, the results are still remarkable considering that the optimum CNN 

model was trained in the CHAT dataset. In this sense, Collop et al. [48] state that there is 

a high variability in the scoring of polysomnographies among different sleep technologists, 

which may affect the external assessment of our proposed deep-learning methodology in two 

independent databases. In the current work, we tried to minimize this variability by using a 

validation set composed of subjects from the three datasets to optimize the hyperparameters 

of the CNN architecture.

The varying diagnostic performance could also be due to some differences in the clinical 

characteristics among datasets. As observed in the scatter plots (Fig. 3), AHI from PSG 

has a different distribution in each dataset. The mean values of AHI are 4.2 e/h, 9.3 e/h, 

and 5.9 e/h in the CHAT, UofC and BUH test sets. In addition, interquartile range are also 

different: 0.4–1.7 in the CHAT dataset, 1.5–9.3 in the UofC dataset, and 0.6–5.3 in the 

BUH dataset. The age of children is also different in each dataset. CHAT is composed of 

children ranging 5 to 10 years of age, whereas UofC dataset is composed of children from 
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0 to 13 years of age and children in the BUH dataset range from 0 up to 18 years of age. 

Sampling rate values of SpO2 recordings also vary among datasets: (i) 1, 2, 10, 12, 16, 200, 

256, and 512 Hz in the CHAT dataset; (ii) 25, 200, and 500 Hz in the UofC dataset; (iii) 
200 Hz in the BUH dataset. Finally, the population groups of CHAT and UofC datasets 

are children from the United States of America (USA), whereas BUH dataset is composed 

of Spanish patients. In this respect, there are differences in race and obesity prevalence 

between these countries. Health system is also different: mostly public in Spain vs. private 

in USA. This influences the socioeconomic level of the patients, thus having a considerable 

impact on the health condition. Consequently, these differences in sampling rate values, age 

range, AHI distribution, and patient characteristics among countries may have resulted in 

a lower diagnostic performance in the UofC and BUH datasets. This agrees with previous 

studies that also reported differences in the diagnostic performance among sleep datasets 

with different clinical characteristics [43], [46], [49].

C. Comparison with state-of-the-art studies

Table V shows the details of previous studies focused on the analysis of the SpO2 signal 

in the automated detection of pediatric OSA and its severity [11]–[18]. The first studies 

focused on the use of conventional oximetric indices [11], [12]. Nonetheless, these studies 

did not employ a hold-out approach to further assess their methodological approaches.

Recent studies focused on the use of automated signal processing and machine learning 

methods to enhance the diagnostic ability of the oximetry signal [13]–[18]. These studies 

followed a three-stage feature-engineering methodology to detect pediatric OSA and its 

severity [13]–[18]. The diagnostic accuracies reported in these studies ranged between 

75.2% and 85.5% Acc for an AHI cutoff of 1 e/h, 79.4%−82.8% Acc using an AHI cutoff 

of 5 e/h, and 85.3%−91.1% using an AHI cutoff of 10 e/h. From these studies, only 

Hornero et al. [14], Xu et al. [18], and Vaquerizo-Villar et al. [15] evaluated the diagnostic 

performance of an AHI estimation model for the common AHI cutoffs of 1, 5, and 10 e/h. 

As aforementioned, our optimum CNN model showed a higher diagnostic performance in 

the CHAT, UofC, and BUH datasets than state-of-the-art studies for the AHI cutoffs of 

5 and 10 e/h. In addition, a higher Sp for the AHI cutoff of 1 e/h was obtained in the 

CHAT, UofC, and BUH datasets than the reported by Xu et al. [18] and Vaquerizo-Villar et 
al. [15], which is useful to discard the presence of OSA in pediatric patients. Beyond the 

superior performance of our CNN model, it uses raw data, i.e., does not require neither prior 

pre-processing nor human-driven assumptions regarding the SpO2 information needed.

D. Limitations

In spite of the promising results of our proposal, some limitations should be considered. 

First, the CNN model training procedures were conducted using only the CHAT database, 

since the other two datasets do not contain the annotation files with the time locations 

of apneic events. This, together with the differences in sampling rate values, age range, 

AHI distribution, and patient characteristics among countries, may have resulted in a lower 

diagnostic performance in the UofC and BUH datasets. Nonetheless, our proposed approach 

showed a higher diagnostic ability than a conventional clinical index, ODI3, as well as 

a classical feature-engineering approach, AHIMLP, in all the datasets. Another limitation 
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is that different optimization runs could result in different values of the hyperparameters, 

as shown in Fig. 2. However, preliminary analysis on our data showed that kappa values 

in the validation set were similar among different runs, which highlights the reliability 

of our CNN architecture. Regarding the explanation of the features extracted by the 

CNN, a new limitation arises. In this regard, the application of methods for explainable 

deep-learning models would help to further understand the perturbations in oximetry 

dynamics caused by apneic events, as well as the influence of the different elements of 

the CNN architecture. Future research may also focus on the use of pretrained deep-learning 

architectures especially suited for the time series classification field, which might increase 

the diagnostic performance of traditional architectures based on CNN and RNN, analogous 

to the pretrained deep-learning networks existing in the image processing field [50]. Another 

limitation is that we used the AHI without including central sleep apnea (CSA) events, as 

originally conducted in the study that designed the CHAT database [30]. In this respect, 

our proposal could also be used to estimate other physiological parameters, such as the 

apnea index, obstructive apnea index, central apnea index, and/or ODI. Additionally, the 

use of SpO2 together with other physiological signals from PSG may help to improve the 

diagnostic ability of our proposal at the cost of higher complexity in the test, since some 

physiological perturbation of apneic events may not be detected by the oximetry signal alone 

[1]. Finally, another future goal would be further validation of our proposed methodology in 

a database of oximetry signals recorded at home.

VI CONCLUSION

In summary, we investigated the ability of a novel deep-learning model based on CNN 

to automatically detect pediatric OSA and its severity from the raw oximetry signal. 

Our results suggest that deep learning is an appropriate tool to automatically learn 

discriminative features from oximetry dynamics associated to apneic events. The proposed 

CNN architecture reached a high diagnostic performance, outperforming the ODI3, a 

clinical approach, as well as the AHIMLP from a conventional feature-engineering approach. 

In addition, we achieved higher performance than the reported by previous studies, 

particularly for moderate-to-severely affected children. The extensive validation of our 

proposal in three independent datasets as well as the design of a screening protocol highlight 

the applicability of our results. Therefore, we conclude that deep-learning techniques could 

be potentially used to enhance the diagnostic ability of the oximetry signal in the context of 

pediatric OSA.
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Fig. 1. 
Overview of the proposed methodology. (a) Signals segmentation, (b) CNN architecture, and 

(c) AHI estimation.
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Fig. 2. 
Results of the BO-TPE for every hyperparameter in the validation set.
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Fig. 3. 
Scatter plots comparing AHICNN with AHIPSG in the CHAT, UofC, and BUH test databases.
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Fig. 4. 
Error distribution of AHICNN in the CHAT, UofC, and BUH test databases.
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Fig. 5. 
Confusion matrices of AHICNN in the CHAT, UoFC, and BUH test databases. 1: No OSA 

(AHI < 1 e/h); 2: Mild OSA (1 ≤ AHI < 5 e/h); 3: Moderate OSA (5 ≤ AHI < 10 e/h); 4: 

Severe OSA (AHI≥10 e/h).
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TABLE II

SEARCH SPACE OF BO-TPE FOR THE CNN HYPERPARAMETERS

Hyperparameter Search space Optimum value

M C 8, 16, 32, 64 64

L C 3, 5, 7 5

λ C 4, 5, 6, 7, 8 6

P drop 0:0.025:0.3 0.1

δ 0.5:0.5:6 1.5

BO-TPE= Bayesian optimization with tree-structured Parzen estimator; CNN = Convolutional neural network; MC = number of filters; LC = 

kernel size; λC = number of convolutional blocks; Pdrop = dropout probability; δ =delta value of the Huber loss
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TABLE IV

DIAGNOSTIC PERFORMANCE OF AHICNN VS. ODI3 AND AHIMLP IN THE CHAT, UOFC AND BUH TEST DATABASES

Test set ICC RMSE 4-class kappa 4-class Accuracy (%)

CHAT

AHICNN 0.960 2.89 0.515 72.8

ODI3 0.871 4.63 0.417 65.1

AHIMLP 0.832 5.51 0.377 63.3

UofC

AHICNN 0.917 5.45 0.422 60.2

ODI3 0.861 6.21 0.372 56.6

AHIMLP 0.890 6.02 0.381 56.9

BUH

AHICNN 0.583 10.44 0.423 61.0

ODI3 0.520 10.64 0.369 57.6

AHIMLP 0.500 11.05 0.306 52.4

AHICNN = apnea-hypopnea index (AHI) estimated by our convolutional neural network architecture, ODI3 = 3% oxygen desaturation index, 

AHIMLP = AHI estimated by the multi-layer perceptron neural network trained with features from the blood oxygen saturation (SpO2) signal, 

ICC = intra-class correlation coefficient, RMSE = root mean squared error, kappa = Cohen’s kappa index, CHAT = Childhood Adenotonsillectomy 
Trial, UofC = University of Chicago, BUH = Burgos University Hospital.
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TABLE V

SUMMARY OF THE STATE-OF-THE-ART STUDIES IN THE CONTEXT OF PEDIATRIC OSA DETECTION USING SPO2 RECORDINGS.

Studies

Number of 
subjects 
(Total 

dataset/test 
set)

AHI 
(e/h)

Methods (Feature/ 
classification) Validation Se (%) Sp 

(%)
Acc 
(%)

Tsai et al. [11] 148/148 1 ODI4/ Thresholding No 77.7 88.9 79.0

5 83.8 86.5 85.1

10 89.1 86.0 87.1

Pia-Villa et al. [12] 268/268 1 Clusters of desaturations and 
clinical history/ Thresholding

Direct validation* 91.6 40.6 85.8

5 40.6 97.9 69.4

Álvarez et al. [13] 50/50 1 Statistical moments, spectral, 
nonlinear features, and 
classical indices /LR

Bootstrapping 89.6 71.5 85.5

3 82.9 84.4 83.4

5 82.2 83.6 82.8

Hornero et al. [14] 4191/3602 1 Statistical, spectral, nonlinear 
features, and ODI3 / 

Regression MLP

Training-test 84.0 53.2 75.2

5 68.2 87.2 81.7

10 68.7 94.1 90.2

Vaquerizo-Villar et al. 
[15]

298/75 5 Bispectrum, spectral features, 
ODI3,and anthropometric 

variables / Multiclass MLP

Feature 
optimization
training-test

61.8 97.6 81.3

10 60.0 94.5 85.3

Crespo et al. [16] 176/176 1 Statistical moments, spectral, 
nonlinear features, and 

classical indices/ LDA, QDA, 
and LR

Bootstrapping 93.9 37.8 84.3

3 74.6 81.8 77.7

5 70.0 91.4 82.7

Vaquerizo-Villar et al. 
[17]

981/392 1 Nonlinear features and ODI3 / 
Regression MLP

Training-test 97.1 23.3 82.7

5 78.8 83.7 81.9

10 77.1 94.8 91.1

Xu et al. [18] 432/432 1 Statistical, spectral, nonlinear 
features, and ODI3 / 

Regression MLP

Training-test 95.3 19.1 79.6

5 77.8 80.5 79.4

10 73.5 92.7 88.2

Our proposal: CHAT 
set

3196/312 1 CNN architecture Training-validation
test

71.2 81.8 77.6

5 83.7 100 97.4

10 83.9 99.3 97.8

Our proposal: UofC set 3196/392 1 CNN architecture Training-validation
test

90.8 36.4 80.1

5 76.0 88.1 83.9

10 79.5 95.8 92.3

Our proposal: BUH set 3196/231 1 CNN architecture Training-validation
test

88.8 53.2 79.2

5 61.1 93.7 83.5

10 65.0 96.9 91.3
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*
Direct validation of a scoring criteria against AHI from polysomnography. CNN = Convolutional Neural Networks, AHI = apnea-hypopnea index, 

Se = sensitivity, Sp = specificity, Acc = accuracy, ODI3 = 3% oxygen desaturation index, ODI4 = 4% oxygen desaturation index, LR = Logistic 
Regression, MLP = Multi-layer perceptron, LDA = Linear Discriminant analysis, QDA = Quadratic discriminant analysis, CHAT = Childhood 
Adenotonsillectomy Trial, UofC = University of Chicago, BUH = Burgos University Hospital.
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