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Abstract

Despite abundant measurements of bacterial growth rate, cell size, and protein content, we lack 

a rigorous understanding of what sets the scale of these quantities and when protein abundances 

should (or should not) depend on growth rate. Here, we estimate the basic requirements and 
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physical constraints on steady-state growth by considering key processes in cellular physiology 

across a collection of Escherichia coli proteomic data covering ≈4,000 proteins and 36 growth 

rates. Our analysis suggests that cells are predominantly tuned for the task of cell doubling 

across a continuum of growth rates; specific processes do not limit growth rate or dictate cell 

size. We present a model of proteomic regulation as a function of nutrient supply that reconciles 

observed interdependences between protein synthesis, cell size, and growth rate and propose that a 

theoretical inability to parallelize ribosomal synthesis places a firm limit on the achievable growth 

rate. A record of this paper’s transparent peer review process is included in the supplemental 

information.

In brief

Identifying factors that determine growth rate has long been central to the study of bacterial 

physiology. Belliveau and Chure et al. present order-of-magnitude estimates of the proteomic 

requirements for various biological processes in Escherichia coli across growth rates and compare 

them to experimental measurements. This reveals translation to be key in defining the growth 

rate, while other processes are precisely tuned with little excess. The influence of physiological 

parameters on growth rate is explored using a simple mathematical model.

Graphical Abstract
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INTRODUCTION

The observed range of bacterial growth rates is enormously diverse. In natural environments, 

some microbial organisms may double only once per year (Mikucki et al., 2009) while 

in comfortable laboratory conditions, growth can be rapid with several divisions per hour 

(Schaechter et al., 1958). This six-order-of-magnitude difference in timescales of growth 

encompasses different microbial species and lifestyles, yet even for a single species such as 

Escherichia coli, the growth rate can be modulated over a large range by tuning the type 

and amount of nutrients in the growth medium (Liu et al., 2005). This remarkable plasticity 

in growth rate illustrates the intimate relationship between environmental conditions and 

the rates at which cells convert nutrients into new cellular material—a relationship that has 

remained a major topic of inquiry in bacterial physiology for over a century (Jun et al., 

2018).

A key discovery in bacterial physiology of the past 70 years was the identification of 

bacterial “growth laws” (Schaechter et al., 1958); empirical relationships that relate the 

bacterial growth rate to the protein and RNA composition of the intracellular milieu in a 

number of different species. Over the past decade, a flurry of work (Molenaar et al., 2009; 

Scott et al., 2010; Klumpp and Hwa, 2014; Basan et al., 2015; Dai et al., 2016; Erickson 

et al., 2017) has examined these growth laws at a quantitative level, developing a series 

of phenomenological models from which the growth laws naturally emerge. In parallel, a 

“molecular revolution” in biology has yielded an increasingly refined molecular census of 

the cell, particularly for bacteria such as the microbial workhorse E. coli (Schmidt et al., 

2016; Davidi et al., 2016). In light of the now expansive trove of quantitative biological 

data, it is important to revisit several of the evergreen questions about bacterial growth and 

physiology that were originally raised by microbiologists in the middle of the 20th century. 

Further, it is timely to consider whether different measurements of the proteomic content 

are concordant. Specifically, what biological processes are the primary determinants for 

how quickly bacterial cells can grow and reproduce. Why do cells modulate the absolute 

numbers and relative ratios of their molecular constituents in response to changes in 

growth rate or nutrient availability? These questions remain under intense inquiry and have 

implicated processes ranging from ribosomal biogenesis and transcription to cell wall and 

lipid synthesis as key determinants of growth rate and cell size (Bremer and Dennis, 2008; 

Scott et al., 2010; Si et al., 2017; Vadia et al., 2017; Harris and Theriot, 2018; Büke et al., 

2020; Zhang et al., 2020).

In this work, we consider these two questions in E. coli by considering both the biosynthetic 

capacity of key cellular processes—meaning, the minimal number of enzymes needed to 

synthesize one cell’s worth of a particular biomolecule given the observed doubling time—

as well as the physical constraints given the now well-characterized change in cell size as 

a function of growth rate (Taheri-Araghi et al., 2015; Si et al., 2017; Basan et al., 2015). 

As a result of an array of high-quality proteome-wide measurements under diverse growth 

conditions, we have generated a census that allows us to explore how the number of key 

molecular players change as a function of growth rate. Here, we have assembled a singular 

dataset of protein copy numbers using measurements collected over the past decade via mass 

spectrometry (Schmidt et al., 2016; Peebo et al., 2015; Valgepea et al., 2013) or ribosomal 
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profiling (Li et al., 2014) of the composition of the E. coli proteome across a gamut of 

growth rates. Due to notable changes in both cell size and cellular composition as a function 

of growth rate (Bremer and Dennis, 2008; Taheri-Araghi et al., 2015), as well as differences 

in normalization and standardization schemes used in each experimental work, substantial 

care was taken to ensure consistency on a per cellular basis (Figure 1A; see the supplemental 

information for a detailed analysis and further discussion). To our knowledge, this compiled 

and curated dataset represents the most comprehensive view to date of the E. coli proteome, 

covering ≈4,000 proteins and 36 unique growth rates, with the observed abundance of any 

given protein being directly comparable between datasets and across growth rates. This 

allows us to interrogate the E.-coli-specific physiology underlying the observed abundances 

while minimizing the effects of experimental noise as ≈75% of the proteins are observed in 

at least two separate datasets.

By compiling molecular turnover rate measurements for many of the fundamental processes 

associated with bacterial growth, we make quantitative order-of-magnitude estimates across 

key cellular processes in nutrient transport, cell envelope biogenesis, energy generation, and 

the central dogma (Table S1; schematized in Figure 1B) to determine whether our current 

understanding of the kinetics of these processes are sufficient to explain the magnitude of 

the observed protein copy numbers across conditions. We consider each set of processes 

in turn and explore which process(es) may impose a limit as to how quickly cells can 

replicate. The census, combined with these estimates, provide a window into the question 

of whether the rates of central processes such as energy generation or DNA synthesis vary 

systematically as a function of cell growth rate by altering protein copy number, and in 

particular, whether any of these processes pose a molecular bottleneck or rate-limiting step. 

Though of course others have systematically examined the growth rate dependence for 

specific processes, our intent here was rather to provide a synthesis across a broad range of 

processes required in cellular growth.

For the majority of the processes considered, we find that the protein copy numbers are 

apparently tuned for the task of cell doubling across a continuum of growth rates. This 

suggests that most processes must be operating near their maximal biosynthetic capacity, 

particularly under moderate to fast growth rates, with cellular protein abundances increasing 

at faster growth rates to support the more rapid cell doublings. This observation contrasts 

with the perspective that there exists any single process that is the arbiter of growth rate. 

Rather, it is through the coordinated increase in protein abundance across these disparate 

processes that E. coli is able to increase its growth rate as nutrient conditions improve. This 

hypothesis is bolstered by the observation that, when we consider the change in cell size and 

the diminishing surface area to volume ratio at faster growth rates, there still appears to be 

sufficient space in the cell membrane for the key proteins required for energy production and 

nutrient uptake.

Given an observed importance of parallelization, where the synthesis of additional proteins 

provides increased biosynthetic capacity of each cellular process, our analysis also provides 

insight into the well-characterized dependence of growth rate on ribosomal mass fraction. 

Here, a theoretical inability to parallelize ribosomal protein synthesis places a firm upper 

bound on the achievable growth rate that is observed at moderate to fast growth rates, 
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where ribosomes appear maximally utilized and where the proteomic requirements for other 

cellular processes still appear to be maintained. Importantly, the strict dependence between 

the maximal growth rate and ribosomal mass fraction coincides with the regime where 

the growth laws appear most valid (Amir, 2017; Scott et al., 2010). This enables us to 

suggest that the long-observed correlation between growth rate and cell size (Schaechter 

et al., 1958; Si et al., 2017) can be simply attributed to a required increase in absolute 

number of ribosomes per cell under conditions supporting extremely rapid growth. To better 

understand how the observed alterations in absolute protein abundances influence growth 

rate across different nutrient conditions, we consider a minimal model of cellular growth 

rate control to quantitatively explore the influence of proteomic composition and cell size 

on growth rate. Our conclusions from these analyses provide important insight into how 

E. coli regulates growth across both nutrient-poor and nutrient-rich regimes and identifies 

fundamental constraints in bacterial growth more broadly.

The “order-of-magnitude estimation protocol”

This work relies heavily on “back-of-the-envelope” estimates to understand the growth-rate­

dependent abundances of molecular complexes. This moniker arises from the limitation 

that any estimate should be able to fit on the back of a postage envelope, meaning that 

we frequently make reasonable assumptions to arrive at approximate answers rather than 

performing a detailed calculation with the objective of high precision and many significant 

digits (Mahajan, 2010). All of the estimates performed in this work follow the same basic 

“protocol,” as is outlined in Figure 2A. For any given cellular process, we begin our estimate 

by first determining “how much” of a given molecule must be transported or synthesized to 

enable a doubling of cell biomass. For example, these molecules may be carbon atoms (in 

the form of transported sugars), the lipids making up the cell membrane, or the ATP that is 

consumed in doubling of the proteome.

With numbers in hand for the amount of the material to be synthesized/transported we turn 

our focus to the central players of these works, the molecular complexes. The vast literature 

of in vivo and in vitro biochemistry has left us replete with quantitative properties of kinetic 

rates. We use this primary literature— and, when possible, their entries on the BioNumbers 

database (Milo et al., 2010) denoted with their accession numbers as BNIDs) —as a 

means to approximate the typical flux of material through a single enzyme, transporter, or 

biochemical pathway. To assemble these quantities into a singular estimate for the number of 

molecular complexes needed for a given process, we require a sense of the amount of time 

in which the synthesis/transport must take place. In this work, we consider two temporal 

regimes. First, we present a “point estimate” of the number of complexes needed to facilitate 

a doubling time of around 5,000 s, or a growth rate λ of ≈0.5 h−1. We choose this archetypal 

growth rate as it is the clearest narrative way to present our estimates and is the growth 

regime that the proteomic data heavily sample. This point estimate is always presented as a 

translucent brown point in the plots that follow.

Additionally, we also explore these estimates across a continuum of growth rates. The 

continuum estimates, displayed as a gray curve on the various plots, relax some of the 

assertions made while formulating the point estimate and incorporate empirical findings 
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from the literature of how cell masses, volumes, and surface areas scale with the cellular 

growth rate (Si et al., 2017, 2019; Basan et al., 2015; Ojkic et al., 2019). As we rely on 

empirical descriptions of how volume, mass, and surface area scale with the growth rate, 

the point and continuum estimates may not always exactly agree. Finally, as growth rates 

become very slow (λ ≈ 0.2h−1, tdouble ≈ 3h), protein degradation and cellular homeostasis 

may become an important factor (Feist et al., 2007; Stouthamer, 1973), one that we have 

chosen to ignore for the purposes of this work. Thus, we have indicated this region in 

the plots that follow as a dashed line to indicate that estimates in this regime may be too 

simplistic.

Figure 2A shows a schematic representation of this “estimation protocol.” In Figure 2B, 

we present a series of three examples, each considering a different scaling dependence as 

shown in the top panel of A. In estimating the number of carbon transporters (Figure 2B), 

we consider how many carbon atoms must be transported to double the biomass and use the 

elemental composition of the cell dry mass as a means to do so. In Figure 2C, we consider 

the cell surface area to estimate how many lipid molecules must be synthesized and, as 

described later, the number of ACP dehydratases needed for their synthesis. Finally, Figure 

2D shows an estimate for the number of ATP molecules that must be consumed, given that 

peptide bond formation is the primary energy expenditure of growth. Similar diagrams for 

all estimate categories outlined in Figure 1B are provided in Table S1.

Nutrient transport

Here, we begin by considering the critical transport processes diagrammed in Figure 1B. We 

consider how cells scavenge building blocks (namely carbon, sulfur, and phosphorus) from 

the environment and the kinetics of nutrient transporters. We then calculate an estimated 

number of transporters required to support a given growth rate, and we compare these 

calculations with proteomic data.

In order to build new cellular mass, the molecular and elemental building blocks must 

be scavenged from the environment in different forms. Carbon, for example, is acquired 

via the transport of carbohydrates and sugar alcohols with some carbon sources receiving 

preferential treatment in their consumption (Monod, 1947). Phosphorus, sulfur, and 

nitrogen, on the other hand, are harvested primarily in the forms of inorganic salts, namely 

phosphate, sulfate, and ammonium/ammonia (Jun et al., 2018; Assentoft et al., 2016; Stasi 

et al., 2019; Antonenko et al., 1997; Rosenberg et al., 1977; Willsky et al., 1973). All of 

these compounds have different membrane permeabilities (Phillips, 2018), and most require 

some energetic investment either via ATP hydrolysis or through the proton electrochemical 

gradient to bring the material across the hydrophobic cell membrane.

The elemental composition of E. coli has received much quantitative attention over the past 

half century (Neidhardt et al., 1991; Taymaz-Nikerel et al., 2010; Heldal et al., 1985; Bauer 

and Ziv, 1976), providing us with a starting point for estimating how many atoms of each 

element must be scavenged from the environment: ≈50% carbon (BioNumbers, ID [BNID]: 

100649; obtained from the BioNumbers database, Milo et al. [2010], ≈15% nitrogen [BNID: 

106666], ≈3% phosphorus [BNID: 100653], and 1% sulfur [BNID: 100655]) with the 
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remainder being attributable to oxygen, hydrogen, and various transition metals. Here, we 

estimate the abundance and growth rate dependence of a variety of transporters responsible 

for carbon uptake, and provide more extensive investigation of the other critical elements 

in the supplemental information “Estimates across fundamental biological processes.” Using 

≈0.3 pg as the typical E. coli dry mass at a growth rate of ≈0.5 h−1 (BNID: 103904), 

coupled with the approximation that z50% of this mass is carbon, we estimate that ≈1×1010 

carbon atoms must be brought into the cell in order to double all of the carbon-containing 

molecules.

Typical laboratory growth conditions provide carbon as a single class of sugar (such as 

glucose, galactose, or xylose) often transported cross the cell membrane by a transporter 

complex specific to that particular sugar. One such mechanism of transport is via the 

phosphotransferase system (PTS), which is a highly modular system capable of transporting 

a diverse range of sugars with high specificity (Escalante et al., 2012). The glucose-specific 

component of this system transports ≈200 glucose molecules (≈1,200 carbon atoms) per 

second per transporter (BNID: 114686). Making the assumption that this is a typical 

sugar transport rate for the PTS system, coupled with the need to transport ≈1 × 1010 

carbon atoms, we then expect on the order of ≈2,000 transporters must be expressed per 

cell in order to bring in enough carbon atoms. We find, however, that the experimental 

measurements exceed this by several fold (Figure 3A), implying that the cell is capable of 

transporting more carbon atoms than strictly needed for biosynthesis. This holds true even at 

the fastest growth rates, with cells exhibiting no apparent growth rate dependence.

This constancy in the expression appears to be specific to glucose transporters, which are 

known to be the preferential carbon source (Monod, 1947; Liu et al., 2005; Aidelberg et 

al., 2014), and stands in contrast with other species of transporters for glycerol, xylose, or 

fructose, which we find match the required transporter abundances according to the achieved 

doubling time (adjusting for the specific carbon source in terms of number of carbon atoms 

per molecule and the rate of transport for the particular transporter species) (Figure S1). 

This also contrasts with our observations for uptake of phosphorus and sulfur, which turn 

out to align well with our expectations across different growth conditions (Figures 3B and 

3C and discussed further in the supplemental information “estimates across fundamental 

biological processes”). In summary, we researched and integrated quantitative information 

about cellular composition, nutrient transport, and transporter kinetics to estimate the 

minimum nutrient transporter copy numbers required across a spectrum of growth rates, 

and a comparison of these calculations to proteomic data suggests E. coli devotes excess 

proteomic resources toward glucose uptake but otherwise tunes transporter copy numbers to 

better match the nutrient requirements given their doubling time.

Lastly, we consider nutrient transport in the context of a different question: what sets an 

upper limit on very fast growth? If acquisition of nutrients was acting as a bottleneck on 

cellular growth, the growth rate could be theoretically increased simply by expressing more 

transporters, but is this feasible at a physiological level? A way to approach this question 

is to compute the amount of space in the bacterial membrane that could be occupied by 

nutrient transporters. Considering a rule-of-thumb for the surface area of E. coli of about 5 

μm2 (BNID: 101792), we expect an areal density for 2,000 transporters to be approximately 
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a few hundred transporters per μm2. For a typical transporter occupying about 50 nm2, this 

amounts to about only ≈1% of the total inner membrane surface area (Szenk et al., 2017). 

In contrast, bacterial cell membranes typically have densities of ≈1 × 105 proteins/mm2 

(Phillips, 2018), with roughly 60% of the surface area occupied by protein (BNID: 100078), 

implying that the cell could easily accommodate more transporters. There are, however, 

additional constraints on the space that can be devoted to nutrient uptake due to occupancy 

by proteins involved in processes such as cell wall synthesis and energy production, and we 

will consider this further in the coming sections.

Cell envelope biogenesis

In this section, we consider the synthesis of lipids as well as the complexes involved 

in assembling the peptidoglycan scaffold that makes up the cell envelope. We discuss 

rate-limiting steps in fatty acid and peptidoglycan synthesis, calculate the copy number of 

fatty-acid synthases and peptidoglycan transpeptidases required to support a given growth 

rate, and compare these predictions to data. In contrast to nutrient transporters, which 

support the synthesis of biomolecules throughout the cell and therefore need to scale with 

the cell size, here, we must consider the synthesis of components that will need to scale with 

the surface area of the cell.

E. coli is a rod-shaped bacterium with a remarkably robust length-to-width aspect ratio of 

≈4:1 (Harris and Theriot, 2018; Ojkic et al., 2019). The membranes of E. coli are composed 

of a variety of different lipids, each of which are unique in their structures and biosynthetic 

pathways (Sohlenkamp and Geiger, 2016). Recently, a combination of stochastic kinetic 

modeling (Ruppe and Fox, 2018) and in vitro kinetic measurements (Ranganathan et al., 

2012; Yu et al., 2011) has revealed remarkably slow steps in the fatty-acid synthesis 

pathways, which may serve as the rate-limiting reactions for making new membrane fatty 

acids (that become components of a variety of membrane lipids) in E. coli. One such 

step is the removal of hydroxyl groups from the fatty-acid chain by ACP dehydratase that 

leads to the formation of carbon-carbon double bonds. This reaction, catalyzed by proteins 

FabZ and FabA (Yu et al., 2011), has been estimated to have kinetic turnover rates of ≈1 

dehydration per second per enzyme (Ruppe and Fox, 2018). Thus, given this rate and the 

need to synthesize ≈2 × 107 lipids over 5,000 s, one can estimate that a typical cell requires 

≈4,000 ACP dehydratases. This is in reasonable agreement with the experimentally observed 

copy numbers of FabZ and FabA (Figure 3D), though here, we also find notable discordance 

between measurements from different studies that may reflect systematic biases in how these 

measurements were performed.

The exquisite control of bacteria over their cell shape is due primarily to a stiff, several 

nanometer thick meshwork of polymerized disaccharides that makes up the cell wall 

termed the peptidoglycan. The formation of the peptidoglycan is an intricate process 

involving many macromolecular players (Shi et al., 2018; Morgenstein et al., 2015), 

whose coordinated action synthesizes the individual subunits and integrates them into the 

peptidoglycan network that maintains cell shape and integrity even in the face of large-scale 

chemical and osmotic perturbations (Harris and Theriot, 2018; Shi et al., 2018). Due to the 

extensive degree of chemical crosslinks between glycan strands, the entire peptidoglycan 
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is a single molecule comprising ≈3% of the cellular dry mass (BNID: 1019360), making 

it the most massive molecule in E. coli. The polymerized unit of the peptidoglycan is 

a N-acetylglucosamine and N-acetylmuramic acid disaccharide, of which the former is 

functionalized with a short pentapeptide. With a mass of ≈1,000 Da, this unit, which we 

refer to as a murein subunit, is polymerized to form long strands in the periplasm which are 

then attached to each other via their peptide linkers. Together, these quantities provide an 

estimate of ≈5 × 106 murein subunits per cell.

There are various steps which one could consider a priori to be a limiting process 

in the synthesis of peptidoglycan, including the biosynthesis steps that occur in the 

cytoplasm, the transglycosylation reaction, which adds new subunits to the glycan 

strands, and the formation of the peptide crosslinks between strands (Shi et al., 2018; 

Morgenstein et al., 2015; Lovering et al., 2012; Barreteau et al., 2008). Despite the 

extensive mechanistic characterization of these components, quantitative characterization 

of the individual reaction rates along their entire kinetic pathway remain scarce and make 

identification of any particularly slow steps difficult. However, recent measurements for the 

crosslinking machinery (transpeptidases, Catherwood et al., 2020) of the peptidodglycan, 

which provides lateral structural integrity to the peptidoglycan shell, have found the turnover 

of transpeptidases to be rather slow (≈2 crosslinking reactions per second). As the primary 

mechanism of subunit integration occurs by a complex with both transglycosylation and 

transpeptidation activities (Shi et al., 2018), we therefore consider the transpeptidation 

reaction as a reasonable candidate for a rate-limiting step in growth as it is vital for cell 

size and shape homeostasis. We estimate that on the order of ≈100 transpeptidases per cell 

are needed for complete maturation of the peptidoglycan, given a division time of ≈5,000 

s; a value that is comparable with experimental observations (Figure 3E). Expanding this 

estimate to account for the changing mass of the peptidoglycan as a function of growth 

rate (gray line in Figure 3E) predicts an order-of-magnitude increase in the abundance of 

the transpeptidases when the growth rate is increased by a factor of four. Here, however, 

the measured complex abundances across the different proteomic datasets show systematic 

disagreements and obfuscates any significant dependence on growth rate.

Lastly, we consider whether cell envelope biogenesis may set a cap on fast growth. While 

the processes explored above represent a small portion of the proteins devoted to cell 

envelope biogenesis, we find it unlikely that envelope biogenesis limits cellular growth in 

general. The relative amount of mass required for lipid and peptidoglycan components will 

decrease at faster growth rates due to a decrease in the cell’s surface area to volume ratio. 

Furthermore, despite the slow catalytic rate of fatty-acid synthesis and transpeptidation, 

there appears to be sufficient protein abundance to support growth. For FabZ and FabA in 

lipid synthesis, experimental data and recent computational modeling has shown that the 

rate of fatty-acid synthesis can be drastically increased by increasing the concentration of 

FabZ (Yu et al., 2011; Ruppe and Fox, 2018). With a proteome size of ≈ 3 × 106 proteins, 

a hypothetical 10-fold increase in expression from 4,000 to 40,000 ACP dehydratases would 

result in a paltry ≈1% increase in the size of the proteome.
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Energy production

Cells consume and generate energy predominantly in the form of nucleoside triphosphates 

(NTPs). The high-energy phosophodiester bonds of (primarily) ATP power a variety of 

cellular processes that drive biological systems away from hermodynamic equilibrium. We 

therefore turn to the synthesis of ATP as another process that may limit growth, which 

will also require us to consider the maintenance of the electrochemical proton gradient 

that powers it. In this section, we calculate the energy required to build a daughter cell, 

the number of ATP synthases needed to supply this energy budget, and the number of 

electron transport complexes necessary to power the ATP synthases. We then compare these 

predictions with proteomic data.

Hydrolysis of the terminal phosphodiester bond of ATP into ADP (or alternatively GTP 

into GDP) and an inorganic phosphate provides the thermodynamic driving force in a wide 

array of biochemical reactions. One such reaction is the formation of peptide bonds during 

translation, which requires ≈2 ATPs for the charging of an amino acid to the tRNA and ≈2 

GTPs for the formation of each peptide bond. Assuming the ATP costs associated with error 

correction and post-translational modifications of proteins are negligible, we can make the 

approximation that each peptide bond has a net cost of ≈4 ATP (BNID: 101442). Formation 

of GTP from ATP is achieved via the action of nucleoside diphosphate kinase, which 

catalyzes this reaction without an energy investment (Lascu and Gonin, 2000). We therefore 

consider all NTP requirements of the cell to be functionally equivalent to being exclusively 

ATP. In total, the energetic costs of peptide bond formation consumes ≈80% of the cells ATP 

budget (BNID: 107782, 106158, 101637, 111918; Lynch and Marinov [2015]; Stouthamer 

[1973]) and is primarily produced by the F1-F0 ATP synthase—a membrane-bound rotary 

motor which under ideal conditions can yield ≈300 ATP per second (BNID: 114701; Weber 

and Senior [2003]).

To estimate the total number of ATP equivalents consumed during a cell cycle, we make 

the approximation that there are ≈ 3 × 106 proteins per cell with an average protein length 

of ≈300 peptide bonds (BNID: 115702, 108986, 104877). With ≈4 ATP equivalents per 

peptide bond, we find that the typical E. coli cell consumes ≈ 5 × 109 ATP per cell cycle 

on protein synthesis alone. Assuming that each ATP synthases operates at its maximal 

speed, ≈3,000 ATP synthases are needed to keep up with the energy demands of the cell. 

This estimate is comparable with the experimental observations, shown in Figure 3F. Since 

this estimate assumes all ATP is synthesized via ATP synthase and neglects synthesis via 

fermentative metabolism, this may explain why at the fastest growth rates (≈ 2 h−1), our 

continuum estimate predicts more synthase than is experimentally observed (data points 

below the gray line in Figure 3F at fast growth rates). Here, E. coli enters a type of overflow 

metabolism where non-respiratory routes for ATP synthesis become more pronounced and 

provide the remaining ATP demand (Molenaar et al., 2009; Zhuang et al., 2011; Szenk et al., 

2017).

In order to produce ATP, the F1-F0 ATP synthase itself must consume energy. Rather 

than burning through its own product (and violating thermodynamics), this intricate 

macromolecular machine has evolved to exploit the electrochemical potential established 

across the inner membrane through cellular respiration. This electrochemical gradient is 
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manifest by the pumping of protons into the intermembrane space via the electron transport 

chains as they reduce NADH. In E. coli, this potential difference is ≈−200 mV (BNID: 

102120). However, each rotation of an ATP synthase shuttles ≈4 protons into the cytosol 

(BNID: 103390). With a few thousand ATP synthases producing ATP at their maximal rate, 

the potential difference would be rapidly abolished in a few milliseconds if it were not being 

actively maintained. A recent work (Szenk et al., 2017) examined the respiratory capacity of 

the E. coli electron transport complexes using structural and biochemical data, revealing that 

each electron transport chain rapidly pumps protons into the intermembrane space at a rate 

of ≈1,500 protons per second (BIND: 114704, 114687). Using our estimate of the number of 

ATP synthases required per cell, coupled with these recent measurements, we estimate that 

≈3000 electron transport complexes would be necessary to facilitate the ≈5 × 106 protons 

per second diet of the cellular ATP synthases. This estimate is in agreement with the number 

of complexes identified in the proteomic datasets (Figure 3F). Altogether, the agreement 

between our two estimates and the proteomic data supports the hypotheses embedded in our 

calculations: each ATP synthase is accompanied by ≈1 functional electron transport chain, 

with both complexes operating near their maximum rate across a range of growth conditions.

Limits on biosynthesis within a crowded cell

Our estimates thus far have focused on the biochemistry at the periphery of the cell, with the 

processes of nutrient transport, cell envelope biogenesis, and energy generation all requiring 

space to perform their biological functions. The cell’s surface area, however, does not scale 

as rapidly as cell size (Harris and Theriot, 2018), and there will be diminishing space 

available at the periphery to support the proteomic requirements at faster growth rates. It is 

therefore necessary to consider the consequences of a changing cell size and surface area 

to volume ratio in our effort to identify limitations on growth. Here, we use our analysis of 

ATP production to better understand this constraint.

In our estimate of ATP production above we found that a cell demands about 5 × 109. ATP 

per cell cycle or ≈1 × 106ATP/s. With a cell volume of roughly 1 fL (BNID: 100004), this 

corresponds to about 2 × 1010 ATP per fL of cell volume, in line with previous estimates 

(Stouthamer, 1973) and within 3–4 fold of more extensive calculations (Feist et al., 2007; 

Szenk et al., 2017). In Figure 4A, we plot this ATP demand as a function of the surface area 

to volume ratio in green, where we have considered a range of cell shapes from spherical to 

rod-shaped with an aspect ratio (length/width) equal to 4. In order to consider the maximum 

ATP that could be produced, we consider the amount of ATP that can be generated by 

a membrane filled with ATP synthase and electron transport complexes and a maximal 

production rate of about 3 ATP / (nm2•s) (Szenk et al., 2017). This is shown in blue in 

Figure 4A, which shows that at least for the growth rates observed (right column in plot), 

the energy demand is roughly an order of magnitude less. Interestingly, Szenk et al. (2017) 

found that ATP production by respiration is less efficient than by fermentation on a per 

membrane area basis, due to the additional proteins of the electron transport chain. This 

suggests that, even under anaerobic growth, cells will have sufficient membrane space for 

ATP production.
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Importantly, this analysis highlights that there will indeed be a maximum attainable cell size 

due to the limited capacity to provide resources as the cell increases in size. The maximum 

energy production shown in Figure 4A, however, does represent a somewhat unachievable 

limit since the inner membrane also includes other proteins like those we have considered 

for nutrient transport and cell wall biogenesis. To better understand the overall proteomic 

makeup of the inner membrane, we therefore used gene ontology (GO) annotations 

(Ashburner et al., 2000; The Gene Ontology Consortium, 2019) to identify all proteins 

embedded or peripheral to the inner membrane (GO term: 0005886). Those associated but 

not membrane-bound include proteins such as MreB and FtsZ that must nonetheless be 

considered as a vital component occupying space on the membrane. Surprisingly, we find 

that the total protein mass per μm2 is nearly constant across growth rates (Figure 4B), 

even though the volumetric demand for resources grows with cell size and growth rate. 

Interestingly, when we consider the distribution of proteins grouped by their clusters of 

orthologous groups (COG) (Tatusov et al., 2000), the relative abundance of each category is 

nearly constant across growth rates (Figure 4C). This suggests that no one process (energy 

production, nutrient uptake, etc.) is dominating even at fast growth rates and is in line with 

our supposition that each of the processes we have considered so far are not fundamentally 

limiting the maximum growth rate.

In contrast, when we apply such an analysis to cytosolic proteins (GO term: 0005829), we 

observe a clear change in the proteomic composition (Figures 4D and 4E). Particularly, with 

increasing growth rates there is a substantial increase in the relative protein mass associated 

with “information storage and processing.” This category includes proteins such as DNA 

polymerase, RNA polymerase, and ribosomes that are associated with the processes of the 

central dogma, whose increase is predominantly at the expense of “metabolic” proteins as 

shown in Figure 4E. The notable anticorrelation provides a more extensive characterization 

of a trend that is consistent with previous reports (Scott et al., 2010; Hui et al., 2015; Zhu 

and Dai, 2019). In the next section, we therefore turn our attention to the processes of the 

central dogma.

Processes of the central dogma

Up to this point, we have considered a variety of transport and biosynthetic processes 

that are critical to acquiring and generating new cell mass and primarily seated at the 

cell membrane. We now turn our focus to some of the most important processes, which 

must be undertaken irrespective of the growth conditions—those of the central dogma. 

Specifically, we explore the abundance requirements of DNA polymerase, RNA polymerase, 

and ribosomes, with the latter two expected to have important consequences on the rate of 

accumulation in mRNA and protein abundances over the course of a cell cycle (Lin and 

Amir, 2018).

To successfully divide and produce viable progeny, the DNA must be faithfully replicated 

and segregated into each nascent cell. In rapidly growing cultures, bacteria like E. coli can 

initiate as many as 10–12 replication forks at a given time (Bremer and Dennis, 2008; Si 

et al., 2017), suggesting only ≈10 DNA polymerases are needed. However, as shown in 

Figure 5A, DNA polymerase III is nearly an order of magnitude more abundant while still 
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maintaining a predicted growth rate dependence. This discrepancy can be understood by 

considering its binding constant to DNA. In vitro characterization has quantified the KD 

of DNA polymerase III holoenzyme to single-stranded and double-stranded DNA to be 50 

and 200 nM, respectively (Ason et al., 2000) Figure 5B (discussed further, along with the 

synthesis of dNTP building blocks in supplemental information “additional process of the 

central dogma”).

We now turn our attention to the transcription of DNA to form RNA. Here, we focus on 

the synthesis of rRNA, which make up the majority of RNA in the cell, and discuss the 

synthesis of mRNA and tRNA further in the supplemental information “additional process of 

the central dogma.” rRNA serves as the catalytic and structural component of the ribosome, 

comprising approximately 2/3 of the total ribosomal mass, and is decorated with ≈50 

ribosomal proteins. Each ribosome contains three rRNA molecules of lengths 120, 1,542, 

and 2,904 nucleotides (BNID: 108093), meaning each ribosome contains ≈4,500 nucleotides 

overall. In vivo measurements of the kinetics of rRNA transcription have revealed that 

RNA polymerases are loaded onto the promoter of an rRNA gene at a rate of ≈1 per s 

(BNID: 111997, 102362). If RNA polymerases are constantly loaded at this rate, then we 

can assume that ≈1 functional rRNA unit is synthesized per second per rRNA operon. At 

a growth rate of ≈0.5 h−1, the average cell has ≈1 copy of its chromosome and therefore 

approximately ≈7 copies of the rRNA operons, producing ≈7 rRNA units per second. With a 

5,000-second division time, this means the cell is able to generate around 3 × 104 functional 

rRNA units, comparable within an order of magnitude to the number of ribosomes per cell.

How many RNA polymerases are then needed to constantly transcribe the required rRNA? 

If one polymerase is loaded once every second on average (BNID: 111997), and the 

transcription rate is ≈40 nucleotides per second (BNID: 101094), then the typical spacing 

between polymerases will be ≈40 nucleotides. With a total length of ≈4,500 nucleotides per 

operon and 7 operons per cell, the number of RNA polymerases transcribing rRNA at any 

given time is then ≈1,000 per cell. We also find that cells require on the order of another 

≈400 RNAP for the synthesis of mRNA and tRNA, predicting a total of ≈1,500 RNAP 

to satisfy its transcriptional demands. As is revealed in Figure 5C, this estimate is about 

an order of magnitude below the observed number of RNA polymerase complexes per cell 

(≈5,000–7,000). Consistent with this discrepancy, roughly 80% of RNAP is reported to be 

transcriptionally inactive and a large majority of this fraction is non-specifically bound to 

DNA and in search for promoters from which to start transcription (Klumpp and Hwa, 2008; 

Patrick et al., 2015). In Figure 5D, we find that the predicted RNA polymerase copy number 

indeed is more comparable with the abundance of σ−70 (RpoD), the primary workhorse 

sigma factor for transcription in E. coli. We can conclude that the observed RNA polymerase 

abundances are generally sufficient for what appears needed for growth.

We conclude our dialog between back-of-the-envelope estimates and comparison with the 

proteomic data by examining the final process in the central dogma—translation. We begin 

with an estimate of the number of ribosomes needed to double the cellular proteome. 

While the rate at which ribosomes translate is well known to depend on the growth rate 

(Dai et al. [2018], a phenomenon we consider later in this work) we begin by making 

the approximation that translation occurs at a modest rate of ≈15 amino acids per s per 
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ribosome (BNID: 100233). Using this approximation and our previous estimate of 109 

peptide bonds per cell at a growth rate of 0.5 h−1, we can easily arrive at an estimate of ≈104 

ribosomes needed per cell to replicate the entire protein mass, which proves comparable 

with the experimental observations (Figure 5E). While the ribosome is responsible for the 

formation of peptide bonds, we do not diminish the importance of charging tRNAs with 

their appropriate amino acid, a process with occurs with remarkable fidelity. In Figure 5F, 

we show our estimate for the required number of tRNA synthetases, which shows similar 

accord with the experimental data and is discussed further in the supplemental information 

“estimates across fundamental biological processes.”

Having completed our circuit through key processes of cellular growth outlined in Figure 

1B, we can now take stock of our understanding of the observed growth rate dependence 

and abundances of various protein complexes. We note that, broadly speaking, these simple 

estimates have been reasonably successful in quantitatively describing the observations 

in the proteomic data. Importantly, this agreement suggests that the proteome of E. coli 
is predominantly tuned in composition and absolute abundance to match the growth rate 

requirements without any one process representing a singular bottleneck or rate-limiting step 

in division.

In our effort to identify key limitations on growth, there are two notable observations 

worthy of additional emphasis here. The first is a recurring theme throughout the estimates 

investigated here, which is that any inherent biochemical rate limitation can be overcome by 

expressing more proteins. We can view this as a parallelization of each biosynthesis task, 

which helps explain why bacteria tend to increase their protein content and cell size as 

growth rate increases (Ojkic et al., 2019). The second, and ultimately the most significant in 

defining the cellular growth rate, is that the synthesis of ribosomal proteins presents a special 

case where parallelization is not possible and thereby imposes a limit on the fastest possible 

growth rate. Each ribosome has ≈7,500 amino acids across all of its protein components 

which must be strung together as peptide bonds through the action of another ribosome. 

Once again using a modest elongation rate of ≈15 amino acids per s, we arrive at an estimate 

of ≈500 s or ≈7 min to replicate a single ribosome. This limit, as remarked upon by others 

(Dill et al., 2011; Reuveni et al., 2017; Kostinski and Reuveni, 2020), serves as a hard 

theoretical boundary for how quickly a bacterium like E. coli can replicate.

Maximum growth rate is determined by the rate of ribosomal synthesis

In the closing sections of this work, we return to the motivating questions posed in the 

introduction—what biological processes are the primary determinants for how quickly 

bacterial cells can grow and reproduce, and why do cells modulate the absolute numbers 

and relative ratios of their molecular constituents in response to changes in growth rate or 

nutrient availability? In the next two sections we begin by considering the consequences of 

the 7-minute limit set by ribosomal synthesis in the context of the available proteomic data 

and measured growth rates. In the final section, we consider how total protein abundance, 

ribosomal content, and chromosomal replication are intertwined in their control over the 

cellular growth rate. To do so, we take a more careful view, increasing the sophistication of 

our analysis by exchanging our order-of-magnitude estimates for a minimal mathematical 
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model of growth rate control. This is defined by parameters with tangible connections to 

the biological processes underlying cellular growth and protein synthesis. We will draw on 

the analysis thus far but also draw on other theoretical and experimental work in order to 

develop a more complete synthesis around these questions.

The 7-min speed limit assumes all proteins in the cell are ribosomal. In order to connect 

this to the experimental data (and physiological reality more broadly), first, we need to relax 

this assumption and determine a translation-limited growth rate. Here, we will assume that 

the cell is composed of Npep peptide bonds and R ribosomes, whose precise values will 

depend on the growth rate λ. The protein subunits of each ribosomal protein sum to a total 

of ≈7,500 amino acids as noted earlier, which we denote by LR. With an average mass of an 

amino acid of mAA≈ 110 Da (BNID: 104877), the total ribosomal mass fraction ΦR is given 

by

ΦR = mribosomes
mproteome

≈ mAA × R × LR
mAA × Npep

= R × LR
Npep

. (Equation 1)

For exponentially growing cells (Godin et al., 2010), the rate of cellular growth λ will be 

related to the rate of protein synthesis via

λNpep = rt × R × fa, (Equation 2)

where rt is the translation rate. Here, we have introduced a multiplicative factor fa, which 

represents the fraction of the ribosomes that are actively translating. This term allows us 

to account for immature or non-functional ribosomes or active sequestration of ribosomes 

through the action of the secondary messenger alarmone (p)ppGpp in poorer nutrient 

conditions (Hauryliuk et al., 2015).

Combining Equations 1 and 2 results in an expression for a translation-limited growth rate, 

which is given by

λtranslation‐limited = rt × ΦR × fa
LR

. (Equation 3)

This result, derived in a similar manner by others (Dennis et al., 2004; Klumpp et al., 2013), 

reflects mass-balance under steady-state growth and has long provided a rationalization of 

the apparent linear increase in E. coli’s ribosomal content as a function of growth rate 

(Maalœ, 1979; Dennis et al., 2004; Scott et al., 2010; Dai et al., 2016). Figure 6A shows this 

growth rate plotted as a function of the ribosomal mass fraction (black line). In the regime 

where all ribosomes are active (fa = 1) and the entire proteome is composed of ribosomal 

proteins ΦR = 1), indeed, this line intercepts the maximum theoretical growth rate of rt/LR, 

and a ≈7-min doubling time for E. coli.

Connecting Equation 3 to the proteomic data, however, requires knowledge of fa at each 

growth rate as proteomic measurements only provide a measure of ΦR. While commonly 
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considered constant with growth rate (Young and Bremer, 1976; Klumpp et al., 2013; 

Bosdriesz et al., 2015; Kostinski and Reuveni, 2020), Dai et al. (2016) recently inferred 

fa as a function of the growth rate (Figure 6A, inset), revealing that while fa is close to 1 

at growth rates above 0.75 h−1, it drops dramatically at slower growth rates. Using these 

data, we inferred the approximate active fraction (see supplemental information section 

“calculation of active ribosomal fraction”) at each growth rate and used this to compute 

ΦR × fa (Figure 6A, colored points). Importantly, these data skirt the translation-limited 

growth rate determined using Equation 3, where we have taken rt to be the maximal 

elongation rate of 17 amino acids per s measured by Dai et al. (2016). There is a notable 

discrepancy between the data collected in Schmidt et al. (2016), Li et al. (2014) and 

that collected from Valgepea et al. (2013), and Peebo et al. (2015). When compared with 

other measurements (non-proteomic based) of the active ribosome mass fraction based on 

measurements of total RNA to total protein mass ratios (Figure 6A, gray points), the data 

from Valgepea et al. (2013) and Peebo et al. (2015) are notably different, suggesting there 

may be a systematic bias in these two sets of measurements.

The absolute ribosome copy number is limited by rRNA synthesis under rapid growth

Even under idealized experimental conditions, however, E. coli rarely exhibits growth rates 

above 2 h−1 (Bremer and Dennis, 2008), which is still well below the synthesis rate of a 

single ribosome, and below the maximum growth rates reported for several other bacteria 

(Roller et al., 2016). While we have considered potential limits imposed by translation 

of ribosomal “proteins,” we must also consider potential limiting regimes specific to 

the synthesis of rRNA. Due to multiple initiations of chromosomal replication per cell 

doubling, the effective number of rRNA operons increases with growth rate and will do 

so in proportion to the average number of chromosomal origins per cell, # ori . This later 

parameter is set by how often replication must be initiated in order to keep up with the cell 

doubling time τ, whose time may be shorter than the cell cycle time τcyc (referring to the 

time from replication initiation to cell division) (Dennis et al., 2004; Ho and Amir, 2015). 

This is quantified by

# ori = 2τcyc/τ = 2τcycλ/log(2), (Equation 4)

where the doubling time τ is related to the growth rate by τ = log(2)/λ. As the rRNA 

operons are predominantly located close to the origin of replication (BNID: 100352), we 

make the simplifying assumption that that the number of rRNA operons will be directly 

proportional to # ori . We used the experimental measurements of τcyc and τ (Figure S10) to 

calculate # ori  with Equation 4 as a function of growth rate. For growth rates above about 

0.5 h−1, tcyc is approximately constant at about 70 min, implying an exponential increase in 

# ori  and the rRNA operon copy number for growth rates above 0.5 h−1.

Returning to our rule-of-thumb that one functional rRNA unit is produced per second per 

transcribing operon, we can estimate the maximum number of ribosomes that could be 

made as a function of growth rate (Figure 6B, blue curve). This provides a useful reference 

alongside the proteomic measurements, particularly in the regime of fast growth. For growth 
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rates above about 1 h−1 in particular, we find that cells will need to transcribe rRNA near 

their maximal rate. The convergence between the maximum rRNA production and measured 

ribosome copy number shows that rRNA synthesis begins to present a physical bottleneck 

at the fastest growth rates in E. coli due to the still-limited copies of rRNA genes. While 

the rapid pace of rRNA synthesis is well documented (Neidhardt et al., 1991; Bremer and 

Dennis, 2008), this analysis helps highlight the difficulty in increasing absolute ribosome 

abundance further, given the apparent scaling in measured ribosome copy numbers and 

still-limited number of rRNA gene copies on the chromosome.

Simultaneous tuning of total protein mass and ribosome copy number increase growth 
rate under nutrient-limited growth

While the preceding two sections highlight a dominant role for ribosomes in setting the 

achievable growth rate, our analysis thus far has also shown how the proteomic content 

and cell size will need to change in response to variable growth conditions and growth 

rate. Here, we now return to the second question posed in the introduction—why do cells 

modulate the absolute numbers and relative ratios of their molecular constituents in response 

to changes in growth rate or nutrient availability? In this final section, we consider how 

the nutrient-dependent changes in total protein content per cell and proteomic composition 

influence the achievable growth rate.

The variable demand on resources as a function of growth condition places an optimization 

challenge for the cell—how are the translational demands of the entire proteome met 

without investing resources in the production of excess ribosomes? This question, more 

frequently presented as a question of optimal resource allocation, has been the target of 

an extensive dialog between experiment and theory over the past decade. In now seminal 

works, Scott et al. (2010, 2014) present an elegant treatment of resource allocation through 

partitioning of the proteome into sectors—one of which being ribosome-associated proteins 

whose relative size ultimately defines the total cellular growth rate. In more recent years, this 

view has been more thoroughly dissected experimentally (Klumpp et al., 2013; Basan et al., 

2015; Dai et al., 2016, 2018; Erickson et al., 2017). However, the quantitative description 

of these observations is often couched in terms of phenomenological constants and effective 

parameters with the key observable features of expression often computed in relative, rather 

than absolute, abundances. Furthermore, these approaches often exclude or integrate away 

effects of cell size and chromosome content, which we have found through our estimates to 

have important connections to the observed cellular growth rate and proteomic content.

The specific mechanisms of growth rate control under nutrient limitation that lead to the 

observed scaling in cell size in E. coli and other bacteria, however, has remained unclear 

and continues to be intensely investigated (Si et al., 2017; Harris and Theriot, 2018; Ojkic 

et al., 2019). From our estimates, we see that the smaller, more economical cell sizes (i.e., 

smaller proteomic mass) observed in poorer nutrient conditions is consistent with a view 

that cells are also minimizing total protein abundance to better match their specific growth 

rate requirements. Under translation-limited growth conditions (λ ≈ 0.7 h−1), cells can then 

only increase their growth rate by increasing ribosome content. The simple addition of more 

ribosomes is likely constrained by macromolecular crowding (Delarue et al., 2018; Soler­
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Bistué et al., 2020), and we find that the cellular ribosome concentration increases 3–4-fold 

across growth conditions, compared with a roughly 20-fold change in absolute ribosome 

abundance (Figure 7A). Importantly, the major deviations in protein abundance with growth 

rate can be solely attributed to the required bias in ribosomal protein synthesis. To see this, 

we have calculated the position-dependent protein expression across the chromosome by a 

running Gaussian average of protein copy number (20 kbp SD averaging window) based on 

each gene’s transcriptional start site (Figure 7B). Since E. coli cells add a constant volume 

per origin of replication (Si et al., 2017), we have median-subtracted the measured protein 

copy numbers and colored each growth condition from the proteomic data according to 

# ori .

To more quantitatively consider the dependencies between cell size, ribosome abundance, 

and growth rate, we lastly consider a minimal model of growth rate control. For bacteria like 

E. coli, cell size will vary approximately in proportion to the total protein mass Kubitschek 

et al., 1984; Basan et al. (2015), and we will again consider a cell containing a total number 

of peptide bonds Npep and R ribosomes. Following from Equation 2, the rate of total protein 

synthesis and cellular growth rate λ will depend on the ribosomal elongation rate rt that 

each ribosome proceeds at. The elongation rate rt will ultimately depend on how quickly 

ribosomes can match codons with an amino-acyl tRNA, along with the subsequent steps 

of peptide bond formation and translocation (Figure 7C). This ultimately depends on the 

cellular concentration of amino acids, which we treat as a single effective species, [AA]eff. 

Here, we follow a similar strategy to that employed by others (Klumpp and Hwa, 2014; Dai 

et al., 2016) and apply a coarse-grained description of translation that allows for a reversible 

binding of the amino-acyl tRNAs followed by an irreversible addition of the amino acid 

into the peptide chain (further described in the supplemental information section “derivation 

of minimal model for nutrient-mediated growth rate control”). More extensive analyses of 

amino acid supply and consumption have been considered elsewhere (Elf and Ehrenberg 

(2005); Bosdriesz et al. (2015); Hu et al., 2020).

Having found that cells do not appear limited in their ability to synthesize and charge 

tRNA, we determine the rate of peptide elongation rt and achievable growth rate as simply 

depending on the supply of amino acids (and, therefore, also amino-acyl tRNAs), through a 

parameter rAA in units of AA per second, and the rate of amino acid consumption by protein 

synthesis (rt × R × fa). The parameter rAA will depend on the specific nutrient conditions, 

as well as the fraction of the proteome devoted to the supply of amino-acyl tRNAs, and 

we will consider its value a reflection of the nutrient quality. In Figure 7D, we illustrate 

how the elongation rate will depend on the ribosomal copy number for constant rAA, and 

further described in the supplemental information section “derivation of minimal model for 

nutrient-mediated growth rate control.”

To relate elongation rate to growth rate, we constrain the set of parameters based on 

our available proteomic measurements; namely, we restrict the values of R, Npep, and 

cell size V to those associated with the amalgamated proteomic data (described in the 

supplemental information section “estimation of total protein content per cell”). We then 

consider how changes in the nutrient conditions, through the parameter rAA, influence 

the maximum growth rate as determined by Equation 3. Under this scenario, R and V 
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become interdependent parameters, while in supplemental information section “Relaxing the 

interdependence of R and V” and Figure S12, we discuss the resulting growth rate when 

R and V are treated as independent parameters and may be more relevant to physiological 

perturbations such as protein overexpression (Basan et al., 2015). Figure 7E shows how 

the growth rate depends on the rate of amino acid supply rAA as a function of the cellular 

ribosome copy number and the cell volume. A feature immediately apparent from the plot 

is the presence of a maximal growth rate that increases with increasing rAA. Importantly, 

there is a particular combination of values for R, Npep, and cell size V where growth rate 

λ is maximized. This shows that increasing the ribosomal concentration beyond the cell’s 

metabolic capacity will have the adverse consequence of depleting the supply of amino 

acids and lead to a concomitant decrease in the elongation rate rt (Figure 7D) and growth 

rate. This helps us understand that while it is important for cells to increase their ribosomal 

content and total protein content (and hence, also cell size) in order to increase growth rate, 

cells will better maximize their achievable growth rate by tuning these parameters according 

to nutrient conditions, since this is ultimately what allows cells to reach the peak for each 

curve shown in Figure 7E.

Also of note is the growth rate trends observed at low values of rAA (purple and blue lines 

in Figure 7E), representative of growth in nutrient-poor media. This regime is of particular 

interest due to deviations from expectations of ribosomal and cell size scaling that follow 

from the bacterial growth law (Dai et al., 2016; Amir, 2017; Zheng et al., 2020). Here, 

there no longer exists a peak in the maximum growth rate, at least within the range of 

physiologically relevant ribosome copy numbers considered. This is the regime, associated 

with slower growth rates, where cells limit their pool of actively translating ribosomes by 

decreasing fa (Figure 6A, inset). By reducing the fraction of actively translating ribosomes, 

cells instead appear to be prioritizing their pool of available amino acids [AA]eff in order 

to increase their translation elongation rate. Consistent with this hypothesis and our model, 

while inhibition of translation with chloramphenicol further reduces the fraction of actively 

translating ribosomes fa, it results in an increase in the elongation rate that has been 

observed experimentally (Dai et al., 2016) (Figure S13 and further discussion in relation 

to other models of translation elongation in supplemental information section “derivation of 

minimal model for nutrient-mediated growth rate control”). We can then view this slower 

growth regime (λ 0.7 h−1) as one that no longer prioritizes translation, with cells more 

limited by their amino acid supply (Forchhammer and Lindahl, 1971; Pedersen, 1984; Elf 

and Ehrenberg, 2005). Indeed, since ribosomes are not fully engaged in translation, cells 

are no longer maximizing growth rate according to their potential translation-limited rate. 

There are likely physiological benefits to this for a bacterium in an uncertain nutrient 

environment, with an excess pool of ribosomes potentially enabling more rapid recovery 

upon improvements in nutrient conditions (Bosdriesz et al., 2015; Bergkessel et al., 2016).

DISCUSSION

Continued experimental and technological improvements have led to a treasure trove of 

quantitative biological data (Hui et al., 2015; Schmidt et al., 2016; Si et al., 2017; Gallagher 

et al., 2020; Peebo et al., 2015; Valgepea et al., 2013), and an ever advancing molecular view 

and mechanistic understanding of the constituents that support bacterial growth (Taheri­
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Araghi et al., 2015; Morgenstein et al., 2015; Si et al., 2019; Karr et al., 2012; Kostinski and 

Reuveni, 2020; Macklin et al., 2020). In this work, we have compiled and curated what we 

believe to be the state-of-the-art knowledge on proteomic copy number across a broad range 

of growth conditions in E. coli. Beyond compilation, we have taken a detailed approach 

in ensuring that the absolute protein abundances reported are directly comparable across 

growth rates and datasets, allowing us to make assertions about the physiology of E. coli 
rather than chalking up discrepancies from our simple estimates to experimental noise and 

systematic errors. For example, while there was notable disagreement in the measurements 

from different studies in some cases (e.g., cell envelope biosynthesis in Figure 3E, or DNA 

synthesis in Figure 5A), our predictions were consistent with the trends observed in the 

data on the whole. We have made this data accessible through a GitHub repository, and 

an interactive figure that allows exploration of specific protein and protein complex copy 

numbers.

Through a series of order-of-magnitude estimates that traverse key steps in the bacterial 

cell cycle, this proteomic data have been a resource to guide our understanding of two key 

questions: what biological processes limit the absolute speed limit of bacterial growth, and 

how do cells alter their molecular constituents as a function of changes in growth rate or 

nutrient availability? While not exhaustive, our series of estimates provide insight on the 

scales of macromolecular complex abundance across four classes of cellular processes—the 

transport of nutrients, the production of energy, the synthesis of the membrane and cell wall, 

and the numerous steps of the central dogma.

In general, the copy numbers of the complexes involved in these processes were in 

reasonable agreement with our order-of-magnitude estimates. Since many of these estimates 

represent soft lower-bound quantities, this suggests that cells do not express proteins 

grossly in excess of what is needed for a particular growth rate. Rather, cells maintain 

protein abundances that while nearly rate limiting, they are nevertheless sufficient for the 

require biosynthetic capacity given available nutrient conditions and the observed doubling 

time. Several exceptions, however, also highlight the dichotomy between a proteome that 

appears to “optimize” expression according to growth rate and one that must be able 

to quickly adapt to environments of different nutritional quality. Take, for example, the 

expression of carbon transporters. Shown in Figure 3A, we find that cells always express a 

similar number of carbohydrate transporters irrespective of growth condition. Normalizing 

transporter abundance to total cellular mass, this would result in a decrease in mass fraction 

associated with carbon uptake for increasing growth rates and improved nutrient conditions, 

consistent with previous work (You et al., 2013; Hui et al., 2015). At the same time, it is 

interesting to note that many of the alternative carbon transporters are still expressed in low 

but non-zero numbers (≈10–100 copies per cell) across growth conditions. This may relate 

to the regulatory configuration for many of these operons, which require the presence of a 

metabolite signal in order for alternative carbon utilization operons to be induced (Monod, 

1949; Laxhuber et al., 2020). Furthermore, upon induction, these transporters are expressed 

and present in abundances in close agreement with a simple estimate (Figure S1).

Of the processes illustrated in Figure 1B, we arrive at a perspective where the different 

processes of bacterial growth all must be carefully coordinated to support rapid growth, 
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but where ribosomal abundance sets a firm upper limit on the achievable growth rate. 

This is in some sense unsurprising given the long-held observation that E. coli and many 

other organisms vary their ribosomal abundance as a function of growth conditions and 

growth rate (Scott et al., 2010; Metzl-Raz et al., 2017). However, through our dialog with 

the proteomic data, two additional key points emerge. The first relates to our question of 

what process sets the absolute speed limit of bacterial growth. While a cell can parallelize 

many of its processes simply by increasing the abundance of specific proteins or firing 

multiple rounds of DNA replication, this is not so for synthesis of ribosomes as has been 

noted by others (Dill et al., 2011; Reuveni et al., 2017; Kostinski and Reuveni, 2020). The 

translation time for each ribosome (≈7 min) places an inherent limit on the growth rate 

that can only be surpassed if the cell were to increase their polypeptide elongation rate, or 

if they could reduce the total protein and rRNA mass of the ribosome. The second point 

relates to the long-observed correlations between growth rate and cell size (Schaechter et 

al., 1958; Si et al., 2017), and between growth rate and ribosomal mass fraction. While both 

trends have sparked tremendous curiosity and driven substantial amounts of research in their 

own regards, these relationships are themselves intertwined. In particular, E. coli’s protein 

content is reasonably well-tuned according to their growth rate, there is a predominant need 

for cells to increase their absolute number of ribosomes under conditions of rapid growth 

that require cells to also grow in size.

On the question of how bacteria actually achieve the simultaneously tuning of their 

ribosomal abundance, total proteomic content, and the extent of replication, much work 

points to the role of secondary messengers like (p)ppGpp (Cashel and Gallant, 1969; 

Nomura et al., 1984). While most commonly associated with a dynamic global response 

to changes in nutrient conditions through the stringent response, (p)ppGpp increasingly 

appears to play a role in both the control of the active ribosomal fraction and cell size 

homeostasis under steady-state nutrient-limited growth (Dai et al., 2016; Zhu and Dai, 2019; 

Büke et al., 2020; Vadia et al., 2017; Parker et al., 2020). In E. coli, an accumulation of 

de-acylated tRNAs at the ribosome’s A-site leads to a strong increase in (p)ppGpp synthesis 

activity by the enzyme RelA (Hauryliuk et al., 2015), providing a direct way to sense and 

adjust ribosomal content according to the level of charged tRNAs, as was shown in the work 

of Bosdriesz et al. (2015). (p)ppGpp and co-regulator DksA also strongly repress rRNA 

synthesis and ribosomal protein gene expression (Paul et al., 2004; Jin et al., 2012), and 

there is more recent evidence that (p)ppGpp acts to inhibit the initiation of DNA replication 

and DNA supercoiling near the origin of replication (Kraemer et al., 2019; Fernández-Coll 

et al., 2020). E. coli cells are well documented to add a constant volume per origin of 

replication that is robust to a remarkable array of cellular perturbations (Si et al., 2017) and 

many bacteria have been found to positively vary nucleoid size with cell size (Campos et al., 

2018; Gray et al., 2019). It will be interesting to further consider how control by (p)ppGpp 

aids in tuning # ori  and cell size to better match available nutrients conditions.

While the generation of new ribosomes plays a dominant role in growth rate control, there 

exist other physical limits to the function of cellular processes. One of the key motivations 

for considering energy production was the physical constraints on total volume and surface 

area as cells vary their size (Harris and Theriot, 2018; Ojkic et al., 2019). As E. coli get 
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larger at faster growth rates, an additional constraint begins to arise in energy production and 

nutrient uptake due to the relative decrease in total surface area, where ATP is predominantly 

produced (Szenk et al., 2017). Specifically, the cell interior requires an amount of energy 

that scales cubically with cell size, but the available surface area only grows quadratically 

(Figure 4A). While this threshold does not appear to be met for E. coli cells growing 

at 2 h−1 or less, it highlights an additional constraint on growth given the apparent need 

to increase cell size in order to grow faster. This limit is relevant even to eukaryotic 

organisms, whose mitochondria exhibit convoluted membrane structures that nevertheless 

remain bacteria-sized organelles (Guo et al., 2018). In the context of bacterial growth and 

energy production more generally, we have mainly limited our analysis to the aerobic growth 

conditions associated with the proteomic data, and further consideration will be needed for 

anaerobic growth.

This work is by no means meant to be a complete dissection of bacterial growth rate 

control, and there are many aspects of the bacterial proteome and growth that we neglected 

to consider. For example, other recent work (Liebermeister et al., 2014; Hui et al., 2015; 

Schmidt et al., 2016) has explored how the proteome is structured. In the work of Hui 

et al. (2015), the authors coarse-grained the proteome into six discrete categories being 

related to either translation, catabolism, anabolism, and others related to signaling and core 

metabolism. The relative mass fraction of the proteome occupied by each sector could be 

modulated by external application of drugs or simply by changing the nutritional content 

of the medium. While we have explored how the quantities of individual complexes are 

related to cell growth, we acknowledge that higher-order interactions between groups of 

complexes or metabolic networks at a systems level may reveal additional insights into how 

these growth rate dependences are achieved. This is exemplified by recent work highlighting 

a role for “P-sector” divisor proteins in setting cell size (Si et al., 2019; Panlilio et al., 2020; 

Serbanescu et al., 2020), where quantitative treatment of the allocation of cellular resources 

toward ribosomal and division protein synthesis can help account for morphological changes 

under nutrient shifts or translational perturbations. Furthermore, while we anticipate the 

conclusions summarized here are applicable to a wide collection of bacteria with similar 

lifestyles as E. coli, other bacteria and archaea may have evolved other strategies that were 

not considered. Further experiments with the level of rigor now possible in E. coli will need 

to be performed in a variety of microbial organisms to learn more about how regulation of 

proteomic composition and growth rate control has evolved over the past 3.5 billion years.

STAR★METHODS

Detailed methods are provided in the online version of this paper and include the following:

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the Lead Contact, Rob Phillips (phillips@pboc.caltech.edu).

Materials availability—This study did not generate new unique reagents.
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Data and code availability

• All data, code, and figure generation scripts are publicly available as a GitHub 

repository (https://github.com/rpgroup-pboc/growth_limits) and is accessible via 

[https://doi.org/10.5281/zenodo.4091457]. We invite the community to fork this 

repository and open constructive issues with comments regarding the analysis, 

annotation, or findings of the work.

• The published article includes two data sets generated during this study. Data S1 

combines all data of annotated complexes and protein-level abundances, while 

Data S2 contains abundances of each individual complex.

• Original proteomic data sets used in this work are provided in the key resources 

table.

• Any additional information required to reproduce this work is available from the 

Lead contact.

METHOD DETAILS

All data used in this work was collected from primary published literature (see key resources 

table), though great care was taken to standardize the measurements such that they are 

directly comparable, despite being taken in slightly different conditions using different 

methodologies and by different research groups.

The protein abundance data were cleaned and standardized as described in the supplemental 

information and collated into a singular long-form tidy.csv file. Annotation of molecular 

complexes was performed using Python scripts and the PathwayTools utilities available via 

BioCyc (Karp et al., 2019). The combined data of annotated complexes and protein-level 

abundances is provided as Data S1. The abundances of each individual complex (rather than 

abundances of individual proteins) is available as Data S2.

Analysis code and figure generation

All code used in the data cleaning, standardization, and figure generation is made 

publicly available as a GitHub repository available via https://github.com/rpgroup-pboc/

growth_limits and the [https://doi.org/10.5281/zenodo.4091457]. Code used in the 

processing, data cleaning, and annotation is located in the code/processing subdirectory. 

All code used for figure generation is located in the code/figures subdirectory.

Interactive figures

Associated with this work are two interactive figures that allow for deeper exploration 

of the data and the the minimal mathematical model. These figures are hosted at the 

paper website https://rpgroup.caltech.edu/growth_limits and their code is available on the 

associated GitHub repository.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Key biological processes are considered as potential growth-rate-limiting 

steps

• A near-comprehensive dataset of the E. coli proteome across growth rates is 

presented

• Order-of-magnitude estimates suggest little inefficiency across key processes

• Translation emerges as a rate-governing process and we explore constraints 

on growth rate
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Figure 1. Quantitative predictions of required protein abundances across key transport and 
synthesis processes necessary for cell division
(A) The growth rate dependent changes in bacterial size and composition provide a basis to 

both predict the protein abundances necessary to double a cell, and compile and compare 

proteomic measurements on a per cell basis across the recent datasets from Schmidt et al. 

(2016); Li et al. (2014); Peebo et al. (2015), and Valgepea et al. (2013). Predictions rely 

on the wealth of molecular turnover rate measurements and additional data tabulated on the 

BioNumbers Database (bionumbers.hms.harvard.edu, Milo et al. [2010]).
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(B) We consider an array of processes necessary for a cell to double its molecular 

components, broadly grouped into four classes. These categories are nutrient transport 

across the cell membrane, cell envelope biogenesis, energy production (namely, ATP 

synthesis), and processes associated with the central dogma. Numbers shown are the 

approximate number of complexes of each type observed at a growth rate of 0.5 h −1, 

or a cell doubling time of ≈5,000 s.
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Figure 2. The order-of-magnitude estimate protocol and examples for fundamental cellular 
processes
(A) Nearly all order-of-magnitude estimates undertaken in this work follow the same basic 

estimate scheme. For a given process, we first consider how much of a given material X 

(e.g., carbon atoms, lipid molecules, or ATP) the cell must transport or synthesize. This is 

dependent on the elemental composition of the cellular dry mass, the cellular surface area, or 

the cellular energy expenditure. With a value for the amount to be synthesized, we consider 

how quickly the process can occur given the literature values of the in vivo or in vitro 
kinetics of the key complexes involved in the process. The number of complexes needed to 

meet the synthetic or transport demand is dependent on the doubling time of the cell, which 

can be taken to be a specific value or evaluated over a continuum of growth rates. Together, 

these three quantities can be combined to estimate the number of complexes needed to meet 

the demand in a given time, highlighted in red, with order-of-magnitude or better precision. 
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Example estimates are given for (B) the number of carbon transporters, (C) the number of 

lipid synthesis enzymes, and (D) the number of ATP synthases. Similar diagrams of other 

estimates can be found in Table S1.
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Figure 3. Key processes required for nutrient uptake, cell wall biogenesis and energy synthesis 
during growth.
Dashed black lines indicate order of magnitude estimate needed at a growth rate of ≈0.5 

per h (light-brown point), while the gray line accounts for the growth rate dependence 

changes in cell size and doubling time. Dashed region of gray line represents growth rates 

with a doubling time ≥ 3 h where protein maintenance costs may be important but are not 

considered.

(A) Estimate for the minimum number of generic carbohydrate transport systems. Colored 

points correspond to the mean number of complexes involved in carbohydrate import 

(complexes annotated with the gene ontology terms GO:0009401 and GO:0098704) for 

different growth conditions across different published datasets.

(B) Number of PitA phosphate transport systems needed to maintain a 3% phosphorus dry 

mass.

(C) Number of CysUWA complexes necessary to maintain a 1% sulfur E. coli dry mass 

and the experimentally observed complex copy numbers using the transporter stoichiometry 

[CysA]2[CysU][CysW][Sbp/CysP].

(D) Number of ACP dehydratases necessary to form functional phospholipids, which is 

assumed to be a rate-limiting step on lipid synthesis, and the experimentally observed 

complex copy numbers using the stoichiometries [FabA]2 and [FabZ]2.

(E) Number of peptidoglycan transpeptidases needed to complete maturation of the 

peptidoglycan and experimental measurements of the transpeptidase complexes, following 

the stoichiometries [MrcA]2, [MrcB]2, [MrdA]1, and [MrdB]1.
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(F) Number of F1-F0 ATP synthase complexes needed to accommodate peptide bond 

formation and other NTP dependent processes and experimental measurements following 

the stoichiometry [AtpE]10[AtpF]2[AtpB][AtpC][AtpH] [AtpA]3[AtpG][AtpD]3.

(G) Number of electron transport chain complexes needed to maintain a membrane 

potential of −200 mV. Points in plot correspond to the average number of complexes 

identified as being involved in aerobic respiration by the GO identifier GO:0019646. 

These complexes include cytochromes bd1 ([CydA][CydB][CydX] [CydH]), bdII ([AppC]

[AppB]), bo3,([CyoD][CyoA][CyoB][CyoC]) and NADH:quinone oxioreductase I ([NuoA]

[NuoH][NuoJ][NuoK][NuoL][NuoM][NuoN][NuoB] [NuoC] [NuoE][NuoF][NuoG][NuoI]) 

and II ([Ndh]).
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Figure 4. Influence of cell size and surface area to volume ratio on ATP production and inner 
membrane composition
(A) Scaling of ATP demand and maximum ATP production through respiration as a function 

of surface area to volume ratio. Cell volumes of 0.5 fL to 50 fL were considered, with the 

dashed ( - -) line corresponding to a sphere and the dash-dot line (−.) reflecting a rod-shaped 

bacterium like E. coli with a typical aspect ratio (length/width) of 4 (Shi et al., 2018). The 

ATP demand is calculated as 106 ATP/(μm3 s), while the maximum ATP production rate is 

taken to be 3 ATP / (nm2•s) (Szenk et al., 2017), with calculations of E. coli volume and 

surface area detailed in supplemental information section “estimation of cell size and surface 

area.” In this calculation, 50% of the bacterial inner membrane is assumed to be protein, 

with the remainder lipid.

(B) Total protein mass per μm2 calculated for proteins with inner membrane annotation (GO 

term: 0005886).

(C) Relative protein abundances are grouped by their COG annotations (“metabolic,” 

“cellular processes and signaling,” “information storage and processing,” and “poorly 

characterized or not annotated”) for the data from Schmidt et al. (2016). Metabolic 

proteins are further separated into respiration (F1-F0 ATP synthase, NADH dehydrogenase 

I, succinate:quinone oxidoreductase, cytochrome bo3 ubiquinol oxidase, cytochrome bd-I 

ubiquinol oxidase) and carbohydrate transport (GO term: GO:0008643). Note that the 

elongation factor EF-Tu can also associate with the inner membrane but was excluded in 

this analysis due to its high relative abundance (roughly identical to the summed protein 

shown in B).

(D) Relative cytosolic protein abundances (GO term: 0005886), grouped by their COG 

annotations, are plotted as a function of growth rate.

(E) The relative cytosolic protein abundances (GO term: 0005886) associated with the 

“information storage and processing” and “metabolic” COG categories are plotted against 
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each other and highlight the larger mass fraction devoted to “information storage and 

processing” at faster growth rates.
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Figure 5. Processes of the central dogma
(A) The minimum number of DNA polymerase holoenzyme complexes needed to 

facilitate replication of the genome. Points correspond to the total number of DNA 

polymerase III holoenzyme complexes ([DnaE]3[DnaQ]3[HolE]3[DnaX]5[HolB] [HolA]

[DnaN]4[HolC]4[HolD]4) per cell.

(B) The effective concentration of DNA polymerase III holoenzyme (see supplemental 

information section “estimation of cell size and surface area” for calculation of cell size). 
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Shaded region corresponds to the range of KD values measured by Ason et al. (2000), from 

50 to 200 nM.

(C) The number of RNA polymerase core enzymes, with measurements corresponding to the 

average number given a subunit stoichiometry of [RpoA]2[R-poC][RpoB].

(D) The abundance of σ70 as a function of growth rate along with the same prediction from 

(C).

(E) Number of ribosomes required to synthesize 109 peptide bonds with an elongation rate 

of 15 peptide bonds per second.

(F) Number of tRNA synthetases that will supply the required amino acid demand. The sum 

of all tRNA synthetases copy numbers are plotted ([ArgS], [CysS], [GlnS], [GltX], [IleS], 

[LeuS], [ValS], [AlaS]2, [AsnS]2, [AspS]2, [TyrS]2, [TrpS]2, [ThrS]2, [SerS]2, [ProS]2, 

[PheS]2[PheT]2, [MetG]2, [lysS]2, [HisS]2, [GlyS]2[GlyQ]2). Dashed black lines indicate 

order of magnitude estimate needed at a growth rate of ≈0.5 per h (light-brown point), while 

the gray line accounts for the growth rate dependence changes in cell size and doubling time. 

Dashed region of gray line represents growth rates with a doubling time ≥ 3 h where protein 

maintenance costs may be important but are not considered.
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Figure 6. Limitations on ribosomal protein synthesis and growth rate
(A) Translation-limited growth rate as a function of the actively translating ribosomal 

fraction. The actively translating ribosomal fraction is calculated using the estimated values 

of fa from Dai et al. (2016) (shown in inset; see supplemental information “calculation of 

active ribosomal fraction” for additional detail). Shaded region defines boundary due to 

constraint set on growth rate by Equation 3. The solid line is calculated for an elongation 

rate of 17 peptide bonds per s. Gray data points show additional measurements based on 

measurements of cellular RNA to protein ratio, with ΦR ≈ the cellular RNA to protein ratio 

divided by 2.1 (Dai et al., 2016) and come from Forchhammer and Lindahl (1971); Bremer 

and Dennis (2008); Scott et al. (2010); Dai et al. (2016); Si et al. (2017).

(B) Maximum number of rRNA units that can be synthesized as a function of growth 

rate. Solid curve corresponding to the rRNA copy number is calculated by multiplying 

the number of rRNA operons by the estimated number of # ori  at each growth rate. 

The quantity # ori  was calculated using Equation 4 and the measurements from Si et al. 

(2017). The dashed line shows the maximal number of functional rRNA units produced 

from a single chromosomal initiation per cell cycle. Shaded region defines boundary due to 

maximal rRNA synthesis.

Belliveau et al. Page 43

Cell Syst. Author manuscript; available in PMC 2022 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Coordination of cell size and proteomic composition via ribosome activity
(A) Plot of the ribosome copy number estimated from the proteomic data against the 

estimated cell size (see supplemental information “estimation of cell size and surface area” 

for details on the calculation of cell size).

(B) A running Gaussian average (20 kbp SD) of protein copy number is calculated for each 

growth condition considered by ( Schmidt et al., 2016) based on each gene’s transcriptional 

start site. Since total protein abundance increases with growth rate, protein copy numbers 

are median subtracted to allow comparison between growth conditions. # ori  are estimated 

using data from Si et al. (2017) (see supplemental information “estimation of # ori  for 

additional details).

(C) We consider a unit volume of cellular material composed of amino acids (colored 

spheres) provided at a supply rate rAA. These amino acids are polymerized by a pool 

of ribosomes (brown blobs) at a rate rt × R × fa, where rt is the elongation rate, 

R is the ribosome copy number in the unit volume, and fa is the fraction of those 

ribosomes actively translating. In addition to determining total protein synthesis rate, the 

nutrient status is gauged by any accumulation of de-acylated tRNAs and synthesis of the 

secondary messenger (p)ppGpp, which ultimately determine # ori , cell size, and proteomic 

composition.

(D) The observed elongation rate is plotted as a function of the number of ribosomes. 

The three points correspond to three regimes of ribosome copy numbers and are shown 

schematically on the left-hand side. The region of the curve shown as dashed lines represents 

a non-physical copy number but is shown for illustrative purposes. This curve was generated 
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using an amino acid supply rate of 5 × 106 AA / s, a maximal elongation rate of 17.1 AA / s, 

fa = 1, and a unit cell volume of 1 fL. See supplemental information “derivation of minimal 

model for nutrient-mediated growth rate control” for additional model details.

(E) The cellular growth rate is plotted as a function of total cellular ribosome copy number 

for different cellular amino acid supply rates, with blue and green curves corresponding to 

low and high supply rates, respectively. As the ribosome copy number is increased, so too is 

the cell size and total protein abundance Npep.

Belliveau et al. Page 45

Cell Syst. Author manuscript; available in PMC 2022 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Belliveau et al. Page 46

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

E. coli proteomic data Valgepea et al., 2013Mol. BioSyst.9 pp. 
2344–2358. DOI: 10.1039/c3mb70119k

http://www.rsc.org/suppdata/mb/c3/c3mb70119k/
c3mb70119k.xlsx

E. coli proteomic data Li et al., 2014Cell157 pp. 624–635. 
DOI: 10.1016/j.cell.2014.02.033

https://ars.els-cdn.com/content/image/1-s2.0­
S0092867414002323-mmc1.xlsx

E. coli proteomic data Peebo et al., 2015. Mol. Biosyst.11 pp. 
1184–1193. DOI: 10.1039/c4mb00721b

http://www.rsc.org/suppdata/mb/c4/c4mb00721b/
c4mb00721b1.xlsx

E. coli proteomic data Schmidt et al., 2016Nat. Biotech.34 pp. 
108 – 110. DOI: 10.1038/nbt.3418

https://static-content.springer.com/esm/
art%3A10.1038%2Fnbt.3418/MediaObjects/
41587_2016_BFnbt3418_MOESM18_ESM.xlsx

Software and algorithms

Python version 3.8.8 
distributed via Anaconda

Python Software Foundation; Anaconda 
Org

http://www.anaconda.org

Matplotlib Python Plotting 
Library version 3.3.4

Matplotlib Organization https://matplotlib.org/

Pandas Python DataFrame 
Library version 1.2.4

Pydata Organization https://pandas.pydata.org/

Adobe Illustrator 2020 Adobe Incorporated https://www.adobe.com/products/illustrator

Pathway Tools SRI International https://bioinformatics.ai.sri.com/ptools/
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