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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Polluted days account for 31.6%–60.5% 
during COVID-19 although emission 
decreased. 

• Air quality improved if a COVID-19 
outbreak in 2019 instead of 2020. 

• PM2.5 concentrations increased by 
10.9%–20.5% without COVID-19 
outbreak in 2020. 

• Industry and residential use were the 
dominant PM2.5 contributors during 
COVID-19.  
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A B S T R A C T   

The coronavirus disease (COVID-19) spread rapidly worldwide in the first half of 2020. Stringent national 
lockdown policies imposed by China to prevent the spread of the virus reduced anthropogenic emissions and 
improved air quality. A weather research and forecasting model coupled with chemistry was applied to evaluate 
the impact of meteorology and emissions on air quality during the COVID-19 outbreak (from January 23 to 
February 29, 2020) in mid-eastern China. The results show that air pollution episodes still occurred on polluted 
days and accounted for 31.6%–60.5% of the total number of outbreak days in mid-eastern China from January 23 
to February 29, 2020. However, anthropogenic emissions decreased significantly, indicating that anthropogenic 
emission reduction cannot completely offset the impact of unfavorable meteorological conditions on air quality. 
Favorable meteorological conditions in 2019 improved the overall air quality for a COVID-19 outbreak in 2019 
instead of 2020. PM2.5 concentrations decreased by 4.2%–29.2% in Beijing, Tianjin, Shijiazhuang, and Taiyuan, 
and increased by 6.1%–11.5% in Jinan and Zhengzhou. PM2.5 concentrations increased by 10.9%–20.5% without 
the COVID-19 outbreak of 2020 in mid-eastern China, and the frequency of polluted days increased by 5.3%– 
18.4%. Source apportionment of PM2.5 during the COVID-19 outbreak showed that industry and residential 
emissions were the dominant PM2.5 contributors (32.7%–49.6% and 26.0%–44.5%, respectively) followed by 
agriculture (18.7%–24.0%), transportation (7.7%–15.5%), and power (4.1%–5.9%). In Beijing, industrial and 
residential contributions to PM2.5 concentrations were lower (32.7%) and higher (44.5%), respectively, than in 
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other cities (38.7%–49.6% for industry and 26.0%–36.2% for residential). Therefore, enhancing regional 
cooperation and implementing a united air pollution control are effective emission mitigation measures for 
future air quality improvement, especially the development of new technologies for industrial and cooking 
fumes.   

1. Introduction 

Overall air quality in China improved during the COVID-19 outbreak 
owing to unconventional measures (e.g., social distancing and the sus
pension of public transport) implemented on January 23, 2020 in 
Wuhan, Hubei Province, to prevent the spread of the virus (Chen et al., 
2020; Chu et al., 2020; Xu et al., 2020). Compared to 2019 levels, the 
national particulate matter (PM2.5 and PM10, with aerodynamic di
ameters <2.5 μm and 10 μm, respectively), SO2, CO, and NO2 concen
trations decreased by 8%–17% from January to May 2020; however, O3 
increased by 12% (Nie et al., 2021). 

Meteorological conditions play a non-negligible role in air quality 
variation (Chen et al., 2021; Fan et al., 2021; Shen et al., 2021; Zhai 
et al., 2019). Weather research and forecasting models coupled with 
chemistry (WRF/Chem) and community multiscale air quality (CMAQ) 
have been extensively applied to evaluate the contribution of 
inter-annual meteorological changes to air pollutant concentration re
ductions (Jiang et al., 2021; Sulaymon et al., 2021; Zhang et al., 2020). 
For example, Xiao et al. (2021) revealed the dominant role of emission 
changes in the long-term trend of PM2.5 concentrations in China from 
2000 to 2018 and the significant influence of meteorological conditions. 
Zhang et al. (2019) reported that meteorological conditions played an 
important role in decreasing winter PM2.5 concentrations in the Yangtze 
River Delta (YRD) and the Beijing-Tianjin-Hebei (BTH) regions. Our 
previous study found that the inter-annual meteorological changes 
contributed 3.4%–18.6% to reductions in PM2.5, PM10, SO2, CO, and 
NO2 concentrations in Shandong province from 2015 to 2019; however, 
these changes had little impact on O3 when compared with 2013 levels 
(Zhao et al., 2021b). In addition, severe air pollution events with daily 
PM2.5 concentrations >200 μg/m3 occurred during the COVID-19 
outbreak due to unfavorable meteorological conditions; however, 
anthropogenic emissions decreased (Li et al., 2021; Wang et al., 2020b; 
Zhao et al., 2020). Xian et al. (2021) found that high humidity and low 
wind speed favor haze formation and that unprecedented emission re
ductions improved air quality. Therefore, evaluating the impacts of 
meteorological changes on PM2.5 concentration reductions during the 
COVID-19 outbreak should be further studied. 

Air quality is also improved due to the reduction in emissions from 
anthropogenic sources (Li et al., 2019; Wang et al., 2017a, 2020a, 
2020a; Zhao et al., 2021a; Zhang et al., 2021). Large-scale anthropo
genic emission reduction in China provides an excellent opportunity to 
evaluate the effect on air quality improvement. Large-scale emission 
reductions for major events include the Summer Olympic Games, 
Asia-Pacific Economic Cooperation forum, and Grand Military Parade in 
Beijing. Several studies have explored the effect of emission reduction 
measures on PM2.5 in Beijing during these events (Guo et al., 2016; Han 
et al., 2016; Wang et al., 2010, 2016, 2017b, 2016; Zhang et al., 2016). 
The impact scope, impact time, and emission reduction were larger 
during the COVID-19 outbreak than during the above-mentioned events, 
owing to the implementation of nationwide contingency plans (Zhao 
et al., 2020). Understanding the impact of anthropogenic emission 
reduction on air quality during the COVID-19 outbreak will help guide 
future control strategies. 

Source apportionment of PM2.5 during the COVID-19 outbreak was 
reported for individual cities (Hong et al., 2021; Dai et al., 2020; Cui 
et al., 2020) and at the regional scale (Li et al., 2020; Ma et al., 2021). 
Hong et al. (2021) found that the contribution of secondary formation to 
PM2.5 increased during COVID-19; however, other primary sources 
decreased from pre-lockdown levels in a coastal city of southeast China. 

PM2.5 in the YRD during COVID-19 was produced by industry (32.2%– 
61.1%), mobility (3.9%–8.1%), dust (2.6%–7.7%), residential sources 
(2.1%–28.5%), and long-range transport from northern China (14.0%– 
28.6%) (Li et al., 2020). Implementing unified prevention and control of 
air pollution is an effective mitigation measure for air quality 
improvement. Therefore, investigating the source apportionment of 
PM2.5 on a regional scale (e.g., mid-eastern China) plays a critical role in 
air quality improvement. 

We studied six major cities in mid-eastern China (i.e., Beijing, 
Tianjin, Shijiazhuang, Taiyuan, Jinan, and Zhengzhou) that generated 
8.1% of total national gross domestic product (GDP) in 2019 (http://da 
ta.stats.gov.cn/index.htm). Although the air quality in the study area 
has improved, annual PM2.5 concentrations in 2020 exceed the annual 
secondary guideline value (35 μg/m3; GB3095-2012) by 9%–66% based 
on the data released by local ecology and environmental bureaus. 
Investigating the impact of COVID-19 on air quality is important for 
exploring effective policy making and controlling air pollution mea
sures. Air quality during the COVID-19 outbreak from January 23 to 
February 29, 2020 was analyzed. The WRF/Chem model was used to 
evaluate the impacts of meteorology and emission reduction on air 
quality. Source apportionment of PM2.5 during the COVID-19 outbreak 
was also evaluated. 

2. Methods 

2.1. Data source 

Hourly ambient mass concentrations of PM2.5 from 63 monitoring 
stations in mid-eastern China were downloaded from China’s National 
Environmental Monitoring Centre at https://quotsoft.net/air/. The 
standard procedure (e.g., monitoring system, analysis method, quality 
assurance, and quality control) for monitoring of PM2.5 are illustrated in 
the Text S1. Fig. 1 illustrates the locations of the monitoring stations. 
Additionally, hourly meteorological data (including temperature, rela
tive humidity, and wind speed) were collected from the Meteorological 
Information Comprehensive Analysis and Process System (MICAPS) of 
the Chinese Meteorological Administration. 

2.2. Modeling system 

2.2.1. Model selection and parameter settings 
In this study, WRF/Chem was applied to evaluate the impacts of 

meteorology and emissions during the COVID-19 outbreak on air quality 
in mid-eastern China. The reliable model is widely used for mesoscale 
simulations (Chen et al., 2017; Lv et al., 2020; Wang et al., 2020c; Xing 
et al., 2020). In this study, 30 sigma levels were designed in the vertical 
dimension. The regional acid deposition model version 2 (RMD2) was 
chosen as the gas-phase chemistry mechanism. The modal aerosol dy
namics model for Europe (MADE/SORGAM) was used to calculate the 
aerosol chemistry. The initial and lateral meteorological boundary 
conditions for WRF/Chem were generated from the National Centre for 
Environmental Prediction (NCEP) Final Analysis (FNL) data, which were 
available at a 1◦ × 1◦ resolution and temporal resolution of 6 h. Our 
previous work contains more detailed descriptions of WRF/Chem (Chen 
et al., 2018; Wang et al., 2021; Zhao et al., 2021b). A two-level nes
ted-grid architecture was employed for implementation of the 
WRF/Chem modeling system (Fig. 1). Domain 1 covers more than half of 
China, with a grid resolution of 27 km × 27 km. Domain 2 covers 
mid-eastern China, with a grid resolution of 9 km × 9 km. The 
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simulation periods are from January 23 to February 29, 2020 and from 
January 23 to February 28, 2019. 

2.2.2. Simulation scenarios 
Four scenarios were modeled separately to evaluate the impacts of 

meteorology and emissions on air quality in mid-eastern China. Scenario 
1 refers to a baseline scenario with “emissions with the COVID-19 
outbreak” with 2020 meteorological conditions (Table 1). Scenario 2 
refers to “emissions with the COVID-19 outbreak” with 2019 meteoro
logical conditions. Other configurations (e.g., physical and chemical 
schemes) for the simulations were the same. Thus, the difference be
tween the modeling results of scenarios 1 and 2 illustrates the impact of 
meteorology on air quality during the COVID-19 outbreak. Scenario 3 
refers to “emissions without the COVID-19 outbreak” with 2020 mete
orological conditions. Unconventional and stringent prevention and 
control measures were implemented in mid-eastern China to prevent 
further spread of the virus. The difference between the modeling results 
of scenarios 1 and 3 illustrates the impact of emission reduction during 
the COVID-19 outbreak on air quality. Scenario 4 was simulated using a 
zero-out method to quantify sectoral contributions to PM2.5 from five 
source categories (power, industry, residential, transportation, and 
agriculture emissions) during the COVID-19 outbreak with 2020 mete
orological conditions. Differences in modeling results in scenarios 1 and 
4 illustrate the contributions of different emission sources on air quality. 

2.2.3. Emission inventory 
The emission inventory used for the simulation was processed based 

on the Multi-resolution Emission Inventory for China (MEIC; http:// 
www.meicmodel.org/). The emission inventories available in the 
MEIC were used to calculate the anthropogenic emission reduction ra
tios from 2016 to 2017. To calculate the 2019 emission inventory, we 
assumed that the reduction ratios of anthropogenic emissions from 2018 
to 2019 were consistent with those from 2016 to 2017 and that agri
cultural emissions have not changed in recent years. Zheng et al. (2020a, 
2021) reported the reduction ratios of anthropogenic emissions in China 
from 2019 to 2020 by species, sector, month, and province using a 
bottom-up approach based on near real-time data. The reduction ratios 
of total PM2.5 decreased by 5%, 1%, and 6% in Beijing, Shandong, and 
Henan, respectively, in January 2020 compared with the same period in 
2019; the PM2.5 reduction ratios increased by 4%, 5%, and 4% in 
Tianjin, Hebei, and Shanxi, respectively, during the same period 
(Table S1). The reduction ratios of total PM2.5 decreased more in 
February 2020 than in February 2019—by 21%, 24%, 23%, 28%, 24%, 
and 32% in Beijing, Tianjin, Hebei, Shanxi, Shandong, and Henan, 

respectively—due to the implementation of nationwide contingency 
plans to shut down traffic and public activities. Therefore, the emissions 
inventory during the COVID-19 outbreak of 2020 was calculated based 
on the 2019 emissions inventory and the reduction ratios of anthropo
genic emissions from 2019 to 2020—which was the emissions inventory 
used in scenarios 1, 2, and 4. The emission inventory without the 
COVID-19 outbreak of 2020 (scenario 3) was also calculated based on 
the cube of the emission reduction ratios from 2016 to 2017. 

Tables S2 and S3 present the reduction ratios of air pollutants from 
anthropogenic sources during the 2020 COVID-19 outbreak (scenarios 
1, 2, and 4) and without the 2020 COVID-19 outbreak (scenario 3) 
compared with the same period in 2017. The reduction ratios of air 
pollutants from anthropogenic emissions in Beijing, Tianjin, Henan, 
Shanxi, Shandong, and Henan in February 2020 were higher than those 
in January by 27.5%–72.3%, 34.8%–53.8%, 20.8%–49.4%, and 17.3%– 
58.1% for power, industry, residential use, and transportation, 
respectively. 

2.2.4. Model evaluation 
The performance of the modeling system was evaluated to ensure a 

reasonable reproduction of the observed air quality levels and meteo
rological conditions. Statistical indices used for model evaluation 
include the correlative coefficient (R), the normalized mean bias (NMB), 
and the normalized mean error (NME), according to the United States 
Environmental Protection Agency model evaluation protocol (U.S. EPA, 
2007). The simulated PM2.5 concentration and meteorological parame
ters (e.g., temperature, relative humidity, and wind speed) from the 
lowest layer were compared with the observations in six cities from 
January 23 to February 29, 2020 to evaluate the modeling performance. 
The simulated PM2.5 concentrations were extracted from grids covering 
63 monitoring stations in six cities, and the observed concentrations 

Fig. 1. Modeling domain and locations of monitoring stations in mid-eastern China.  

Table 1 
Description of simulation scenarios.  

Type of 
scenarios 

Description 

Meteorological Emission 

Scenario 1 2020a Emissions with COVID-19 outbreak (the base 
case) 

Scenario 2 2019b Emissions with COVID-19 outbreak 
Scenario 3 2020a Emission without COVID-19 outbreak 
Scenario 4 2020a No power, industry, residential, transportation, 

and agriculture emissions, respectively  

a The simulation periods are from January 23 to February 29, 2020. 
b The simulation periods are from January 23 to February 28, 2019. 
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were obtained from China’s National Environmental Monitoring Centre. 
As long as the monitoring stations are covered in the grid cell, the 
simulated concentration of the grid cell were extracted. The averaged 
simulated concentration of those grid cells represent the PM2.5 simu
lated concentration of each city. The simulated meteorological param
eters were extracted from grids at six monitoring stations (Beijing: 
116.47◦ E, 39.80◦ N; Tianjin: 117.06◦ E, 39.43◦ N; Shijiazhuang: 
114.40◦ E, 38.02◦ N; Taiyuan: 112.58◦ E, 37.62◦ N; Jinan: 117.01◦ E, 
36.60◦ N; and Zhengzhou: 113.66◦ E, 34.71◦ N); the meteorological 
parameters were obtained from the MICAPS of the China Meteorological 
Administration (Fig. 1). 

The modeling performance of WRF/Chem for simulating air 
pollutant concentrations and meteorology in mid-eastern China was 
good during the entire simulation period. The R between the simulated 
and observed PM2.5 data in the six cities were 0.5–0.8, and NME values 
were 48.4%–68.6% (Table 2). However, the model slightly under
estimated the concentrations of PM2.5, with an NMB of − 68.3%. The 
agreement of the meteorological parameters between the observed and 
simulated results in the six cities was also good; the R, NMB, and NME of 
the temperature ranged from 0.8 to 1.0, 20.2%–66.1%, and 15.9%– 
127.2%, respectively. The simulated relative humidity was also 
compared with the observed data; R, NMB, and NME ranged from 0.8 to 
0.9, − 38.2% to − 0.8%, and 12.8%–38.5%, respectively. The R, NMB, 
and NME of the wind speed ranged from 0.8 to 0.9, 35.1%–62.1%, and 
36.1%–62.1%, respectively. Deviations between the simulation and 
observed values which might be explained by the large uncertainties 
associated with the estimation of emission reductions during the COVID- 
19 outbreak and the unavoidable deficiencies of the meteorological and 
air quality models (Chen et al., 2021). 

3. Results and discussion 

3.1. Air pollution episodes still occurred during the COVID-19 outbreak 

Air pollution episodes occurred during the COVID-19 outbreak 
(January 23 to February 29, 2020) in mid-eastern China; however, the 
average PM2.5 concentrations in Beijing, Jinan, and Zhengzhou met 2nd- 
level air quality standards due to reduced emissions (GB3095-2012; 
Fig. 2). The average daily PM2.5 concentration should be less than 75 μg/ 
m3 for 2nd-level air quality in China. PM2.5 concentrations in Tianjin, 
Shijiazhuang, and Taiyuan were 2.9%–27.8% higher than this standard. 
Pollution grades are divided into four categories based on daily PM2.5 
concentrations according to the Technical Regulation on Ambient Air 
Quality Index (on trial; HJ633-2012). Clean, mildly polluted, moder
ately polluted, and heavily polluted days correspond to daily PM2.5 
concentrations of ≤75, 75–115, 115–150, and >150 μg/m3, respec
tively. The results indicated that polluted days (the sum of mildly, 
moderately, and heavily polluted) accounted for 31.5%–60.5% of the 
total number of outbreak days in mid-eastern China during the study 
period (Fig. 2). In particular, 10.5%–23.7% of the days during the 
COVID-19 outbreak were heavily polluted in Beijing, Tianjin, Shi
jiazhuang, and Taiyuan; thus, the government faces a considerable 
challenge to effectively tackle current air pollution in mid-eastern 

China, despite extreme reductions in primary emissions. Therefore, 
enhanced regional environmental cooperation should be considered. 

3.2. Improved air quality with 2019 COVID-19 outbreak, except Jinan in 
and Zhengzhou 

PM2.5 concentrations would have decreased in mid-eastern China
—except in Jinan and Zhengzhou—had the COVID-19 outbreak 
occurred in 2019 instead of 2020. The impact of meteorological changes 
on air quality in mid-eastern China during the COVID-19 outbreak was 
analyzed using the WRF/Chem model. The temporal and spatial distri
butions of pollutant concentrations under two different meteorological 
conditions with the same emission inventory (scenarios 1 and 2, Table 1) 
were simulated. Fig. 3 shows the spatial distribution of the PM2.5 con
centration reduction ratios caused by meteorological changes from 2019 
to 2020. The meteorological conditions during the COVID-19 outbreak 
of 2019 were more favorable for reducing PM2.5 than those during the 
same period in 2020 and led to reductions of 29.2%, 16.5%, 4.0%, and 
9.2% in Beijing, Tianjin, Shijiazhuang, and Taiyuan, respectively. Un
favorable meteorological conditions led to PM2.5 increases in Jinan and 
Zhengzhou of 11.5% and 6.1%, respectively. 

The relatively good air quality during COVID-19 in 2019 was 
dominated by favorable meteorological conditions featuring high wind 
speeds and low relative humidity. We compared the hourly meteoro
logical data of the six cities during the COVID-19 period of 2020 to the 

Table 2 
Comparison of PM2.5 concentrations and meteorological parameters between observed and simulated data during the COVID-19 outbreak from January 23 to February 
29, 2020 in mid-eastern China.  

Region PM2.5 (μg/m3) Temperature (◦C) Relative humidity (%) Wind speed (m/s) 

R NMB (%) NME (%) R NMB (%) NME (%) R NMB (%) NME (%) R NMB (%) NME (%) 

Beijing 0.8 − 30.3 48.4 0.9 66.1 70.2 0.8 − 38.2 38.5 0.9 38.5 38.7 
Tianjin 0.8 − 51.7 61.8 0.8 26.2 127.2 0.8 − 28.8 32.1 0.9 62.1 62.1 
Shijiazhuang 0.8 − 68.2 68.6 0.9 20.4 31.8 0.9 − 30.5 31.9 0.8 35.1 36.1 
Taiyuan 0.5 − 50.2 62.7 0.9 58.0 65.9 0.8 − 7.4 16.5 0.9 36.7 38.3 
Jinan 0.5 − 60.4 64.3 1.0 − 20.2 27.5 0.8 − 0.8 14.1 0.8 54.9 54.9 
Zhengzhou 0.8 − 54.1 60.9 0.9 0.0 15.9 0.9 − 8.6 12.8 0.9 55.4 55.4  

Fig. 2. Time series of PM2.5 concentrations and proportion of different pollu
tion grades during the COVID-19 outbreak of 2020 in mid-eastern China. 
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same period in 2019 (Fig. 4). The wind speeds during COVID-19 in 2019 
changed by 23.9%, 45.8%, − 1.2%, 20.1%, 5.0%, and − 10.1% in Beijing, 
Tianjin, Shijiazhuang, Taiyuan, Jinan, and Zhengzhou, respectively, 
compared with the same period in 2020. The humidity in the afore
mentioned cities decreased by 41.2%, 38.2%, 20.6%, 26.4%, 15.2%, and 
9.0%, respectively. An unstable vertical atmospheric structure 
strengthens the atmospheric turbulent exchange and diffusion of air 
pollutants in the vertical direction (Shen et al., 2018; Zhang et al., 2013). 
High humidity during the 2020 COVID-19 period promoted the con
version of precursor gases (e.g., SO2, NOx, and NH3) to PM2.5. Zheng 
et al. (2020b) reported that levels of sulfate, organic carbon, and sec
ondary inorganic aerosols increased by 2.5%–8.7% in Wuhan city from 
January 23 to February 22, 2020, suggesting the enhanced secondary 
formation of PM2.5 with increased humidity. Our previous results found 
that the increasing conversions from precursor gases to corresponding 
particulate phases resulted in higher PM2.5 concentrations during heavy 
pollution episodes (Liu et al., 2017; Wang et al., 2021). Therefore, in 
terms of wind speed and humidity, the meteorological conditions during 
COVID-19 in 2019 were more favorable for the diffusion of pollutants 
compared with the same period in 2020. 

The reductions in PM2.5 concentrations in scenarios 1 and 2 and the 
observed PM2.5 concentrations from January 23 to February 29, 2020 
were used to calculate PM2.5 concentrations in scenario 2. Polluted days 
accounted for 24.8%–56.8% of the total number of outbreak days in 
mid-eastern China during the study period (Fig. S1) and were reduced by 
9.9%, 12.3%, 3.8%, 9.5%, and 6.9% in Beijing, Tianjin, Shijiazhuang, 
Taiyuan, and Zhengzhou, respectively, compared with scenario 1. The 
frequency of polluted days increased by 19.8% in Jinan, primarily due to 
the increase in mildly polluted days from 9 to 14. The frequency of 
heavily polluted days decreased by 10.5%, 10.5%, and 12.9% in Beijing, 
Tianjin, and Shijiazhuang, respectively; changed little in Taiyuan and 
Jinan; and increased by 11.0% in Zhengzhou. 

3.3. PM2.5 concentration increased by 10.9%–20.5% without the COVID- 
19 outbreak 

Emissions changed greatly during the COVID-19 outbreak and would 
otherwise have increased the degree of air pollution due to human ac
tivities. We investigated hypothetical air quality in mid-eastern China 
with and without the COVID-19 outbreak and simulated the spatio- 
temporal distribution of pollutant concentrations (scenarios 1 and 3, 
Table 1) to evaluate the impact of emission changes. 

Fig. 5 shows the spatial distribution of increasing PM2.5 concentra
tions caused by emission changes due to the COVID-19 outbreak. Air 
quality deteriorated without the COVID-19 outbreak; and PM2.5 con
centrations increased by 14.5%, 12.5%, 10.9%, 18.6%, 14.6%, and 
20.5%, in Beijing, Tianjin, Shijiazhuang, Taiyuan, Jinan, and Zhengz
hou, respectively (Fig. 5). Thus, Zhengzhou and Taiyuan had more 
pronounced air quality improvement than other cities during the 
COVID-19 outbreak. Therefore, the lockdown implementation response 
of each city was different. The total PM2.5 concentration subjected to 

Fig. 3. Spatial distribution of reduction ratios of PM2.5 concentrations caused 
by meteorological changes from 2019 to 2020. 

Fig. 4. Time series of meteorological parameters during the COVID-19 
outbreak in mid-eastern China. 
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emission reduction (scenario 1) decreased by more than 20% over the 
entire YRD compared to scenario 3 levels (without emission reduction) 
(Ma et al., 2021). The results from Ma et al. (2021) were higher than 
those in this study (10.0%–20.5%), primarily because the reductions of 
PM2.5 from anthropogenic emissions during the COVID-19 outbreak in 
the studied regions (Beijing, Tianjin, Hebei, Shanxi, Shandong, and 
Henan) ranged from 1% to 6% in January and 21%–32% in February 
and were lower than those in the YRD region (4%–15% in January and 
25%–42% in February for Shanghai, Jiangsu, Zhejiang, and Anhui) 
(Zheng et al., 2020a, 2021, 2021). 

The reductions in PM2.5 concentrations between scenarios 1 and 3 
and the observed PM2.5 concentrations from January 23 to February 29, 
2020 were used to calculate PM2.5 concentrations in scenario 3. Polluted 
days accounted for 39.1%–71.1% of the total number of outbreak days 
in mid-eastern China during the study period (Fig. S2); the frequencies 
increased by 5.3%, 5.3%, 10.5%, 13.2%, 7.9%, and 18.4% in Beijing, 
Tianjin, Shijiazhuang, Taiyuan, Jinan, and Zhengzhou, respectively, 
compared with those in scenario 1. The number of heavily polluted days 
increased by 5.3% and 7.9% in Tianjin and Taiyuan, respectively. 

3.4. Industry and residential use were the dominant PM2.5 contributors 
during the COVID-19 outbreak 

The source contributions to PM2.5 concentrations for Beijing, Tianjin, 
Shijiazhuang, Taiyuan, Jinan, and Zhengzhou during the COVID-19 
outbreak were quantified using the WRF/Chem model and divided 
into power, industry, residential, transportation, and agriculture. The 
contributions of each emission source to average PM2.5 concentrations 
were calculated by the concentration difference between scenarios 1 and 
4 (Table 1). 

Industry and residential emissions were the dominant PM2.5 con
tributors in the six cities in mid-eastern China during the COVID-19 
outbreak, with contributions of 32.7%–49.6% and 26.0%–44.5%, 
respectively, followed by agriculture (18.7%–24.0%), transportation 

(7.7%–15.5%), and power (4.1%–5.9%) (Fig. 6); this is consistent with 
the results in the YRD region (Li et al., 2020). Although medium, small, 
and service industry emissions decreased due to the COVID-19 outbreak, 
the emission reduction of large-scale enterprises (e.g., iron and steel, 
petrochemical) that maintain the needs of human society is limited. 
Industrial emissions increased by 5%–18% in January 2020 compared 
with the same period of 2019 in the study area, except in Beijing 
(Table S1). The residential emission reduction rate was relatively lower 
than that of other sources. Emissions decreased by 8%–17% in February 
2020 and did not change in January 2020 compared to the same period 
in 2019 (Table S1), primarily due to the lockdown that shut down public 
activities to prevent further spread of the virus. The study period 
covered the Spring Festival holidays from January 24 to February 2, 
2020. In contrast to the holiday in previous years, migrant workers could 
not return to their hometowns to visit relatives and friends. Thus, almost 
everyone was isolated at home during the COVID-19 pandemic, 
increasing the contribution of residential sources to PM2.5. Ma et al. 
(2021) reported that contributions from the residential sector increased 
by more than 10%–35% during COVID-19 compared with contributions 
without emission reductions over the YRD region. Therefore, developing 
an advanced industrial emission reduction technology and installing 
efficient cooking fume purification systems is urgently necessary to 
improve air quality. 

Contributions of industry and residential use to PM2.5 concentrations 
in Beijing were lower (32.7%) and higher (44.5%), respectively, in 
Beijing than in other cities (38.7%–49.6% for industry and 26.0%– 
36.2% for residential; Fig. 6). This was primarily due to PM2.5 and 
emissions from industry in Tianjin, Hebei, Shanxi, Shandong, and 
Henan, which were 1.9–18.4 higher than those in Beijing (http://www. 
meicmodel.org/). In addition, a large reduction in industrial emissions 
was found in Beijing during the COVID-19 outbreak compared to the 
same period in 2019 (Table S1). In January 2020, PM2.5 emissions 
decreased by 19%, while emissions in other regions increased (5%– 
18%). In February 2020, the reduction in PM2.5 emissions in Beijing 
(45%) was higher than that in other regions (34%–42%). The permanent 
population in Beijing in 2019 was 21.5 million (Beijing Municipal Bu
reau Statistics; http://tjj.beijing.gov.cn/)—1.4–4.8 times that in other 
cities (4.5–15.6 million). Most migrant workers and students were iso
lated in Beijing because of restricted construction and traveling. 

Fig. 5. Spatial distribution of increasing rates of PM2.5 concentrations caused 
by emissions changes due to the COVID-19 outbreak. 

Fig. 6. Contribution of emission sources to PM2.5 concentrations during the 
COVID-19 outbreak of 2020. 
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4. Conclusion 

Investigating the impacts of meteorology and emission reduction on 
air quality during the COVID-19 outbreak will help guide future control 
strategies. Polluted days (the sum of mildly, moderately, and heavily 
polluted days) accounted for 31.5%–60.5% of the total number of 
outbreak days in mid-eastern China from January 23 to February 29, 
2020, indicating that anthropogenic emission reduction cannot 
completely offset the impact of unfavorable meteorological conditions 
on air quality. The WRF/Chem model Air results shows that quality 
would have improved if the COVID-19 outbreak had occurred in 2019 
instead of 2020 (except in Jinan and Zhengzhou). Meteorological con
ditions favoring decreased PM2.5 concentrations were characterized by 
high wind speeds and decreased relative humidity in 2019. Therefore, 
meteorological conditions should be considered when designing control 
strategies. The air quality deteriorated without the COVID-19 outbreak 
of 2020, with PM2.5 concentrations increasing by 10.9%–20.5% and 
polluted days increased by 5.3%–18.4% in mid-eastern China. Industry 
and residential emissions were the dominant contributors in the six 
cities (contributions of 32.6%–49.6% and 26.6%–44.5%, respectively), 
followed by agriculture, transportation, and power. In addition, the 
contributions of industry and residential use to PM2.5 concentrations 
were lower and higher in Beijing than in other cities. Therefore, the 
development of industrial control technology and efficient cooking fume 
purification systems should be developed to improve air quality. 
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