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ABSTRACT

Background: Recently, mesenchymal stem cells therapy has been performed in dogs, 
although the outcome is not always favorable.
Objectives: To investigate the therapeutic efficacy of mesenchymal stem cells (MSCs) using 
dog leukocyte antigen (DLA) matching between the donor and recipient in vitro.
Methods: Canine adipose-derived MSCs (cA-MSCs) isolated from the subcutaneous tissue 
of Dog 1 underwent characterization. For major DLA genotyping (DQA1, DQB1, and DRB1), 
peripheral blood mononuclear cells (PBMCs) from two dogs (Dogs 1 and 2) were analyzed by 
direct sequencing of polymerase chain reaction (PCR) products. The cA-MSCs were co-cultured 
at a 1:10 ratio with activated PBMCs (DLA matching or mismatching) for 3 days and analyzed for 
immunosuppressive (IDO, PTGS2, and PTGES), inflammatory (IL6 and IL10), and apoptotic genes 
(CASP8, BAX, TP53, and BCL2) by quantitative real-time reverse transcriptase-PCR.
Results: cA-MSCs were expressed cell surface markers such as CD90+/44+/29+/45− and 
differentiated into osteocytes, chondrocytes, and adipocytes in vitro. According to the 
Immuno Polymorphism Database, DLA genotyping comparisons of Dogs 1 and 2 revealed 
complete differences in genes DQA1, DQB1, and DRB1. In the co-culturing of cA-MSCs 
and PBMCs, DLA mismatch between the two cell types induced a significant increase in the 
expression of immunosuppressive (IDO/PTGS2) and apoptotic (CASP8/BAX) genes.
Conclusions: The administration of cA-MSCs matching the recipient DLA type can alleviate 
the need to regulate excessive immunosuppressive responses associated with genes, such 
as IDO and PTGES. Furthermore, easy and reliable DLA genotyping technology is required 
because of the high degree of genetic polymorphisms of DQA1, DQB1, and DRB1 and the low 
readability of DLA 88.
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INTRODUCTION

In regenerative medicine, mesenchymal stem/stromal cells (MSCs) plasticity facilitated their 
therapeutic use for diseases that are difficult to treat using modern medicine in veterinary 
hospitals [1]. Additionally, MSC therapy is gaining interest due to the increasing prevalence 
of immune-related diseases, which exert immunomodulatory, immunosuppressive, and 
anti-inflammatory effects [2,3]. Canine adipose-derived MSCs (cA-MSCs) or bone marrow-
derived MSCs for the treatment of atopic dermatitis and inflammatory bowel disease are 
being evaluated [1,2].

Among the major histocompatibility complex (MHC) classes, classes I and II are responsible 
for inducing major adaptive immune responses. In general grafting, human leukocyte 
antigen (HLA) is used in human MHC matching between a donor and recipient; it is a 
major factor that reduces serious postoperative complications, such as graft versus host 
disease (GvHD), graft failure, and immune rejection. However, HLA expression differs by 
cell type. Stem cells, for example, exhibit low HLA class I expression and lack HLA class II 
[4]. Similarly, in MSCs, HLA class I expression and HLA class II silencing did not affect the 
response of CD4+ T cells as key adaptive immune response factors [5,6].

Allogeneic MSCs can be therapeutically effective; they can be collected through in vivo cultures 
of young and healthy cell sources and cryopreserved, reducing the waiting time for treatment in 
seriously ill patients [1]. However, allogeneic MSCs pose certain risks, including graft rejection 
and GvHD. Autologously derived cells for MSC therapy do not induce an immune response. 
There is no risk of GvHD or the need to identify a donor; however, the source of cells may 
be limited due to disease or aging, and therapy requires cell culturing and expansion in vitro. 
Although MSCs have immunomodulatory capacity, they can be reactivated under in vitro culture 
conditions, which can induce negative results during in vivo therapy [4,7,8].

Canines produce dog leukocyte antigens (DLAs); like HLA, the gene coding for DLA is 
located on chromosome 12. DLA plays a role in immune recognition of donor and recipient 
materials, and DLA class II MHCs are highly polymorphic [9,10]. However, early studies of 
MSC therapy did not consider DLA matching between donors and recipients, and conflicting 
results have been reported [11-14].

Based on DLA genotyping analyses, this study aimed to evaluate whether canine MSCs 
transfused as autografts or allografts in vitro induced immune responses, such as 
immunosuppression and inflammation-induced cytokine secretion. Adipose tissues were 
selected as the source of MSCs for this study, as the guardians of the animals were less likely 
to object to adipose tissue collection. cA-MSCs were co-cultured with peripheral blood 
mononuclear cells (PBMCs) with a matched or mismatched DLA genotype. Immunosuppressive 
and inflammatory gene expression was analyzed in MSCs and treated PBMCs. Additionally, this 
study confirmed the validity of the previously reported DLA genotyping methods.

MATERIALS AND METHODS

Experimental materials
Subcutaneous adipose tissues and peripheral blood (Orient Bio Co. Ltd., Korea) of two 
healthy 4-month-old male dogs (Covance Beagles; Covance Inc., USA) were used in this 

2/14https://vetsci.org https://doi.org/10.4142/jvs.2021.22.e63

Allogeneic canine adipose-derived mesenchymal stem cells induce immunosuppression

https://orcid.org/0000-0002-0537-6205
https://orcid.org/0000-0002-0537-6205
https://orcid.org/0000-0002-0651-0306
https://orcid.org/0000-0002-0651-0306
https://orcid.org/0000-0003-3129-2942
https://orcid.org/0000-0003-3129-2942
https://orcid.org/0000-0002-0887-8200
https://orcid.org/0000-0002-0887-8200


study, which was approved by the Institutional Animal Care and Use Committee of the 
National Institute of Animal Science (NIAS20181426).

Chemicals and media
All chemicals and media were purchased from Sigma Aldrich (USA) and Thermo Fisher 
(USA). Any exceptions are indicated.

Canine cell isolation
Cells were isolated from canine subcutaneous adipose tissue [15], using a combination of 
digestion with 0.25% collagen type I (Millipore, USA) and sequential filtration using 100 and 
40 µm cell strainers (Corning Inc., USA). Isolated cells were seeded on 35 mm dishes and 
cultured in advanced Dulbecco's Modified Eagle Medium (ADMEM) containing 10% fetal 
bovine serum and 1% penicillin-streptomycin in a humidified 5% CO2 incubator at 38.5°C for 
1 h. The culture medium was exchanged with fresh ADMEM to remove non-adherent cells 
every 3 days. Rapidly attached cells were cultured until 80% confluence at a sub-cultured 1:4 
ratio. Cells were cultured until passage 5.

Alkaline phosphatase (ALP) activity staining
At passage 2, cells grown in 4-well dishes (Nunc, Denmark) were used for ALP activity 
staining. Cells were fixed with 4% formaldehyde and stained using an ALP chromogen kit 
(ab7468; Abcam, UK) for 1 h at room temperature. ALP-positive reactions, assessed under an 
inverted microscope, were indicated by the appearance of purple-red.

Flow cytometric cluster of differentiation (CD) marker analysis
Cells at passage two were detached with 0.25% trypsin-ethylenediaminetetraacetic acid and 
washed with phosphate-buffered saline (PBS) (pH 7.2). The concentration of suspended 
single cells was adjusted to 1 × 106 cells/mL, followed by incubation with anti-CD90-APC 
(Invitrogen, USA), anti-CD44-FITC (Santa Cruz Biotechnology, USA), anti-CD29-FITC 
(Thermo Fisher), and anti-CD45-Alexa Fluor488 (Bio-Rad, USA) antibodies at a 1:100 dilution 
in the dark for 1 h. The following isotype controls were used: immunoglobulin (Ig) G2b-
APC (Invitrogen) for CD90, IgG2b-FITC (Santa Cruz Biotechnology) for CD44, IgG-FITC 
(Thermo Fisher) for CD29, and IgG2b-Alexa Fluor488 (AbD Serotec; Bio-Rad) for CD45. Flow 
cytometric (FACSCanto; Becton-Dickinson, USA) analysis was performed by reading 10,000 
cells/sample. Data were acquired using FlowJo software (Tree Star, USA).

Pluripotent marker analysis
Cells at passage two were fixed with 4% formaldehyde for 5 min, washed with PBS containing 
0.1% Triton X-100, and incubated in 1:100 dilutions of specific antibodies with dog species 
reactivity, including anti-Oct 3/4 (sc9081; Santa Cruz Biotechnology, Japan), anti-SRY-
box 2 transcription factor (SOX2) (SOX2 Monoclonal Antibody [20G5]; Thermo Fisher) 
or anti-Nanog homeobox (NANOG, ab77095; Abcam) at 4°C overnight. Subsequently, 
cells were incubated in the following secondary antibody solutions for 1 h: Alexa Fluor 
594-conjugated goat anti-rabbit IgG H&L (ab-150080; Abcam, 1:500) for Oct 3/4, Alexa Fluor 
488-conjugated goat anti-mouse IgG (H+L) (A28175; Thermo Fisher, 1:200) for SOX2 or Alexa 
Fluor 488-conjugated donkey anti-goat IgG H&L (ab150129; Abcam, 1:200) for NANOG. 
Counterstaining was performed with 4′,6-diamino-2-phenylindole (DAPI) (Life Technologies, 
USA) for 1 h, followed by mounting with VECTASHIELD Antifade Mounting Media (Vector 
Laboratories, USA) and analysis under confocal laser scanning microscopy (Zeiss LSM880 
Airyscan; Oberkochen, Germany).
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In vitro differentiation assay
To induce adipogenesis and osteogenesis, cells approaching up to 80% confluence on 35 
mm dishes were differentiated using Adipogenesis (A1007001; Gibco StemPro, USA) or 
Osteogenesis Kits (A1007201; Gibco StemPro) according to the manufacturer's protocols for 
4 weeks [16]. A 3-dimensional pellet culture system was adapted for chondrogenesis [17]. The 
pellets were formed with 1 × 106 cells in a 15 mL conical tube, and cells were differentiated 
with a Chondrogenesis Kit (A1007101; Gibco StemPro) for 4 weeks. Completely differentiated 
cell types were divided into groups for total RNA extraction and specific staining following 
fixation with 4% formaldehyde for 5 min.

Cells differentiated using an adipogenesis or osteogenesis kit were stained with 0.5% Oil Red 
O or Alizarin Red S for 1 h, respectively, and washed with PBS. The red color was observed as 
a positive reaction under a light microscope.

Pellets were sectioned with a cryotome (Cryomicrotome, Thermo Fisher) at a thickness 
of 8–10 µm and stained with Alcian blue solution (Lifeline Cell Technology, Oceanside, 
MD, USA) for 1 h to detect cartilage glycosaminoglycans. Sectioned samples were also 
subjected to double immunofluorescence labeling with anti-collagen type II (Abcam, 1:100) 
and anti-aggrecan monoclonal antibodies (Thermo Fisher, 1:100) at 4°C overnight, then 
incubated in the following secondary antibody solutions: goat anti-rabbit IgG H&L Alexa 
Fluor 594 (Abcam) and goat anti-mouse IgG (H+L) Alexa Fluor 488 (Thermo Fisher) for 1 h 
at 37°C. Counterstaining was performed with DAPI (Life Technologies) for 5 min at room 
temperature, followed by mounting with VECTASHIELD Antifade Mounting Media (Vector 
Laboratories) and observation under a light or confocal laser scanning microscopy (Zeiss 
LSM880 Airyscan; Oberkochen).

DLA genotyping of PBMCs
PBMC isolation from the peripheral blood of dogs was performed according to the 
manufacturer's protocol using Ficoll-Paque PREMIUM 1.073 (GE Healthcare, USA). 
Recovered PBMCs were frozen at 1 × 107 cells/mL in 10% dimethyl sulfoxide (DMSO) and 
stored in liquid nitrogen. Total genomic DNA from PBMCs (1 × 107 cells) was extracted 
using DNeasy Blood & Tissue Kits (Qiagen, Germany). Polymerase chain reaction (PCR) 
was performed using specific primers and methods for exon 2 of DLA-DQA1, DLA-DQB1, 
and DLA-DRB1, and for exons 1–3 of DLA-88 [18,19]. Genotyping of each PCR product was 
performed by direct sequencing. Alignment of allele sequences was performed using SeqMan 
software (DNASTAR Co, USA). The allele names were defined using the MHC Immuno 
Polymorphism Database (EMBL-EBI, UK).

Mixed lymphocyte reaction test
PBMCs were pre-activated with phytohemagglutinin (PHA, 5 µg/mL) for three days. cA-MSCs 
were seeded at 0.2 × 105 cells/well in 24-well plates (Nunc) and cultured for 6 h. Subsequently, 
2 × 105 PBMCs with or without pre-activation were seeded onto the cA-MSCs in each well 
and co-cultured for 3 days. At 1-day intervals, cA-MSCs and PBMCs were harvested for 
quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis. 
Samples harvested from the same experimental group were pooled for total RNA extraction.

qRT-PCR
According to the manufacturer's protocol, total RNA was extracted using RNase Mini 
Kits (Qiagen). cDNA was synthesized from 500 ng of total RNA using Omniscript RT 
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Kits (Qiagen). qRT-PCR reactions were performed using the StepOnePlus Real-Time PCR 
system (Applied Biosystems, USA) with SYBR Green PCR master mix (Applied Biosystems), 
using each of the gene-specific forward and reverse primers (Table 1). Data were analyzed 
using the ΔΔCT method [20]. The cycling protocol was as follows: 40 cycles at 95°C for 15 s, 
60°C for 1 min, melting curve stage at 95°C for 15 sec, 60°C for 1 min, and 95°C for 15 sec. 
Hypoxanthine-guanine phosphoribosyltransferase (HPRT) was used as the endogenous 
control gene.

Statistical analysis
Independent t-tests were used to compare 2 groups and comparisons of more than 2 groups 
were conducted using a one-way analysis of variance (ANOVA). Significant main effects were 
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Table 1. The list of primer sequences for real-time reverse transcriptase polymerase chain reaction experiments
Gene 5′-3′ mRNA sequence Accession number
Octamer-binding transcription factor 4/POU class 5 homeobox 1 (OCT4) Forward: CAG ATC AGC CAC ATT GC XM 538830.4

Reverse: CAC ACT CGG ACC ACA TCC TTC T
SRY-box transcription factor 2 (SOX2) Forward: CCC CTT TAT TTT CCG TAG TTG TAT TT XM 005639752.4

Reverse: GAT TCT CGG CAG ACT GAT TCA A
Nanog homeobox (NANOG) Forward: TCA GGA CAG CCC GGA TTC T XM 038437912.1

Reverse: CCA GAG GTG GGT GGG AGT TT
Peroxisome proliferator activated receptor gamma (PPARγ) Forward: GAA AAG CTG TTG GCG GAG AT NM 001024632.2

Reverse: CCG GAG ATC AGC CGA CTC T
Lipoprotein lipase (LPL) Forward: GCC GTG GAG TGG GAA CAG XM 005635734.4

Reverse: GCC CGA AGT GGC TGG TT
Leptin (LEP) Forward: ACC GTA TGG GTG TCC TTT ATC CT NM 001003070.1

Reverse: GAA GAG TGG CTC TGT GGT GTG A
Alkaline phosphatase (ALP) Forward: GGC GTC CAC GAG CAG AAC NM 001197137.1

Reverse: CGA TGC AGG CCG CAT AA
Secreted phosphoprotein 1 (SPP1) Forward: ACG AGT CTG ATG AAT CCG ATG AA XM 003434024.5

Reverse: AAT TGG GTT GCT GGA ATG TCA
Runt-related transcription factor 2 (RUNX2) Forward: AAG CCC TCC TGT AGG ATG CA XM 038683679.1

Reverse: ACG CTT GAG AAT TTG CCA TGT
SRY-box transcription factor 9 (SOX9) Forward: GCG TGC AGC ACA AGA AAG AC NM 001002978.1

Reverse: GGC CGT TCT TCA CCG ACT T
Aggrecan (ACAN) Forward: CCG AGG CAA CGT GAT CCT NM 001113455.2

Reverse: CAT CGG TGG CGA AAG TGA A
Collagen type II alpha 1 chain (COL2A1) Forward: CAT CGG GCC TGT CTG CTT NM 001006951.1

Reverse: ATT GGC AAT GGA TTG TGT TT
Indoleamine 2,3-dioxygenase (IDO1) Forward: TGT GGA CCC AAG CAC GTT TT XM 038689794.1

Reverse: AGT TGC CTT TCC AAC CAG ACA
Prostaglandin-endoperoxide synthase 2 (PTGS2) Forward: CGG CGA AAA CTG CTC AAC A NM 001003354.1

Reverse: TTG GAG TGG GTT TCA GGT ATA ATT T
Interleukin 6 (IL-6) Forward: GAC CAC TCC TGA CCC AAC CA NM_001003301.1

Reverse: ATC CTG CGA CTG CAA GAT AGC
Interleukin 10 (IL-10) Forward: CCC AGG ATG GCA ACT CTT CTC NM_001003077.1

Reverse: CGG GAT GGT ATT TTG CAG ATC
Prostaglandin E synthase (PTGES) Forward: GTG TGC GTG CTC CTT GGA T NM 001122854.1

Reverse: CTG ACA TCT CTA CGT GGT CCA ATC
Caspase-8 (CASP8) Forward: CAG AGA CTC CAG GAA AAG AGA ATG T NM 001048029.1

Reverse: TCG GAA AAG CAG CTC CTT CA
BCL2-associated X, apoptosis regulator (BAX) Forward: GGT GCC CCA GGA TGC A NM 001003011.1

Reverse: CCG ATG CGC TTG AGA CAT T
Tumor protein 53 (TP53) Forward: CCG CGC TAT GGC CAT CTA TA NM 001389218.1

Reverse: CAG CGC ACA ACC T
B-cell lymphoma 2 apoptosis regulator (BCL2) Forward: AAT CAA GTG TTC CGC GTG ACT NM 001002949.1

Reverse: TTA TTG GAT GTG CTT TGC ATT CTT
Hypoxanthine phosphoribosyltransferase 1 (HPRT1) Forward: CGG CTT GCT CGA GAT GTG AT NM 001003357.2

Reverse: GAG CAC ACA GAG GGC TAC GAT



followed up by Fisher's Least Significant Difference post hoc analyses. The p values < 0.05 
were statistically significant. Statistical Package for the Social Sciences (SPSS) 25.0 software 
(IBM Corp., USA) was used. Data are displayed as relative quantification (RQ), and error bars 
indicate ± minimum or maximum RQ. All experiments were performed in triplicate.

RESULTS

Stemness and MSC-specific CD marker evaluations
The attached cells were spindle-shaped, with fibroblast-like morphology (Fig. 1A and B), 
exhibiting positive ALP activity, especially in colonies (Fig. 1D). We analyzed whether cA-
MSCs expressed pluripotent stem cell markers, such as OCT3/4, SOX2, and NANOG, via 
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Fig. 1. Confirmation of MSC potency in cells derived from canine adipose tissue. 
Morphological characteristics of canine adipose-derived cells from passage 0, observed at (A) low (scale bar = 200 μm) and (B) high (scale bar = 200 μm) 
magnification. Confirmation of ALP activity (C) before and (D) after ALP staining. Dark purple color denotes a positive chromogenic reaction indicating ALP activity 
(scale bars = 200 μm). (E-G) Expression of pluripotent proteins: (E) OCT3/4, (F) SOX2; and (G) NANOG, in canine adipose-derived cells. Green and blue colors 
indicate positive labeling and staining of cell nuclei by DAPI, respectively (scale bars = 50 μm). Quantification of mRNA expression of (H) OCT4, (I) SOX2, and (J) 
NANOG in canine adipose-derived cells (blue bars) by real time-polymerase chain reaction. cEF (red bars) were used as the negative control cells. All experiments 
were performed in triplicate. Error bars indicate the minimum and maximum values of RQ. Experiments (C-J) were performed with cells from passage 2. Expression 
of specific CD markers, (K) 45−, (L) 44+, (M) 90+, and (N) 29+ of MSCs in canine adipose-derived cells by flow cytometry. The red and green histograms indicate the 
expression levels of specific CD markers, and the black histogram represents those of the isotype-matched control. Cell concentrations were adjusted to 1 × 106 
cells/mL, and readings were performed with 10,000 cells/sample. Changes in specific CD markers were calculated based on isotype-matched controls. 
MSC, mesenchymal stem/stromal cell; ALP, alkaline phosphatase; OCT3/4, octamer-binding transcription factor 3/4; SOX2, SRY-box transcription factor 2; 
NANOG, Nanog homeobox; DAPI, 4′,6-diamino-2-phenylindole; cEF, canine ear fibroblasts; RQ, relative quantification of mRNA; CD, cluster of differentiation. 
*p < 0.05 indicates a significant difference between the two groups.



immunofluorescence labeling. All three proteins were expressed in the nuclei, although their 
expression was low (Fig. 1E-G). Colonies exhibited greater expression of the three proteins 
than did not colonial cells. The mRNA levels of both OCT4 and NANOG were higher (2.7- and 
2.2-fold, respectively) in cA-MSCs than in canine ear fibroblasts (cEF, control), although SOX2 
expression did not significantly differ between groups (Fig. 1H-J).

Analysis of expression patterns of MSC-specific CD markers revealed that they were negative 
for CD45, a hematopoietic marker (Fig. 1K), and positive for CD44 (94.1%), CD90 (87.2%), 
and CD29 (87.8%) (Fig. 1L-N). Thus, the cells were determined to be cA-MSCs.

In vitro differentiation
In each differentiation induction medium, cA-MSCs were allowed to differentiate through 
adipogenesis, osteogenesis, or chondrogenesis for 4 weeks. Specific histochemical or 
immunochemical labeling and tissue-specific mRNA expression were subsequently analyzed.

In cA-MSC-induced adipogenesis, when cA-MSCs were stained with Oil Red O, red lipid 
droplets were observed in the cytoplasm (Fig. 2A and B). Quantification of the adipogenic 
markers peroxisome proliferator-activated receptor gamma (PPARγ), lipoprotein lipase (LPL), 
and leptin (LEP) revealed that differentiated cA-MSCs expressed significantly greater (p < 0.05) 
levels of LEP (260-fold), but not of PPARγ or LPL (Fig. 2C).

In cA-MSCs with induced osteogenesis, calcium accumulation was confirmed through positive 
Alizarin Red S staining (Fig. 2D and E). Quantification of the osteogenic markers secreted 
phosphoprotein 1 (SPPI), ALP, and Runt-related transcription factor 2 (RUNX2) revealed that, 
compared with controls, differentiated cA-MSCs expressed significantly (p < 0.05) greater levels 
of both SPPI (190-fold) and RUNX2 (2-fold), but not ALP (Fig. 2F).

In cA-MSCs with induced chondrogenesis, morphological changes were confirmed based on 
changes in the shape of flattened cell pellets into spheroids (Fig. 2H). The spheroids, such as 
cartilage tissues, were fixed, cryosectioned, and stained with Alcian blue solution. The samples 
exhibited a positive Alcian blue reaction, especially on the spheroid surfaces (Fig. 2I). Positive 
immunolabeling of both aggrecan (green, as a cartilage-specific proteoglycan core protein, 
Fig. 2M) and collagen type II (red, a main component of cartilage, Fig. 2L) was confirmed using 
confocal microscopy. The expression of chondrogenic-related markers SRY-box transcription 
factor 9 (SOX9), Collagen type II alpha 1 chain (COL2A1), and Aggrecan (ACAN) were significantly 
increased in cA-MSCs compared with that of controls, especially ACAN (34.9-fold) (Fig. 2J).

DLA analysis
DLA genotyping and matching analyses were performed using PBMCs from Dogs 1 and 2, 
which belonged to different family trees (Fig. 3). The reference genes used for genotyping 
of DLA-DQA1, DLA-DQB1, and DLA-DRB1 were DLA-DQA1*014012, DLA-DQB1*04201, and 
DLA-DRB*02002, respectively. Dog 1 was homozygous for DLA-DQA1 (*00101/*00101) and 
DLA-DQB1 (*0020/*00201), and heterozygous for DLA-DRB (*00101/*00201) (Fig. 3D). Dog 2 
was heterozygous for DLA-DQA1 (*00402/*000401), DLA-DQB1 (*02301/*0301), and DLA-
DRB1 (*04801/*01501) (Fig. 3E).

Between Dogs 1 and 2, inconsistent nucleotide sequences corresponding to single nucleotide 
polymorphisms (SNPs) were confirmed in the three DLA types, especially in DRB1, with the 
frequent appearance of SNPs at loci (Fig. 3C). However, genotyping of DLA 88 failed because 
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no specific PCR product band was found at the expected DNA size following amplification. 
These results confirmed pedigree discrepancies between the two dogs.

Immune reactions in cA-MSCs co-cultured with PBMCs
Immunomodulatory (indoleamine 2,3-dioxygenase [IDO] and prostaglandin-endoperoxide 
synthase 2 [PTGS2] and inflammation (IL-10 and IL-6)-related genes were evaluated in cA-MSCs 
co-cultured with allogeneic (Dog 1) or autologous (Dog 2) PBMCs for 3 days (Fig. 4B-G).  
IDO expression was significantly (p < 0.05) increased in cA-MSCs co-cultured with allogeneic 
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PBMCs (19.5-fold) regardless of PHA treatment; this did not occur in cA-MSCs co-cultured 
with autologous PBMCs. PTGS2 was significantly (p < 0.05) upregulated (1.9-fold) in cA-MSCs 
co-cultured with activated allogeneic PBMCs compared with levels in cA-MSCs cultured alone. 
The expression levels of pro-(IL-6) and anti-inflammatory (IL-10) cytokine genes were analyzed 
in both cA-MSCs and PBMCs (Fig. 4D-G). In cA-MSCs, IL-6 expression was significantly lower 
in the groups co-cultured with PBMCs than in those that were not. In PBMCs, IL-6 levels were 
significantly (p < 0.05) higher in allogeneic PBMCs than in autologous PBMCs, regardless of 
PHA treatment. In cA-MSCs, IL-10 expression was significantly (p < 0.05) lower in the groups 
co-cultured with autologous PBMCs compared to levels in those that were not (Fig. 4E). In 
PBMCs, IL-10 expression did not significantly (p < 0.05) differ between the allogeneic and 
autologous PBMC groups (Fig. 4G).

Thus, the expression of immunosuppressive (Fig. 4H-J) and apoptosis-related genes (Fig. 4K-N)  
were compared at various time points among groups (control [cA-MSCs alone], group 1 
[cA-MSCs with allogeneic PBMCs], and group 2 [cA-MSCs with autologous PBMCs]). In all 
cases, PBMCs were activated with PHA. IDO, PTGS2, and prostaglandin E synthase (PTGES) 
expression was significantly (p < 0.05 and p < 0.01) higher in group 1 compared to control 
from days 1–3, especially on day 1. PTGES expression continuously increased in group 1 
compared with that of the control group until day 3. However, group 2 exhibited a slight 
increase in IDO and PTGS2 expression compared to control group levels on day 1.

The expression of caspase-8 (CASP8), an initiator of apoptosis, was significantly (p < 0.05) 
higher in group 1 (1.7-fold) than in the other groups on day one and gradually decreased until 
day 3 (Fig. 4K). However, CASP8 expression in group 2 did not significantly differ from that of 
the control group (p > 0.05) until day 2, although it was significantly (p < 0.05) lower on day 3. 
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On day 3, the expression of another apoptosis initiator, tumor protein 53 (TP53), was slightly 
upregulated in group 1 compared with that in the control and was slightly downregulated 
in group 2 compared with levels in the control group (Fig. 4M). The TP53 mediator and 
apoptotic activator Bcl-associated X protein (BAX) expression levels were significantly higher 
in group 1 than in the control group from days 2–3. However, they were slightly increased 
in group 2 compared with levels in the control group on day 2 (Fig. 4L). The expression of 
inhibitors of BAX, BCL2 was significantly (p < 0.05) lower in group 1 than control on day 3, 
Whereas BCL2 expression in group 2 was significantly (p < 0.05) lower than that in the control 
group on days 1 and 3.

DISCUSSION

This study's ultimate goal was to develop a safe, effective, and sustainable method of canine 
MSC administration, with a lower risk of immune rejection, for use in animal hospitals. 
Although this study did not investigate cA-MSC transfusions based on DLA type matching in 
vivo, the methodology was indirectly tested under similar environmental conditions in vitro. 
The degree of immune response depends on the source from which MSCs are derived, such 
as adipose tissue, bone marrow, umbilical cord blood or tissue, or dental pulp stem cells. 
When recipients repeatedly receive allogeneic bone marrow-derived MSCs transfusions, an 
increase in cytotoxic (CD8+T cell) and regulatory T cells is induced, which does not occur with 
allogeneic A-MSCs [14,21]. Therefore, this study used adipose tissue as the MSC source.

Small adipose tissues were isolated and cultured until passage 5 in vitro. Characterization 
revealed the following properties: weak expression of pluripotent stem cells (OCT4, SOX2, 
and NANOG) and 87% or a higher expression of specific MSC CD markers (CD45−, CD44+, 
CD90+, and CD29+), and the differentiation of three mesodermal origin cell types, including 
adipocytes, osteocytes, and chondrocytes. However, some tissue-specific genes, including 
PPARγ, ALP, and LPL exhibited low expression, contrary to expectations. Different induction 
times for differentiation, individual variabilities, and different reference points could explain 
these outcomes [22,23]. This study analyzed the cells after 4 weeks of differentiation, 
whereas some assessed earlier time points [22,24]. Based on these findings, these cells were 
determined to be cA-MSCs and were used for further studies.

The high number of canine breeds results in greater variability than in humans. DLA types have 
only been evaluated in some varieties, even though administrated DLA antigens could result in 
immunogenicity in recipients [25,26]. Based on previous studies, the DLA type, which is the 
criterion for a successful allograft, was selected; some examples include DLA-88 of DLA class I, 
and DQA1, DQB1, and DRB1 of DLA class II, all of which exhibit a high degree of polymorphism 
[3,27,28]. Our results were consistent with previous findings, confirming the two dogs were not 
siblings based on both the mismatching of analyzed DLA class II types and their family tree; 
however, despite being based on known literature, the DLA class I genotyping of DLA 88 failed, 
possibly due to the high degree of genetic polymorphisms and the GC richness in of DLA 88, 
and differences in the analytical methods [27,28]. Further studies are needed to develop an easy 
and convenient analytical technique for DLA 88 genotyping.

The immune tolerance of MSCs plays a major functional role in tissue regeneration, as 
MSCs secrete a variety of soluble paracrine factors, including tumor growth factor beta 1, 
prostaglandin E2 (PGE2), hepatocyte growth factor (HGF), IDO, nitric oxide (NO), and 
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IL-10, which alleviate inflammatory responses attributed to innate immune cells [1,29-31] 
and improve the regenerative capacity of damaged tissue via cell-to-cell communication 
at gap junctions [4,32]. Furthermore, they alleviate T cell-related innate and adaptive 
immune activation by inhibiting extrinsic cell death signaling through the binding of the 
cytotoxic T lymphocyte-expressed Fas ligand (FasL) and its receptor (FasR) [33,34]. This 
study demonstrated that treating cA-MSCs with allogeneic PBMCs induced an increase in 
immunosuppressive gene expression, including PTGS2 (COX2) and PTGES, which are involved 
in PGE2 synthesis, and IDO (8–20-fold increase) compared to changes induced by autologous 
PBMC treatment. Therefore, allogeneic cA-MSCs exhibited immune tolerance, although this 
could also potentially weaken the ability to suppress cancer development [35].

cA-MSCs were assumed to inhibit the inflammatory response by decreasing the expression 
of the pro-inflammatory gene IL-6 when cA-MSCs were co-cultured with PBMCs. This effect 
was greater in cell types with matching DLA, and the decreased expression of the anti-
inflammatory gene IL-10 enhanced this response in cA-MSCs treated with autologous PBMCs.

An increase in CASP8 expression in cA-MSCs treated with allogeneic PBMCs indicated that 
the extrinsic apoptosis pathway was reinforced by the binding of FasL/FasR in the intrinsic 
apoptosis pathway. This increased apoptotic signaling occurred downstream of CASP8, 
involving the activation of the pro-apoptotic factor BAX and the downregulation of anti-
apoptotic BCL2. TP53 another apoptotic gene has a low expression level in cA-MSCs treated 
with PBMCs, especially autologous PBMCs. Therefore, allogeneic cA-MSCs are assumed to 
have affected cell death by altering CASP8 rather than TP53 signaling.

This study revealed that allogeneic cA-MSCs exerted a greater immunosuppressive effect 
than autologous cA-MSCs through the upregulation of IDO and PTGS2/PTGES involved in 
synthesis of PGE2, and the reduction in the pro-inflammatory response via the inhibition 
of IL-6. However, the rapid increase in IDO expression could be a risk factor, as it creates 
a favorable environment for cancer cell growth. Autologous cA-MSCs exhibited a slight 
increase in expression of both IDO and the synthesis genes of PGE2 and a lower expression 
of inflammatory genes than levels in the allogeneic cA-MSCs. Therefore, for safe, efficient, 
and consistent cA-MSC treatment in animal hospitals, it is necessary banking and database 
construction of cA-MSCs with variety of DLA types. This study was limited by the small 
sample size, and further studies are needed with larger populations.
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