
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Computers in Biology and Medicine 139 (2021) 104887

Available online 24 September 2021
0010-4825/© 2021 Elsevier Ltd. All rights reserved.

A comparative analysis of eleven neural networks architectures for small 
datasets of lung images of COVID-19 patients toward improved 
clinical decisions 

Yuan Yang a,b,f, Lin Zhang a,b,f,*, Mingyu Du a,b,f, Jingyu Bo c, Haolei Liu a,b,f, Lei Ren a,b,f, 
Xiaohe Li d, M. Jamal Deen e 

a Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, No.37 Xueyuan Road, Haidian District, Beijing, China 
b Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology, No.37 Xueyuan Road, Haidian District, Beijing, China 
c School of Economics and Management, Beijing Jiaotong University, No.3, Shangyuan Village, Haidian District, Beijing, China 
d The Third People’s Hospital of Shenzhen, Shenzhen, China 
e Department of Electrical Ad Computer Engineering, McMaster University, Hamilton, ON, L8S 4K1, Canada 
f School of Automation Science and Electrical Engineering, Beihang University, No.37 Xueyuan Road, Haidian District, Beijing, China   

A R T I C L E  I N F O   

Keywords: 
Deep learning 
Computed tomography 
COVID-19 
Image classification 

A B S T R A C T   

The 2019 novel severe acute respiratory syndrome coronavirus 2-SARS-CoV2, commonly known as COVID-19, is 
a highly infectious disease that has endangered the health of many people around the world. COVID-19, which 
infects the lungs, is often diagnosed and managed using X-ray or computed tomography (CT) images. For such 
images, rapid and accurate classification and diagnosis can be performed using deep learning methods that are 
trained using existing neural network models. However, at present, there is no standardized method or uniform 
evaluation metric for image classification, which makes it difficult to compare the strengths and weaknesses of 
different neural network models. This paper used eleven well-known convolutional neural networks, including 
VGG-16, ResNet-18, ResNet-50, DenseNet-121, DenseNet-169, Inception-v3, Inception-v4, SqueezeNet, Mobile
Net, ShuffeNet, and EfficientNet-b0, to classify and distinguish COVID-19 and non-COVID-19 lung images. These 
eleven models were applied to different batch sizes and epoch cases, and their overall performance was 
compared and discussed. The results of this study can provide decision support in guiding research on processing 
and analyzing small medical datasets to understand which model choices can yield better outcomes in lung 
image classification, diagnosis, disease management and patient care.   

1. Introduction 

COVID-19, a highly infectious lung disease, has caused an extremely 
serious pandemic that has spread worldwide. Some papers forecast the 
long-term trajectories of COVID-19 cases using mathematical modeling 
approaches [1] and stochastic forecasting models [2]. Three important 
symptoms of COVID-19 are shortness of breath or difficulty breathing, 
fever, and drying cough [3]. However, in many younger persons, these 
symptoms might not be present, as a result, other means of detecting 
infected individuals should be used. Nasal or throat swabs from 
asymptomatic infected persons are collected, which is uncomfortable 
and invasive, and then pathological tests such as reverse 
transcription-polymerase chain reaction (RT-PCR) tests or rapid antigen 

tests (RAT) are performed on those samples. In addition, diagnosis based 
on X-ray and computed tomography (CT) chest images is commonly 
used to assess the severity of the disease and in disease management and 
patient care [4]. However, identifying COVID-19 from these medical 
images is time-consuming, challenging, and prone to human errors. As a 
result, researchers in computer science have developed many automated 
diagnostic models based on machine learning (ML) or deep learning 
(DL) to help radiologists improve the accuracy of diagnoses [5] and 
obtain content performance [6]. 

In artificial intelligence (AI) methodologies, DL networks are more 
popular than traditional ML methods. The reason is that, unlike ML 
techniques, all feature extraction stages, feature selection, and classifi
cation are automated in the DL model. 
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DL generally requires a large amount of training data to enable its 
network to learn the data characteristics. However, currently, there are 
two major limitations to using DL on COVID-19 datasets. First, the CT 
datasets used cannot be shared with the public due to privacy concerns. 
As a consequence, the DL results cannot be reproduced, and the trained 
models cannot be used in other hospitals. In addition, the lack of an 
open-source, annotated COVID-19 CT dataset hinders the research and 
development of advanced AI methods that can test COVID-19 CT images 
more accurately. Second, to achieve a performance level that meets 
clinical standards, using a DL method requires a large number of CT 
scans to be collected during model training. This requirement is strin
gent and might not be met by many hospitals, especially since health 
care professionals are busy caring for COVID-19 patients and are un
likely to have the time to collect and annotate large numbers of COVID- 
19 CT scans. 

In this research, an important finding is that in most papers, it is 
difficult to quantitatively compare the strengths and weaknesses of the 
various DL models used on COVID-19 CT scans. This difficulty arises 
from the lack of standard datasets, networks, indicators, and experi
mental methods. Another important issue is how to identify a neural 
network model that can effectively classify small CT datasets. Therefore, 
eleven well-known convolutional neural networks(CNNs), VGG-16, 
ResNet-18, ResNet-50, DenseNet-121, DenseNet-169, Inception-v3, 
Inception-v4, SqueezeNet, MobileNet, ShuffeNet, and EfficientNet-b0, 
were used to investigate the merits of detecting lung problems in 
small datasets of COVID-19 patients. This paper notes that these neural 
network options are not mutually exclusive. In contrast, they can help to 
guide research or development efforts to understand which model 
choices can yield better results on small datasets. For the model evalu
ation and comparison, this research used uniform datasets, data 
augmentation, hyperparameter training, and consistent optimal weight 
during the training process. By conducting comparative experiments on 
the application of the eleven DL models on CT for COVID-19 diagnosis, 
disease classification, and their variabilities, this research makes the 
following contributions:  

● A comprehensive comparative analysis of five performance metrics, 
namely, accuracy(Acc), recall, precision(Pre), F1, and area under the 
curve (AUC), were performed on the eleven DL models.  

● For these eleven models, different batch sizes and epochs and the 
same five metrics were employed to assess their merits and 
limitations.  

● For the traditional neural network models used (ResNet-18, ResNet- 
50, Dense121, Dense169, Inception-v3, or Inception-v4), this 
research compared their performance differences under different 
parameter cases, including different batch sizes and epochs.  

● The comparative analysis of CNN models conducted in this research 
on the COVID-19 small datasets can help to guide decision-making 
and planning recommendations; and help to understand which 
model choices could yield better transfer learning. 

2. Materials and methods 

2.1. Deep learning study 

2.1.1. VGG 
Since winning the ImageNet first runner-up position in 2014, the 

VGG model has been widely used for image classification. The VGG 
architecture consists of multiple convolutional layers activated by ReLU 
(rectified linear unit), and the kernel size of the VGG convolutional 
layers is chosen to be 3 × 3. VGG-11, VGG-16, and VGG-19 are three 
variants of the VGG model, which are not very different from each other 
in terms of the model structure. They consist of successive convolutional 
and pooling layers, followed by three fully connected layers [7]. They 
differ only in the number of convolutional layers (11, 16, or 19), which 
is directly reflected in their names. 

In [8], the researchers collected 777 CT images from 88 COVID-19 
patients and trained and tested them using VGG. The model had an 
Acc of 84% with an F1 index of 84% and an AUC of 91%. In Ref. [9], the 
150 collected CT images were cut into smaller parts and labeled to form 
the dataset. The constructed dataset was then trained using the VGG16 
network, and two sets of test results were obtained depending on the 
setting of the dataset, with the optimal set achieving 96.93% accuracy, 
99.20% sensitivity, and 94.67% specificity. For this study, VGG-16 was 
selected. 

2.1.2. ResNet 
ResNet is a widely used and favored DL network for the identification 

of COVID-19 CT images. In ResNet and other DL networks, there is a 
tendency for the accuracy of the model prediction to decrease as the 
depth increases beyond a certain number, and thus the model depth 
must be carefully selected. In Ref. [10], this problem was solved by 
passing features from the lower layers to the higher layers and adding an 
identity mapping between the higher and lower layers of the network. 
The main difference between ResNet-18 and ResNet-34 is the multiplier 
of the block usage, while the main difference between ResNet-34 and 
ResNet-50 is the internal structure of the block. For this study, 
ResNet-18 and ResNet-50 neural network models were employed. 

In [11], an automated ResNet-based CT image analysis tool for 
detecting and distinguishing between COVID-19 patients and non
patients was developed. The results showed an AUC of 99.6%, a sensi
tivity of 98.2%, and a specificity of 92.2%. In Ref. [12], a total of 618 CT 
images were collected and used to train the improved model neural 
network based on ResNet, with a final accuracy of 86.7%. In Ref. [13], 
the 3D Unet++-ResNet50 combined model was used to classify and 
identify patients with COVID-19. The final sensitivity and specificity 
were 97.4% and 92.2%, respectively, and the AUC was 99.1%. 

2.1.3. DenseNet 
The core of the ResNet model is to train deeper CNNs by establishing 

shortcuts (skip connections) between the front and back layers, which 
helps to backpropagate the gradient during training. The DenseNet 
model is developed based on the same basic idea as ResNet, but it es
tablishes dense connections between all of the previous and subsequent 
layers, which is reflected in its name [14]. These features allow Dense
Net to achieve better performance than ResNet with fewer parameters 
and less computational cost [15]. DenseNet-121 and DenseNet-169 use 
the same structure of bottleneck (BN) layers.,i.e., the BN-ReLU-Conv (1 
× 1) - BN-ReLU-Conv (3 × 3). The main difference between 
DenseNet-121 and DenseNet-169 is the multiplier used by the dense 
block. DenseNet-121 and DenseNet-169 neural network models were 
used for this study. 

In [15], DenseNet was combined with Nu-SVM (support vector ma
chine) to detect COVID-19 pneumonia and achieved a final recall of 
90.8%, a precision of 89.7%, and an accuracy of 95.0%. In Ref. [16], 
DenseNet-121 was used as a control group to compare the results of 
pneumonia disease classification using Moco self-monitored learning, 
and the final model achieved an accuracy of 85.5%. 

2.1.4. Inception 
GoogLeNet, the 2014 ImageNet winner, mainly uses the structure of 

inception. The main feature of Inception is that it extracts information 
from different scales of the image through multiple convolutional ker
nels, finally concatenating them to obtain a better representation of the 
image [17]. 

Inception-v2 differs from Inception-v1 in two main ways. The first is 
the decomposition of the 5 × 5 convolution into two 3 × 3 convolutions. 
The second is the decomposition of n × n convolutional kernel’s size into 
two convolutions of 1 × n and n × 1. Inception-v3 primarily uses Batch 
Norm [18]. Inception-v4 introduces a dedicated reduction block, which 
is used to change the network width and height. 

Inception-v4 has a more unified and simplified architecture and 
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more inception modules than Inception-v3 [18]. 
Inception-v3 was used in Ref. [19] and achieved a final recall of 

80.08%, a precision of 80.07%, and an accuracy of 81.63%. In this study, 
Inception-v3 and Inception-v4 neural network models were used. 

2.1.5. SqueezeNet 
The core of SqueezeNet is the proposed fire module, which consists of 

two parts, the squeeze part and the expand part. The squeeze part is a 1 
× 1 convolutional kernel and a 1 × 1 convolutional layer. The expand 
part is 1 × 1 and 3 × 3 convolutional kernels and convolutional layers, 
respectively. In the expanded layer, the 1 × 1 and 3 × 3 feature maps are 
concatenated. A comparison on the ImageNet dataset shows that the 
accuracy of SqueezeNet and AlexNet is roughly equal [20]. 

In [21], a lightweight CNN model based on SqueezeNet for the 
recognition of lung CT images, was proposed. The improved model 
achieved 83% accuracy, 85% sensitivity, 81% specificity, and an F1 
value of 0.833 on the test dataset. 

2.1.6. MobileNet 
The basic unit of MobileNet is the depthwise separable convolution, 

which can be broken down into two smaller operations: depthwise 
convolution and pointwise convolution. Depthwise convolution uses 
different convolution kernels for each input channel, i.e., one convolu
tion kernel for each input channel; thus depthwise convolution is a 
depth-level operation. The pointwise convolution is just a normal 
convolution, but it uses 1 × 1 convolution kernels [22]. 

In [19], the experiments used MobileNet-V1 and obtained a final 
recall of 88.53%, precision of 88.64%, and accuracy of 89.14%. With 
MobileNet-V2, the recall was 87.66%, precision was 82.84% and st the 
accuracy was 85.52%. 

2.1.7. ShuffleNet 
The design of ShuffleNet accounts for mobile devices with low 

computing power. The core of ShuffleNet is composed of two operations: 
pointwise group convolution and channel shuffling, which significantly 
reduce the computational load of the model while maintaining accuracy. 
The basic unit of ShuffleNet is demonstrated on the basis of a residual 
unit [23]. 

In [24], ShuffleNet was used on X-ray images as raw data, and the 
final model achieved accuracy, sensitivity, FPR (false-positive rate) and 
F1 score of 65.26%, 65.26%, 17.36% and 58.79%, respectively. 

2.1.8. EfficientNet 
To make the neural network model balance the speed and accuracy, 

EfficientNet combines several dimensions of model scaling: network 
depth, network width, and image resolution. EfficientNet uses a com
pound scaling method to find the best combination of these three di
mensions, which affect one another [25]. 

In [26], the EfficientNet model achieved an accuracy of 0.7840 on 
the test set of 1248 CXR (lung X-ray) images of COVID-19 patients, 
patients with non-COVID-19-induced pneumonia, and healthy in
dividuals from 2 publicly available datasets. 

2.2. Further barriers to comparision 

2.2.1. Different datasets 
An analysis of the datasets from the relevant literature revealed that 

except for a few studies that used publicly available datasets, most 
studies did not provide a detailed description of the chosen data sources. 
To make the comparison more explicit, this study investigated the 
datasets that were used in many existing studies. The results are shown 
in Table 1. 

First, due to patient privacy concerns, hospitals cannot share CT 
images in their original format, which makes it difficult to reproduce 
many of the findings. Second, the medical images used in a significant 
portion of the work in many studies include other forms of imaging, such 

as X-rays. For many models not trained on a uniform dataset, the trained 
models can show excellent classification results in some cases, but they 
might not be robust. Therefore, to conduct a comprehensive compara
tive analysis of 11 neural networks, this study trained and tested them 
on a public dataset to ensure the reproducibility of the model training. 
When researching and analyzing datasets in the relatively small data 
regime, it also helps to understand which model to choose to obtain 
desirable results. 

2.2.2. Architecture ambiguity 
Because some models have many variants, it is difficult to determine 

the exact network model structure used in some publications, and a 
typical example is ResNet. For example, in Ref. [12], the classical 
ResNet-18 network structure for image feature extraction was used. The 
output of the convolutional layer was flattened to a 256-dimensional 
feature vector. Then, it was converted to a 16-dimensional feature 
vector using a fully connected network. 

In [19], the ResNet50 model was used to extract features from im
ages. Initially, the ResNet50 model was used to obtain a 1024 dimen
sional feature map. Then, the SVM was applied to the extracted feature 
map to classify the sample into two categories. Therefore, in many cases, 
what is used is a specific neural network model that is a custom variant 
of the neural network structure. The usual approach is to remove the last 
few layers of the original neural network and replace them with fully 
connected layers. In addition, some batch layer, dropout layers, and so 
on, can also be added. 

2.2.3. Different methods of data augmentation 
Data augmentation techniques can improve the size and quality of 

training datasets in such a way that they can be used to build better deep 
neural network models. In particular, for medical images, creating large 
medical datasets is very challenging due to the low numbers of patients 
with specific diseases and the privacy issues of patient data. Therefore, it 
is necessary to perform data augmentation on medical datasets. Con
ventional data augmentation methods include geometric trans
formations, flipping, color space, cropping and rotation. There are also 
ways to enhance data by developing models, for example, using the 

Table 1 
Different datasets.  

Paper Model Data source 

[8] VGG-16/DenseNet/ 
ResNet 

Images of 88 COVID-19 patients in Wuhan 
People’s Hospital 

[24] ResNet/ShuffleNet 
DenseNet/MobileNet 

These 127 COVID-19 X-ray images were shared 
by a postdoctoral fellow at the University of 
Montreal 

[26] VGG-16 A total of 1248 CXR images were obtained from 
two public datasets, which included 215 
images of COVID-19 patients 

[9] VGG-16/GoogleNet/ 
ResNet-50 

53 CT images of infected persons provided by 
the Italian Radiology Association 

[27] ResNet/DenseNet/ 
Inception 

CXR images were obtained from two public 
datasets, which include 236 images of COVID- 
19 patients 

[28] Inception/ResNet50/ 
MobileNet 

Images of 349 confirmed patients and 397 
healthy people 

[11] ResNet The lung CT image data of 157 patients from 
Chinese hospitals and the United States 

[12] ResNet18 The 618 CT images used were collected from 
the First Affiliated Hospital of Zheijiang 
University including 219 images of COVID-19 
patients 

[13] Inception/ResNet50/ 
Attention ResNet50 

The 1136 (723 COVID-19 positive) training 
samples were collected from five hospitals 
including Wuhan Leishenshan Hospital. 

[16] ResNet/DenseNet The dataset was provided by the Italian Society 
of Medical and Interventional Radiology 

[21] SqueezeNet The dataset was provided by the Italian Society 
of Medical and Interventional Radiology  
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popular generative modeling framework to form a generative adversa
rial network (GAN). In Table 2, several previously studied image 
augmentation methods are summarized. 

2.2.4. Assessment of different metrics 
To assess the performance of each DL model, different metrics were 

applied in different studies to measure their misclassification of COVID- 
19 in the tested CT images. In Table 3, the metrics used to evaluate the 
COVID-19 diagnostic models are summarized. The most commonly used 
metrics are accuracy and AUC. 

2.3. Image acquisition  

A: An open-source dataset(UCSD-AI4H) of COVID-19 contains 349 
COVID-19 positive CT images and 397 non-COVID-19 CT images 
from 216 patients. A senior radiologist and experimental studies 
confirmed the usefulness of the dataset (https://github.com/ 
UCSD-AI4H/COVID-CT). The dataset is available for download at 
(https://github.com/UCSD-AI4H/COVID-CT). The 349 COVID-19 
positive CT images used in this research have different sizes, with 
the mean, maximum and minimum heights being 491, 1853 and 153, 
respectively. In addition, the mean, maximum and minimum widths 
were 383, 1485 and 124, respectively. Fig. 1 shows some examples of 
COVID-19 CT images.  

B: Another open-source dataset (Italiancase) with 338 COVID-19 CT 
images is available, and it can be downloaded at (https://www.sirm. 
org/category/senza-categoria/covid-19/). 

2.4. CT image analysis 

2.4.1. CT image preprocessing 
The UCSD-AI4H dataset includes 349 COVID-19 CTs and 397 non- 

COVID-19 CTs, and Fig. 1 shows some of its examples. The CT images 
were resized to 224 × 224. Then, they were divided into training, 
validation, and test sets by patient ID. Table 4 shows the statistics for 
these three subdatasets. 

The Italiancase dataset consists of 338 COVID-19 CTs and 397 non- 

COVID-19 CTs. Fig. 2 shows some of its examples. The size of the CT 
images was adjusted to 224 × 224. Table 5 shows the statistics for the 
three subdatasets, including the training, validation, and test sets. 

In Fig. 3 the histograms of the pixel intensities of all of the CT scan 
images in the two datasets after normalization are depicted. 

2.4.2. Data augmentation 
An important problem with training neural networks on small 

datasets is that the trained models do not perform well on the validation 
and test datasets. In order to solve the overfitting problem of these 
models, a variety of methods have been produced, the simplest of which 
is to add regularization terms to the weighting paradigm [30]. Another 
popular technique is dropout, which is achieved by probabilistically 
removing neurons from a given layer during training or by discarding 
certain connections [31]. Data augmentation is another way to reduce 
the overfitting of models. Currently, a widespread and well-accepted 
practice of image data augmentation is geometric and color augmenta
tion [32], such as reflecting the image, cropping and translating the 
image, changing the color palette of the image, color processing, and 
geometrical transformations (rotation, resizing, and so on.). Image 
augmentation algorithms [33] include geometric transformations, color 
space augmentations, kernel filters, random erasing, adversarial 
training, and meta-learning [33]. Among them, the basic methods of 
image processing data augmentation are geometric transformations, 
flipping, color space, cropping, rotation, and color space 
transformations. 

In [32], the dataset from tiny-imagenet-200 was used in one exper
iment to select pictures of dogs and cats in a binary classification task. 
The result shows that without any data augmentation, the accuracy was 
85.5% on the validation set. After using traditional data augmentation 
methods, the accuracy was improved to 89%, which indicates that 
traditional data augmentation has some limited effect on improving the 
accuracy. The image augmentation methods used in this study are all 
basic methods. The input images were standardized to have zero mean 
and unit standard deviation. Then, they were cropped to 224 × 224 × 3. 
For the UCSD-AI4H dataset and Italiancase dataset, the data augmen
tation methods and values used for each image are shown in Table 6. 

Fig. 4 shows several examples after data augmentation, including 
changing the brightness and contrasting the image or rotating it. 

2.5. Parameter numbers and hyperparameters 

2.5.1. Parameter numbers 
As shown in Table 7, this paper listed the statistics of the number of 

parameters of the eleven selected models. 

2.5.2. Network hyperparameters 
In addition to image preprocessing, hyperparameters are an essential 

part of neural network training. The hyperparameters of the final model 
used in this work are listed in Table 8. 

Table 2 
Different methods of data augmentation.  

Paper Data augmentation 

[8] Each set of 3D CT images was equally divided into 15 slices. The slices with 
incomplete lung were removed. The lung region in each slice was 
automatically extracted. The images were then filled with a background 
composed of 10 translational and rotational lungs 

[24] NONE 
[26] The conventional data augmentation method included ± 15◦ rotation, ±

15% x-axis shift, ± 15% y-axis shift, horizontal flipping, and 85%–115% 
scaling and shear transformation. The parameters of mixup was set to 0.1 

[9] The original image is divided into 16 * 16 and 32 * 32 blocks to build two 
data sets 

[27] All the of images were initially preprocessed to have the same size. To make 
the image size uniform throughout the dataset, each of the images was 
interpolated using bicubic interpolation. 

[28] The image size was resized to 224 * 224 * 3 
[29] GAN was used for data augmentation. First, the image was resized to 286 * 

286, and then it was cropped to 256 * 256 by patchGAN. 
[11] U-net was used to remove the irrelevant areas. Image rotation, horizontal 

flipping and clipping were used to enhance the data. 
[12] A total of 3957 candidate cubes were generated from the 3D segmentation 

model. Subsequently, a total of 3957 candidate cubes were generated from 
the 3D segmentation model. 

[13] Image rotation, horizontal flipping and clipping were used to enhance the 
data. 

[16] Using random clipping with color distortion to augment data, the size is 
adjusted 

[21] Rotation (random angle between 0 and 90◦), scale (random value between 
1.1 and 1.3) and Gaussian noise in the original image were used for data 
augmentation  

Table 3 
Performance criteria.  

Paper Performance Criteria 

[8] AUC\Recall\Precision\F1-score\Accuracy 
[24] Accuracy\Sensitivity\FPR\F1-score 
[26] Accuracy\Sensitivity 
[9] TP\TN\FP\FN\Accuracy \Sensitivity\Specificity\Precision \F1-score 

\Matthews Correlation Coefficient (MCC) 
[27] \F1-score\Recall\Precision\Specificity 
[28] AUC\Recall\Precision\F1-score\Accuracy 
[29] AUC\Recall\Precision\F1-score\Accuracy 
[11] AUC\Sensitivity\Specificity 
[12] Recall\Precision\F1-score 
[13] AUC\Sensitivity\Specificity 
[16] AUC\Recall\Precision\Accuracy 
[21] AUC\specificity\Precision\F1-score\Accuracy  
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2.6. Neural network training  

(1) Training process  
a) A batch of data is obtained from the training dataset to train 

the model and to input the trained neural network model.  
b) The model outputs bicategorical results, calculates the loss 

function using cross-entropy, and updates the network 
weights using the Adam optimizer.  

c) After each epoch, the model parameters are saved, and the 
model is used to classify the validation set to obtain the F1- 
score, accuracy, and AUC.  

d) Determine if the best result is the current result according to 
the numerical value. If so, save an additional copy of the 
current model parameters;  

e) Steps a-d are repeated until the maximum training epoch is 
reached.  

(2) Optimal weights of the model saved during the training phase 

The optimal weight files generated during the training of the model 
are selectively recorded. The Accuracy, AUC, and F1-score values ob
tained by the model on the validation set are written into a dictionary 
after each training generation. The current values of accuracy, AUC, and 
F1-score are compared with their corresponding optimal historical 
values. If a value is greater than its corresponding optimal historical 

Fig. 1. Four examples of UCSD-AI4H CT images that are positive for COVID-19.  

Table 4 
UCSD-AI4H dataset split.  

Class Train Validation Test Total 

Normal 234 58 105 397 
Pneumonia 191 60 98 349  

Fig. 2. Four examples of Italiancase CT images that are positive for COVID-19.  

Table 5 
Italiancase dataset split.  

Class Train Validation Test Total 

Normal 234 58 105 397 
Pneumonia 190 56 92 338  
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value, the optimal historical value is updated. At the same time, the 
optimal weight file for this generation of training is saved. Therefore, 
after the final training, three optimal weight files are obtained, including 
the Accuracy weight file, the AUC weight file, and the F1 weight file. 

2.7. Evaluation metrics 

The confusion matrix illustrated in Table 9 is determined. The 
confusion matrix has four expected outcomes, including true positive 
(TP), true negative (TN), false positive (FP), and false negative (FN). TP 
is the number of predicted positives (e.g., predicted as having a disease) 
and actual positives (e.g., actually having the disease). TN is the number 
of predicted negatives (e.g., predicted not having a disease) and actual 
negatives (e.g., not having the disease). FP is the number of predicted 
positives (e.g., predicted having a disease) but actual negatives (e.g., not 
having the disease). FN is the number of predicted negatives (e.g., pre
dicted not having a disease) but actual positives (e.g., having the 
disease). 

For the judgment of the training results of this research, the 
following five metrics were selected, which are the supporting data for 
calculating the overall performance metrics.  

1. Precision is the ratio of the number of positives predicted correctly 
(TP) to the total number of positives predicted(TP + FP). Precision is 
specific to the predicted outcome, and this metric reflects how well 
the model learns about the positive sample characteristics. The 
higher the precision is, the more accurate the prediction of the 
positive sample. 

Precision ​ =
TP

TP + FP    

2. Recall is the percentage of the number of positives predicted 
correctly (TP) to the total number of actual positives (TP + FN). The 
higher the recall rate is, the more accuracy the target sample is 
predicted, and the less likely it is that a bad sample will be missed. 

Recall = ​ TP
TP + FN    

3. The F1-score measures the accuracy of a test and is the harmonic 
mean of the precision and recall. In general, there is a contradiction 
between the precision and the recall, as a result, F1-score is intro
duced as a composite index to balance the effects of precision and 
recall and to evaluate classifier more a correctly. 

F1 − score = 2
(
​ Precision ​ × ​ Recall
​ Precision ​ + ​ Recall

)

4. Accuracy is the ratio of the number of correctly classified samples to 
the total number of samples. In our study, since it is a binary- 
classification problem and the number of positive and negative 
samples is not balanced, the pursuit of high accuracy alone might not 
reflect the classification effect objectively. 

Accuracy =
TP + TN

TP + FP + FN + TN    

5. AUC (Area Under Curve) is defined as the area under the ROC 
(receiver operating characteristic) curve, and it is not greater than 1. 
The ROC curve and AUC are often used to evaluate a binary classi
fier’s effectiveness. 

3. Results 

To make a comprehensive comparison of the performance of 11 
neural networks on the COVID-19 dataset, this study analyzed and 
compared these models with different batch sizes and epochs. The batch 
size affects the direction of the gradient descent during back
propagation. The larger the batch size is, the more representative it is of 
the dataset’s overall characteristics, and the faster it converges. How
ever, in terms of computing power, it also requires more memory ca
pacity and more time. In summary, this study chose 10 and 25 for the 
batch size, respectively. Epochs, another important hyperparameter, do 
not have a clear criterion in the training process of neural networks. 
When the periods are too small, the model cannot be adequately trained, 
which leads to poor performance. In addition, when the epochs are too 
large, an overfitting issue can arise. In this case, the model tends to 
perform very well on the training set. However, in fact, it does not learn 
the actual features of the image, and the classification performance on 
the test set is significantly reduced. 

3.1. Overall performance evaluation on the UCSD-AI4H dataset 

Figs. 5 to 12 shows the results of five metrics (Precision, Recall, F1- 
score, Accuracy and AUC) for the comparison of the 11 models using 
different optimal weights on 2 COVID-19 datasets, UCSD-AI4H and 
Italiancase. In the case of the same parameter set, the results of using 
three different optimal weights were compared horizontally. In most 

Fig. 3. Histogram plots of the normalized pixel intensities for the images.  

Table 6 
Data augmentation.  

Operation Name Range 

Contrast [0.9,1.1] 
Brightness [0.9,1.1] 
Rotate [-10,10]  
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cases, using three different optimal weights with the same epoch and 
batch size has little effect on the five metrics’ results. However, in 
certain situations, it can have a large effect. For example, on the UCSD- 
AI4H dataset with epoch = 800 and batch size = 25, when EfficientNet- 
b0 uses the weights of the optimal accuracy, the accuracy is 76%, and 
when is uses the weights of the optimal AUC, the accuracy is 67%. 
Longitudinally, for the same dataset, the final results of the five metrics 
on the test set using different epochs and batch size parameters are 

Fig. 4. Example transformations after data augmentation.  

Table 7 
Comparison of parameter numbers.  

Model Number of model parameters 

Vgg-16 138,357,544 
ResNet-18 11,177,538 
ResNet-50 23,512,130 
Dense121 6,955,906 
Dense169 12,487,810 
inception-v3 21,789,666 
inception-v4 41,287,330 
SqueezeNet 736,450 
MobileNet 2,226,434 
ShuffleNet-v2 343,842 
efficientNet-b0 44,578  

Table 8 
Network hyperparameters.  

Hyperparameter Options 

Cost function Binary cross entropy 
Learning rate (Lr) 0.001 
Optimizer Adam 
Epochs 800,1500 
Batch Size 10,25 
Lr Decay 10 times after a plateau  

Table 9 
Confusion matrix.   

Predicted Positive Predicted Negative 

Actual Positive True Positive (TP) False Negative (FN) 
Actual Negative False Positive (FP) True Negative (TN)  
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different. However, from the overall comparison of the 11 models, the 
models’ performance on the five metrics is the same. 

3.2. Overall performance evaluation on italiancase dataset 

Overall, on the UCSD-AI4H dataset, EfficientNet-b0 achieved the 

best performance. On the Italiancase dataset, EfficientNet-b0, ResNet- 
18, ResNet-50, DenseNet-121, DenseNet-169, Inception-V3 and 
Inception-V4 all achieved good performance. 

Fig. 5. The overall performance comparison of 11 neural networks on the UCSD-AI4H dataset, with epoch = 800,batch-size = 10.  

Fig. 6. The overall performance comparison of 11 neural networks on the UCSD-AI4H dataset, with epoch = 800,batch-size = 25.  

Fig. 7. The overall performance comparison of 11 neural networks on the UCSD-AI4H dataset, with epoch = 1500,batch-size = 10.  

Fig. 8. The overall performance comparison of 11 neural networks on the UCSD-AI4H dataset, with epoch = 1500,batch-size = 25.  
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4. Discussion 

4.1. Calculate comprehensive indicators 

To determine the performance of the 11 models in a comprehensive 
and accurate way, this research considered how to use these five metrics 

(precision, recall, F1-score, accuracy, and AUC) in combination. How
ever, several of these five metrics are related to each other. Among them, 
the Fl-score is a combined indicator of the accuracy and recall. It was 
also observed that some models performed well according to the recall 
but poorly according to the accuracy and precision, which indicates that 
the models actually performed poorly. Therefore, to evaluate the merits 

Fig. 9. The overall performance comparison of 11 neural networks on the Italiancase dataset, with epoch = 800, batch-size = 10.  

Fig. 10. The overall performance comparison of 11 neural networks on the Italiancase dataset, with epoch = 800, batch-size = 25.  

Fig. 11. The overall performance comparison of 11 neural networks on the Italiancase dataset, with epoch = 1500, batch-size = 10.  

Fig. 12. The overall performance comparison of 11 neural networks on the Italiancase dataset, with epoch = 1500, batch-size = 25.  
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of the models in a more comprehensive way, the standard deviations 
(std) and the dispersion of the 4 indicators (precision, recall, accuracy, 
and AUC) were introduced. This research first added up (sum) the four 
indicators for each model, then obtained their std, and added a constant 
k = 0.02 to the obtained std (to make std + 0.02). The last two numbers 
were then divided to obtain the comprehensive evaluation indicator 
(sum/(std+0.02)). The process is displayed as follows.  

Step 1 Delete F1-score.  
Step 2 Calculate Sum = Accuracy + Precision + Recall + AUC  
Step 3 Calculate std = std(Accuracy + Precision + Recall + AUC) 
Step 4 Calculate sum/(std + 0.02). This value is the comprehensive in

dicator required. 

For the image classification task, in addition to the classification 
effect being the most important index, the number of model parameters 
was also used as an index to evaluate the merits of the model. Therefore, 
this research combined these two factors to list the efficiency-effects plot 
(Fig. 13), where the horizontal coordinate is the number of parameters 
of the model and the vertical coordinate is the overall performance index 
of the model. The closer the point representing the model is to the upper 
left corner of the efficiency-effects graph, the better and more efficient 
the model is. The opposite is true for models near the lower right corner. 
It can be seen that the EfficientNet-b0 model had the best performance in 
terms of overall metrics and had smaller model training parameters. The 
ResNet-18, ResNet-50, DenseNet-121, DenseNet-169, Inception-V3 and 
Inception-V4 models had moderate performance in terms of overall 
metrics. The VGG and SqueezeNet models had the worst performance. 

4.2. Comparison of comprehensive indicators of 11 neural network 
models 

This research employed the composite evaluation indicators 
mentioned above to compare the performance of each model. By per
forming the 11 models on the UCSD-AI4H dataset and Italiancase 
dataset, respectively, with a combination of 2 parameters (batch-size 
and epochs) and evaluating their performance based on the four sets of 
parameters, this research obtained the result for the UCSD-AI4H dataset 

(Fig. 14 (a)), and the result for the Italiancase dataset (Fig. 14 (b)). 
From the above observation, the 11 neural networks were grouped 

into four categories.  

● The first category is Vgg-16 as a baseline methodology. 
● The second category is ResNet-18, ResNet-50, DenseNet-169, Den

seNet-121, Inception-v3, and Inception-v4.  
● The third category is the SqueezeNet, MobileNet, and ShuffleNet-v2 

lightweight models.  
● The fourth class is EfficientNet-b0, which can scale the model on 

three parameters: depth, breadth, and input resolution. 

Based on the above categorization of the models and the results 
shown in Fig. 14, the following five conclusions were made.  

1. The VGG-16 had the worst overall performance.  
2. SqueezeNet had the worst performance among the SqueezeNet, 

MobileNet, and ShuffleNet-v2 lightweight models. 
3. MobileNet and ShuffleNet both outperformed SqueezeNet. Mobile

Net even achieved performances comparable to those of the ResNet, 
DenseNet, and Inception series but had the advantage of one order of 
magnitude fewer parameters. 

4. The ResNet, DenseNet, and Inception series had no significant ad
vantages over MobileNet and ShuffleNet under certain circum
stances. However, the former three classes of models required larger 
numbers of parameters.  

5. The EfficientNet-b0 model performs well in a variety of metrics. 

On the two small datasets, the EfficientNet model performed better 
than the ResNet, DenseNet, and the Inception series of networks in terms 
of the accuracy, synthesis, and efficiency. Similar results were obtained 
when compared to those shown in Ref. [34]. MobileNet achieved a 
performance comparable to ResNet, DenseNet, and the Inception series 
on the two small datasets. 

Fig. 13. Comparison of the comprehensive indicators of 11 neural networks for the UCSD-AI4H dataset, with epoch = 800,batch-size = 10.  
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4.3. Different batch-size, epoch parameters on ResNet, DenseNet, and 
inception series models 

In this section, this research determined the general effect of the 
batch size and epoch parameters on the six ResNet, DenseNet, and 
Inception series models. The combined metrics of these six models in 
four different parameter combinations (batch size: 10 and 25; epoch: 
800 and 1500) are shown in Fig. 15. 

According to Fig. 15, the following two conclusions were obtained. 
First, a model with more layers might not have better performance, e.g., 
in the UCSD-AI4H dataset case, the overall performance of ResNet18 
was better than ResNet50 in all four cases. In the Italiancase dataset, the 
overall performance of ResNet18 was better than ResNet50 in 2 out of 4 
cases. 

Second, a larger number of model parameters does not necessarily 
produce better overall model performance. For example, for the Incep
tion series, the number of model parameters of Inception-v4 was greater 
than that of Inception-v3. In the case of the UCSD-AI4H dataset, in all 

four cases, Inception-v3 performed better than Inception-v4 in terms of 
the overall performance. In the case of the Italiancase dataset, in two of 
the four cases, Inception-v3 performed better than Inception-v4. 

In [10], the top-1 errors of ResNet18 and ResNet34 on the ImageNet 
dataset were compared. The fact that ResNet34 had a lower error rate 
than ResNet18 indicated that ResNet34 performed better than 
ResNet18. In Ref. [15], on the ImageNet dataset, DenseNet 169 was less 
error-prone than DenseNet 121. In Ref. [35] on the ImageNet dataset, 
Inception-v3 was less error-prone than Inception-v4. 

Through the two small datasets used in this study, for the ResNet, 
DenseNet, and Inception models, it can be found that a larger number of 
layers of the model does not necessarily give better performance. 

To further investigate these two findings, this research evaluated the 
image quality of the ImageNet dataset, the UCSD-AI4H dataset, and the 
Italiancase dataset. Image quality assessment can generally be divided 
into two types: the subjective quality score given by managers and the 
objective quality score given by the image quality model. Subjective 
quality assessment methods would be more accurate. Nevertheless, 

Fig. 14. Comparison of the comprehensive indicators of 11 neural networks. Dot means epoch = 800, batch-size = 10. Plus sign means epoch = 800, batch-size = 25. 
Triangle means epoch = 1500, batch-size = 25. Cross means epoch = 1500, batch-size = 10. 

Fig. 15. Comparison of comprehensive indicators under different batch sizes and epoch parameters on ResNet, DenseNet, and Inception series models.  
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because they are expensive, time-consuming, and unsuitable for large- 
scale data, algorithms should be investigated to predict the image 
quality. Current objective quality assessment methods are roughly 
divided into three categories, including full reference image quality 
assessment (FRIQA), reduced reference image quality assessment 
(RRIQA), and no reference image quality assessment (NRIQA) [36]. 
Among them, NRIQA is a so-called blind image quality assessment 
(BIQA). 

Compared to other image assessment methods, the NRIQA method 
does not require the original distortion-free reference image, which fits 
most application scenarios; therefore, the NRIQA method was employed 
in this study. Compared with the BIQA method, the FRIQA method has 
developed a complete theoretical system and assessment model. The 
most commonly used indicators in FRIQA are the mean square error 
(MSE) based on pixel statistics, peak signal-to-noise ratio (PSRN), and 
structural similarity (SSIM) based on structural information [37]. 

The generic BIQA algorithm learns to map from image features to the 
corresponding quality fractions or to split the image into different 
distortion categories before mapping. Since the first use of natural scene 
statistics (NSS) [38] for image quality assessment in 2005, many ex
periments have shown that there is a close relationship between NSS 
features and image quality. In 2012, Mittal et al. proposed another 
model for extracting NSS features in the spatial space: the Blind/
Referenceless Image Spatial Quality Evaluator (BRISQUE) [39]. 

The data quality of the Imagenet dataset, the UCSD- AI4H dataset, 
and the Italiancase dataset was evaluated using four metrics: MSE, 
PSNR, SSIM, and BRISQUE, and the results are shown in Table 10. 

From Table 10, it can be seen that the PSNR and SSIM values are low. 
The image was selected as the reference image (ref) inside the LIVE 
dataset. The smaller the MSE result is, the smaller the gap between the 
detected image and the reference image. The BRISQUE result is a 
number between 0 and 100, and the smaller the number is, the better the 
quality. According to the MSE and BRISQUE metrics, the image data 
quality of the Imagenet dataset is better than that of the UCSD-AI4H and 
Italiancase datasets. Therefore, for the UCSD-AI4H dataset and the 
Italiancase dataset, more layers of the model and the more model pa
rameters do not mean that the overall performance of the model is 
better. The likely reason is the poor quality of the dataset, which ulti
mately leads to the overfitting of the model. 

This result can be used to extend classification studies on small image 
datasets to other areas. There are still some limitations to this study. 
First, the image quality of the two datasets was not high, and it was 
difficult for the neural network model to learn the features of the local 
pneumonia foci. Second, there were no clinical features associated with 
neocoronary pneumonia to examine the correlations between the 
symptoms and the pneumonia lesion characteristics. 

4.4. Comparison of results before and after data augmentation 

The contrast experiment for data augmentation and no data 
augmentation is performed on the UCSD-AI4H dataset. The boxplots of 
precision, recall, f1, accuracy and AUC are plotted in Fig. 16. The 
experimental results show that after data augmentation, the accuracy of 
the test set and each metric without data augmentation are improved 
accordingly. 

4.5. Visualization interpretability 

In recent years, deep neural networks (DNNs) have made great 
achievements in natural language processing, computer vision, and 
other applications. Their performance is not only better than a number 
of existing machine learning methods but also outstanding when 
addressing actual tasks. 

With the intention of opening the black-boxes of DNNs, a number of 
scholars have paid attention to the interpretability of the model. 
Although many studies have explored this topic, there is currently no 
unified definition of interpretability. Moreover, the definitions and 
motivations of interpretability that they proposed are usually diverse or 
even significantly inconsistent with one another. 

It can be noted that several papers have distinguished between 
explainability and interpretability. In this research, the minute variance 
between these two concepts was not considered. As defined above, this 
research considered the explanation to be the essence of interpretability; 
and used understandability, explainability, and interpretability inter
changeably. Specifically, this research attempted to study the inter
pretability of DNNs, with the purpose of providing an explanation of 
their internal operations as well as input-output mappings. 

The main functions of using feature visualization to explore the 
working mechanism of a deep convolution neural network are as 
follows:  

1. It is helpful to understand and analyze the working principle and 
decision-making process of the neural network to better select or 
design the network. For example, for classification networks, CAM 
places higher requirements on the network in addition to the clas
sification accuracy. Specifically, it not only requires high prediction 
accuracy, but also requires the network to extract the required 
features.  

2. It makes use of visual information to guide the network to achieve 
better learning results. 

Among the interpretation forms of neural networks, methods based 
on saliency are the most commonly used. These methods assign 
importance weights to each pixel of the input image to indicate the 
significance of each pixel to the predicted category of the image. The 
saliency map [40] can be considered to be a feature map, which dem
onstrates the influence of the pixels in the image on the result of image 
classification. 

The full name of CAM is Class Activation Mapping [41], also known 
as the Category Heat Map; In general, it is represented by a grayscale 
image from 0 to 255 with the same size as the original picture, and the 
pixel value of each position on it ranges from 0 to 1. It can be understood 
as the contribution distribution to the prediction output. The higher the 
value is, the higher the response and the greater the contribution of the 
corresponding area of the original picture to the network. The visuali
zation of CAM can be presented in the form of a superposition of the heat 
map and the original image. The darker the red is, the greater the value. 
It can be considered that when the network predicts the “COVID-19” 
category, the red highlighted area is its primary bias for judgment. 

The intuitive visualization is to draw the weight of the target layer. 
The weights visualization [42] of the first layer are presented in Ap
pendix A. In general, the coverage areas of the heatmap and CAM are 
similar, as in Fig. 17. Therefore, the renderings presented by the CAMs of 
each neural network were discussed separately.  

● Saliency maps of VGG, Resnet, and Denset pay more attention to 
local features; MobileNet, ShuffeNet, and SqueezeNet do not perform 
well in extracting key features; EffcientNet performs well not only in 
paying attention to global features, but also in distinguishing key 
features.  

● The Grad-CAMs of VGG-16 and SqueezeNet do not cover the entire 
object. In contrast, those of Resnet, Denset, Inception, and 

Table 10 
Imagenet, UCSD-AI4H and Italiancase Image quality assessment.   

Imagenet UCSD-AI4H Italiancase 

MSE 8264 13804 10645 
PSNR 6.81 6.75 6.45 
SSIM 0.145 0.172 0.142 
BRISQUE 15.31 17.35 29.89  
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Fig. 16. Boxplots of precision, recall,F1, accuracy and AUC for the UCSD-AI4H dataset in 2 experiments with data augmentation and without data augmentation.  
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Fig. 17. Visualization interpretability for learned features from several methods.  
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EffcientNet have more comprehensive coverage. This finding further 
illustrates that the performance of the Resnet, Denset, Inception, and 
EffcientNet models is better than that of the VGG-16 and SqueezeNet 
models.  

● Compared with Grad-CAM, the objects covered by Grad-CAM++

[43] are more comprehensive. The objects covered by Grad-CAM are 
only partial, while Grad-CAM++ covers almost all objects. In 
particular, the Grad-CAM++ of the Resnet, Denset, and EffcientNet 
models can basically cover all objects. 

5. Conclusions 

This research studied the effect of 11 neural networks on learning on 
the COVID19-CT dataset, and evaluated the performance of the random 
initialization network. In addition, the differences in the final 

classification performance of the neural network models on the 
COVID19-CT dataset were compared. The results of this research can 
guide researchers and help them determine the most suitable model, and 
understand the conditions under which the models will produce better 
results. This paper contributes to a systematic comparison and evalua
tion of the performance of 11 traditional neural network models in a 
relatively small data regime. For the relatively small data regime, a 
neural network model that has deeper layers does not necessarily pro
vide better overall performance. In general, choosing neural networks 
with residual connectivity (e.g. ResNet) and automatic search capability 
(e.g. EfficientNet) gives better results. It should be noted that neural 
network models impact the model performance when using different 
hyperparameters. However, in general, neural networks with residual 
connections (e.g., ResNet) and automatic search capabilities (e.g., Effi
cientNet) have better migration performance.  

Appendix A. Weights visualization 

To deeply understand the behavior of 11 neural networks using weight visualization, visual explanations of the predictions of convolutional neural 
networks are provided. The weight visualization of the first layer is presented in Fig. A.18 to Fig. A.27. As output, the weights of the current layer were 
obtained to be grayscale images, and 16 of them were plotted. According to these images, certain pixels at the edges of the image are brighter than 
others. 
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Fig. A.18. weights-01layer-vgg16.   
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Fig. A.19. weights-01layer-resnet18.   
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Fig. A.20. weights-01layer-resnet50.   
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Fig. A.21. weights-01layer-densenet121.   
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Fig. A.22. weights-01layer-densenet169.   
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Fig. A.23. weights-01layer-inception-v3.   
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Fig. A.24. weights-01layer-squeezenet.   
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Fig. A.25. weights-01layer-mobilenet.   
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Fig. A.26. weights-01layer-shufflenet.   
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Fig. A.27. weights-01layer-efficientnet.  
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