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Abstract

Estrogens modulate different physiological functions, including reproduction, inflammation, bone 

formation, energy expenditure, and food intake. In this review, we highlight the effect of estrogens 

on food intake regulation and the latest literature on intracellular estrogen signaling. In addition, 

gut satiety hormones, such as cholecystokinin, glucagon-like peptide 1 and leptin are essential 

to regulate ingestive behaviors in the postprandial period. These peripheral signals are sensed by 

vagal afferent terminals in the gut wall and transmitted to the hindbrain axis. Here we 1. review 

the role of the vagus-hindbrain axis in response to gut satiety signals and 2. consider the potential 

synergistic effects of estrogens on gut satiety signals at the level of vagal afferent neurons and 

nuclei located in the hindbrain. Understanding the action of estrogens in gut-brain axis provides a 

potential strategy to develop estrogen-based therapies for metabolic diseases and emphasizes the 

importance of sex difference in the treatment of obesity.

Introduction

Overnutrition and changes in lifestyle have increased the incidence of obesity. The global 

prevalence of overweight and obese individuals is higher in women than men [1]. There 

are several factors including cultural factors, social behaviors, pregnancy and menopause 

that might contribute to this sex difference in the prevalence of obesity. Food intake and 

energy expenditure vary across the menstrual cycle and ovulation is followed by high energy 

expenditure and low food intake [2-5]. These observations suggest that ovarian hormones 

affect energy balance in women. Estradiol (E2), a major circulating estrogen, is mainly 

produced and secreted from the ovary in premenopausal women. Of note, other organs, such 

as brain, bone, muscle, and adipose tissue, synthesize small amounts of E2 that can act 

locally through paracrine pathways [6]. The termination of ovulation in menopause leads 

to a decrease in production of E2 and a dramatic drop of circulating E2. Postmenopausal 

women and ovariectomized (OVX) rodents have increased weight gain, with increased 

food intake and reduced energy expenditure [7-9]. It is interesting to note, however, 

that genetic deletion of aromatase, the key enzyme that synthesizes estrogens, increases 

body weight and adiposity in both male and female mice, suggesting estrogens have a 

sex-independent metabolic effect, but not androgens. [10]. Intact female rodents ingesting 

a high-fat diet (HFD) have less weight gain, adiposity and obese phenotype than males, 

suggesting ovulating females are generally protected from diet-induced obesity, possibly 
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through estrogen signaling [11-16]. Thus, ovarian hormones, estrogens, have a negative 

effect on energy balance and seem to provide some metabolic protection.

Energy balance is controlled by multiple complex mechanisms that influence both food 

intake and energy expenditure. One mechanism that regulates food intake is satiety signals 

arising from the gastrointestinal tract during eating. There are two pathways that conduct 

satiety signals from the periphery to the central nervous system (CNS): 1) blood-borne 

mediated hormonal pathway and 2) the vagal afferent neuron mediated paracrine pathway. 

The interaction between estrogens and satiety signals in the CNS have been reviewed in 

other articles [17-19]. In this review, we highlight recent studies on how estrogens may 

modulate gut satiety signals at the level of vagus-hindbrain axis.

Estrogen, Estrogen Receptors, and the Effects on Energy Balance

In the classic mode of action, estrogens bind to the nuclear receptors, estrogen receptor 

alpha (ERα) and estrogen receptor beta (ERβ), acting as transcription factors and providing 

a slow-onset, long-lasting effect (Figure 1). Male and female mice with a global knockout 

of ERα have an increase in body weight and adiposity, with reduced energy expenditure 

[20]. It has also been shown that female ERα knockout mice have increased food intake 

and reduced responsiveness to the gut satiety hormone, cholecystokinin (CCK) [21]. These 

data suggest that ERα-mediated signaling has a negative effect on energy balance through 

reduced food intake and increased energy expenditure. In contrast, standard laboratory 

chow-diet-fed male and female mice with a global knockout of ERβ have no significant 

increase in body weight [22,23]. However, female mice with deletion of ERβ are prone to 

HFD-induced weight gain and increased adiposity [24], and consistent with this observation, 

administration of ERβ ligands are sufficient to eliminate HFD-induced weight gain and 

increased fat mass [25]. This ERβ-mediated anti-obesity effect is due to indirect suppression 

of peroxisome proliferation-activated receptor gamma (PPARγ) in adipocytes [24]. Taken 

together, these data suggest that the metabolically-protective effect of estrogens is mediated 

by both ERα and ERβ.

In addition to acting at nuclear receptors, estrogens can induce a rapid signaling cascade 

by acting on the membrane-associated estrogen receptor (mER) alpha and beta in various 

cell types, including neurons [26]. Estrogens acting at mER interacts with two types of 

membrane receptors to initiate a signaling cascade: 1) Metabotropic glutamate receptors, 

coupled to either Gi/o or Gq, that either negatively or positively modulate the protein kinase 

cascade, including protein kinase A (PKA) and protein kinase C (PKC), as well as inducing 

inositol trisphosphate (IP3)-mediated Ca2+ influx [27]; 2) Receptor tyrosine kinase that 

signals via the PI3K/Akt and JAK/STAT pathways [28]. These signaling cascades may 

crosstalk with other intracellular signaling pathways and modulate neuronal excitability. 

In addition to the interaction with membrane receptors, in the hypothalamus protein 

phosphatase 2A is critical to mediate mER signaling in regulating energy expenditure [29].

In addition to mER-mediated rapid signaling, G-protein coupled estrogen receptor (GPER, 

formerly known as GPR30) is a membrane-bound receptor that mediates estrogen-induced 

activation of intracellular signaling cascades [30]. The evidence for a role of GPER in 
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energy balance and regulation of body weight is contradictory. Female mice with global 

knockout of GPER show no difference in body weight during feeding of a standard 

laboratory chow diet [31-34]. Unexpectedly, female GPER knockout mice are resistant to 

high fat diet-induced obesity, due to an increase in energy expenditure [35]. These studies 

GPER-mediated estrogen signaling is necessary for weight gain at least during feeding of 

HFD. In contrast, other studies demonstrate that global knockout of GPER leads to an 

increase in body weight and fat mass during normal diet feeding, with no difference in food 

intake or physical activity [36-38]. The increased body weight in GPER knockout mice is 

primarily because of reduced energy expenditure from brown adipose tissue thermogenesis 

[38]. A recent study using the GPER agonist in OVX mice shows that activation of GPER 

is sufficient to significantly reduce OVX-induced weight gain and adiposity by increasing 

energy expenditure [39]. Taken together, these results suggest that estrogens acting on GPER 

might be involved in energy balance via upregulation of energy expenditure, but has no 

effect on food intake regulation.

Estrogen and the Neural Gut-brain Axis

The vagus nerve is a the neural pathway linking visceral organs to the CNS. The vagal 

pathway is bidirectional; vagal afferents conduct signals from visceral organs toward the 

CNS and vagal efferents relay commands from the CNS to the periphery (Figure 2). 

Vagal afferent neurons (VAN) are pseudobipolar neurons and cell bodies are located 

in the nodose and jugular ganglia. Recent studies using single-cell RNA sequencing 

reveal the heterogeneous population of VAN in response to different signals, such as 

nutrients, gastrointestinal distention, and pulmonary volume [40-43]. These studies match 

the understating of vagal afferent function in sensing and regulating respiratory and digestive 

system obtained from many years of electrophysiological and physiological studies [44-46]. 

In the gastrointestinal tract, there are three types of vagal afferent that are characterized 

by their terminal endings; intraganglionic laminar endings (IGLE), intramuscular arrays 

(IMA), and mucosal afferent endings. IGLE and IMA sense the stretch and distension 

of gastrointestinal tract [47]. The mucosal afferent endings are located in close proximity 

to the basolateral membrane of epithelium cells and enteroendocrine cells, and respond 

to mucosal stroking as well as luminal nutrient stimuli and epithelial factors, including 

hormones and many other neuromodulatory factors [47]. Anorexigenic signals secreted from 

gastrointestinal tract, such as CCK, glucagon-like peptide 1 (GLP1), peptide YY (PYY) 

and leptin, increase neuronal excitability and induce depolarization of VAN [48-51]. The 

depolarization of VAN induces the release of neuronal transmitters, including glutamate 

and cocaine and amphetamine regulated transcript (CART), from central terminals of vagal 

afferents in the hindbrain, which in turn activates the second order neurons in the nucleus of 

solitary tract (NTS) [52,53]. NTS neurons ultimately project the signals to different nuclei 

located in hindbrain and other brain regions, which influence overall feeding behavior [54].

The major form of estrogen receptor subtypes expressed in VAN is ERα, with much lower 

expression of ERβ and GPER [55]. The expression of ERα in VAN is positively regulated 

by plasma estradiol and the expression fluctuates through estrous cycle with highest levels in 

the estrus phase and lowest in the diestrus phase [56]. The density of axonal projections of 

vagal afferents in the hindbrain is also positively regulated by administration of E2 in OVX 
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rats [57]. Replacement of E2 in OVX rats increases the excitability of myelinated vagal 

afferent neurons (A fiber) and this is mediated by GPER [58]. The mechanostimulation

induced excitability of gastric vagal afferents is potentiated by administration of E2 [55]. 

These results suggest that E2 modulates the primary functions of VAN, including neuronal 

projections and excitability. On the other hand, NTS neurons also express ERα, with much 

lower expression of ERβ [59]. In OVX rats replacement of E2 into the fourth ventricle have 

reduces food intake and this effect is blunted by co-administration of the ERα antagonist 

[60,61]. Taken together, these data suggest that estrogen signaling in both vagal afferent 

neurons and NTS neurons is also involved in the control of food intake. However, direct 

effects of ERα-mediated estrogen signaling on NTS neurons to change neuronal excitability 

has yet to be demonstrated.

Estrogens and Gut Hormones on Food Intake

Cholecystokinin

The major site of CCK synthesis and secretion is the small intestine, particularly the 

proximal duodenum although it is also found in neurons in several nuclei in the CNS, 

including the NTS. CCK has been extensively studied in the postprandial regulation 

of digestion and food intake, including secretion of bile acids and pancreatic enzymes, 

inhibition of gastric acid secretion and delay of gastric emptying [62]. Dietary lipid and 

amino acids stimulate the release of CCK from duodenal enteroendocrine cells. That CCK 

could act as a satiety signal was reported around the mid-1970s, when James Gibbs and his 

colleagues were the first to show that CCK inhibited food intake [63]. Abdominal vagotomy 

blunts CCK-induced satiety in rats; however, lesion of the ventromedial hypothalamus has 

no effect [64]. Peripheral terminals of vagal afferent neurons are located in the duodenal 

mucosa near enteroendocrine cells, suggesting that VAN might sense these gut signals 

locally [65]. This is further supported by evidence to show that there is no correlation 

between plasma CCK and suppression on food intake during intestinal infusion of different 

nutrients [66]. These data suggest that CCK-induced satiety is acting through a paracrine 

pathway and mainly mediated by vagal afferents, instead of via the blood-borne endocrine 

route.

There are two types of CCK receptor, type A (CCK1R) and type B (CCK2R); the CCK1R 

has higher affinity to sulfated CCK, and nonsulfated CCK mainly binds to CCK2R. Vagal 

afferents that innervate the duodenum expresses CCK1R [67,68]. The CCK1R antagonist, 

devazepide, blocks CCK-induced suppression on food intake, but the CCK2R antagonist 

has no effect [69,70]. These data suggest that CCK-induced satiety is mediated by CCK1R. 

CCK acting on CCK1R, a G-protein coupled receptor (GPCR) coupled to Gq induces 

IP3 signaling that initiates Ca2+ influx and depolarization of VAN [62]. In addition to the 

IP3-induced Ca2+ influx, other ion channels, including L-type calcium channel, transient 

receptor potential channel, A-type potassium channel, and calcium-activated chloride 

channel, are all involved in CCK-induced depolarization in VAN [71-74].

Exogenous CCK-induced satiety fluctuates with the estrous cycle; in rats CCK suppression 

of food intake is most potent during the estrus phase when plasma E2 is at its peak 

[75]. In OVX rats, subcutaneous replacement of E2 potentiates suppression of total food 
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intake induced by CCK [76-78]. Other studies using the CCK1R antagonist, devazepide, 

have shown that estrogen potentiates endogenous CCK-induced suppression of food intake 

using both E2 replacement in OVX rats and determination of estrus phase in intact female 

rats [79-81]. These observations strongly support the hypothesis that E2 synergizes with 

CCK to suppress food intake. Female mice with global knockout of ERα have reduced 

CCK-induced activation of NTS neurons, which suggests that the synergism between 

estrogens and CCK is mediated by ERα at the level of vagal afferent neurons, rather 

than NTS neurons [21]. Although there is robust evidence to support the synergistic effect 

of estrogen, the intracellular mechanism remains unclear. Further studies are needed to 

determine whether there is crosstalk between mER-induced protein kinase cascade and 

CCK1R-induced signaling transduction or modulation of ion channels involved in CCK

induced neuronal depolarization (Figure 3). In addition to VAN, a significant portion of 

NTS neurons activated by CCK express ERα, suggesting that estrogen signaling in NTS 

neurons might also modulate the postsynaptic function in response to the input from vagal 

afferent-mediated anorexigenic signals [81].

In addition to actions of peripheral CCK, a group of NTS neurons expressing CCK have 

axonal projections toward parabrachial nucleus (PBN) and paraventricular nucleus of the 

hypothalamus (PVH) [82]. Optogenetic stimulation of this group of NTS neurons leads 

to the suppression on food intake, with activation of neurons located in the PBN and 

PVH [83,84]. CCK acts directly on melanocortin-4 receptor neurons in the PVH that 

express CCK1R to induce neuronal depolarization, suggesting that central CCK serves as 

a neurotransmitter and might be involved in food intake regulation [83]. Interestingly, an 

earlier study shows that intracerebroventricular injection of E2 into the PVH increases the 

potency of CCK-induced satiety [85]. This suggests that the synergism between estrogens 

and CCK on food intake regulation is not only at the level of vagus-hindbrain axis but also at 

other regions in the CNS where CCK serves as a neurotransmitter.

Leptin

Leptin is an anorexigenic hormone secreted by adipose tissues, and the plasma level of 

leptin is positive correlated with fat mass. Of note in the context of discussion of the 

gut-brain axis, the stomach also synthesizes and secretes leptin in response to meal ingestion 

[86]. Leptin plays a critical role in long-term energy homeostasis by suppressing food 

intake and upregulating energy expenditure. Mice lacking leptin or the leptin receptor 

(LepR), ob/ob and db/db mice, respectively, have an increase in weight gain, adiposity, and 

food intake [87]. Leptin acting on the long-form of the LepR, a receptor tyrosine kinase, 

initiates a classic JAK-STAT signal transduction pathway and possibly activates the MAPK 

pathway [87]. Neurons in the midbrain (hypothalamus) and hindbrain expressing the LepR 

mediate the major portion of the anorexigenic action of leptin [88,89]. In addition to the 

hypothalamus as a site of leptin action, there is good evidence for an important role of leptin 

in the hindbrain. Administration of leptin directly into the NTS reduces food intake and 

body weight gain [90,91]. Moreover, knockdown of LepR by adeno-associated virus short 

hairpin RNA-interference in NTS neurons leads to increased food intake, which is associated 

with reduced responsiveness of gut satiety signal, CCK [92]. In addition to the CNS, leptin 

receptor is expressed on VAN that innervate the gastrointestinal tract, and it has been 
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shown that leptin induces depolarization of VAN and synergizes with CCK-evoked Ca2+ 

influx [93,94]. Mice with a conditional deletion of the LepR in VAN are hyperphagic with 

decreased responsiveness to CCK-induced satiety [56,95]. These data suggest that both parts 

of vagus-hindbrain axis, vagal afferent and NTS neurons, respond to leptin and contribute to 

leptin-induced anorexia; furthermore, leptin modulates the potency of gut satiety signals in 

both sets of neurons.

Chronic HFD feeding leads to an increases in plasma leptin and bacterial 

lipopolysaccharide, and induces chronic immune activation and inflammation, which 

reduces leptin sensitivity, known as leptin resistance [89]. These factors are mediated by 

several intracellular signals, such as suppressor of cytokine signaling (SOCS3), protein 

tyrosine phosphatase 1B (PTP1B), and T-cell protein tyrosine phosphatase (TCPTP) and 

desensitizes the LepR in both peripheral and central neurons [96-99]. Leptin resistance leads 

to hyperphagia and an increase in body weight and fat mass [100,101].

It is controversial whether estrogens interact with leptin to induce its anorexigenic action. 

In intact female rats, the potency of chronic leptin-induced suppression on food intake does 

not fluctuate with estrus cycle [102]. In addition, replacement of E2 in OVX rats does not 

change the effects of chronic leptin on energy balance [103,104]. These data suggest there 

is no synergistic effect between estrogens and leptin. Recent studies show that E2-induced 

anorexigenic action is leptin signaling-independent in the hypothalamus, and replacement 

of E2 does not increase leptin-induced JAK-STAT signaling in the hypothalamus of OVX 

mice [105,106] (Figure 4). Another study demonstrates that E2 decreases about 50 % 

of food intake in ob/ob and db/db mice, and this effect is possibly mediated by mERα 
and JAK-STAT signaling transduction in hypothalamus [107,108]. In addition to mERα, 

activation of GPER also induces JAK-STAT signaling in the hypothalamus, which results 

in a decrease in food intake and weight gain [109]. These results suggest that E2 acting 

on membrane-bound estrogen receptors in the hypothalamus might mimic the anorexigenic 

action of leptin.

On the other hand, E2 replacement in OVX rats does potentiate the anorexigenic 

action induced by administration of leptin into the third ventricle [110-112]. Systemic 

administration of E2 restores leptin sensitivity that is impaired by chronic consumption 

of HFD in the hypothalamus and prevents diet-induced weight gain, an effect that is 

accompanied by reduced food intake [113]. These studies show that E2 not only potentiates 

the anorexigenic action of leptin but also eliminates the hyperphagia caused by leptin 

resistance. There are two mechanisms that explain how estrogens modulate leptin potency 

in the hypothalamus; 1) Estrogens increase the expression of the long-form of the LepR, the 

form conducting JAK-STAT signaling [114,115] and 2) The signal transduction mechanism 

from mER crosstalk with leptin signaling through the linker, tyrosine phosphatase Shp2 

[116] (Figure 4). Although LepR and ERα are both expressed in either NTS neurons or 

VAN, whether estrogens interact with leptin signaling at the level of vagus-hindbrain axis 

remains unclear.
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Glucagon-like peptide 1 (GLP-1)

GLP-1 is a peptide produced in both peripheral tissues, primarily by the small intestine and 

proximal colon, and in NTS neurons in the central nervous system [117]. There is evidence 

to suggest that peripheral GLP-1 and stable GLP-1 analogs can cross the blood brain barrier 

and reach neurons located in CNS [118,119]. However, under physiological conditions, 

endogenous GLP-1 is rapidly degraded by dipeptidyl peptidase-4 [117]; therefore, current 

concepts suggest that the ability of peripheral GLP-1 to regulate food intake is mainly 

mediated in the periphery and by the vagal afferent pathway [120,121]. The main metabolic 

actions of GLP-1 includes improvement of glycemic control by inducing insulin secretion 

and suppression on food intake [117]. GLP-1 receptor (GLP-1R)-mediated suppression on 

food intake is reduced by subdiaphragmatic vagotomy [122,123] and vagal deafferentation 

[124-126]. Rats with specific knockdown of GLP-1R in VAN have increased meal size 

and reduced responsiveness to intraperitoneal injection of GLP-1 to reduce food intake 

[127]. This evidence supports that the concept that the vagal afferent pathway responds to 

peripheral GLP-1 and is the major pathway transmitting the satiety signal toward the CNS.

In addition to VAN, GLP-1R is expressed in various nuclei in CNS and mediates the 

effect of central GLP-1 on food intake regulation, including hindbrain, hypothalamus, 

hippocampus, and mesolimbic system; this topic is extensively reviewed elsewhere [128]. 

Intracerebroventricular injection of GLP-1R agonist into fourth ventricle of mice decreases 

food intake and body weight [129,130]. Knockdown of GLP-1R by adeno-associated virus 

short hairpin RNA-interference in NTS neurons leads to an increase in food intake and 

an increase in meal size [131]. These data suggest that GLP-1 in the NTS neurons can 

also regulate food intake. Another study shows that gastric distension-induced satiety is 

mediated by activation of GLP-1R signaling in NTS neurons [132]. A pharmacological 

study to determine the second-messenger pathways activated by GLP-1 in NTS neurons, 

demonstrated that GLP-1 induced suppression on food intake is mediated by PKA and 

MAPK [133]. Furthermore, injection of a GLP-1 agonist into the fourth ventricle reduces 

the intake of a high palatable diet and reduced the activation of the mesolimbic system 

and ventral tegmental areas, suggesting GLP-1 signaling in NTS neurons not only induces 

satiation but also suppresses food reward [130,134]. Overall, these studies suggest that both 

VAN and NTS neurons respond to GLP-1 and induces satiety signaling.

In OVX rats, replacement of E2 enhances the potency of peripheral GLP-1 induced

suppression on food intake, suggesting there is a synergistic effect between estrogens and 

GLP-1 on food intake regulation [135,136]. The peripheral administration of conjugated 

molecule of estrogen and GLP-1, specifically targeting estrogen signaling within the 

GLP-1R positive cells, shows a larger effect on ameliorating the symptoms of metabolic 

syndrome, including a decrease in body weight and fat mass as well as improvement of 

glycemic control, than administration of GLP-1 only in both male and female diet-induced 

obese mice [137,138]. This metabolic effect of GLP-1–estrogen conjugate is primarily 

mediated through reduced food intake, with no influence on energy expenditure and physical 

activity. As discussed above, the peripheral GLP-1 is largely mediated by vagal-hindbrain 

pathway; thus, the synergism between estrogens and GLP-1 on food intake regulation is 

likely mediated by VAN. Further studies are needed to elucidate the interaction between 
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estrogens and GLP-1 at the level of VAN. Other than peripheral GLP-1, several studies show 

that E2 enhances central GLP-1 induced suppression on food intake in various nuclei in 

different region of brain, including PVH, supramammillary nucleus, and medial amygdala 

[139-141]. Neurons in the medial amygdala have been shown to be single-minded-1 

expressing neurons. Taken together, these studies demonstrate that there could well be 

physiologically relevant interactions between estrogen and GLP-1 in the CNS and possibly 

at the level of VAN, and that estradiol enhances the satiety signal induced by GLP-1.

Conclusions and Perspectives

Sex differences in the regulation of food intake has been reported in several studies, and 

E2 is considered as a key factor leading to these observed sex differences. The current 

thinking is that the synergistic effect between E2 and gut satiety signals, including CCK, 

GLP-1, and leptin, results in different eating patterns between males and females. This 

review summarizes the latest studies of vagus-hindbrain axis, the major pathway sensing 

endogenous gut satiety signals, and highlights the effect of E2 on this axis. There is evidence 

to suggest that E2 potentiates the anorexigenic action of gut satiety signals at the level of 

VAN and NTS neurons. The understanding of E2 action on vagus-hindbrain axis provides a 

promising target site for estrogen-based medication for metabolic diseases.

The majority of studies suggest that the metabolic effect of E2 is slow in onset mediated 

by classic nuclear receptor ERα. However, recent studies show E2 acting on mER and 

GPER to induce protein kinase cascade that might modulates ion channel activity raises the 

potential of possible crosstalk with other signaling transduction. This suggests that mER- 

and GPER-mediated signaling might directly modulate neuronal excitability and synergize 

with other signal transduction pathways. Further studies are needed to elucidate the role of 

membrane-bound estrogen receptors in regulation of energy balance.

Studies using the GLP-1–estrogen conjugates have revealed a potential new peptide-based 

medication for obesity and diabetes. Conjugation with GLP-1 eliminates the risk of 

estrogen-induced carcinogenesis, through targeting of GLP-1R positive cells. Similarly, 

estrogen enhances the anorexigenic action of GLP-1, which produces more weight loss and 

improvement of metabolic phenotype than GLP-1 only. Ligand conjugation might improve 

the specificity of estrogen effect on energy balance, by targeting the cells regulating food 

intake and energy expenditure. In addition, E2 has leptin-like effect on energy balance and 

the ability to restore leptin sensitivity in neurons, which shows a therapeutic potential of E2 

replacement in treating energy imbalance caused by leptin resistance.
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Figure 1. Estrogen receptor-mediated signaling in neurons.
Estrogen acting on classic estrogen nuclear receptor modulates the transcription of 

downstream genes. Acting on membrane-bound estrogen receptors, including GPER and 

mER, induces signaling cascade with a fast response in neurons. GPER is coupled with 

Gs subunit that conducts cAMP/PKA signaling. mER conjugates with RTK and mGluR 

and possibly modulates the signaling cascade of these two types of receptors, including 

JAK/STAT, MAPK, PI3K/Akt, cAMP/KPA, and DAG/IP3 signaling. GPER, G-protein

coupled estrogen receptor; RTK, receptor tyrosine kinase; ER, estrogen receptor; mGluR, 

metabotropic glutamate receptor; mER, membrane-associated estrogen receptor; PKA, 

protein kinase A; DAG, diacylglycerol; IP3, inositol trisphosphate.
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Figure 2. Graphic illustration of vagus-hindbrain axis and ovarian hormones on sensing 
gastrointestinal satiety signals.
Meal-related gastrointestinal signals are paracrinally sensed by vagal afferent neurons 

(VAN), and the signals are projected secondary neurons located in the hindbrain, NTS and 

AP. The signals are integrated and conducted to high-order neurons, including PBN or nuclei 

in the mid-brain region, which regulates feeding behavior. Other than the paracrine pathway, 

gastrointestinal satiety signals are mediated by hormonal pathway and acting in the central 

nervous system (CNS). Circulating estradiol that secreted from ovary acting on both VAN 

and the nuclei located in the CNS modulates the responsiveness to gastrointestinal satiety 

signals. NTS, nucleus of the solitary tract; AP, area postrema; PBN, parabrachial nuclei.
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Figure 3. Potential interaction between cholecystokinin (CCK) and estrogen signaling in 
neurons.
CCK acting on CCK1R induces intracellular Ca2+ influx and modulates activity of ion 

channels that involves in neuronal depolarization through DAG/IP3 signaling. Estrogens 

acting on membrane-bound estrogen receptors and estrogen nuclear receptor possibly 

enhances orexigenic action of CCK through modulation of CCK1R or the ion channels. 

CCK1R, cholecystokinin receptor type A; DAG, diacylglycerol; IP3, inositol trisphosphate; 

PKC, protein kinase C.
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Figure 4. Interaction between leptin and estrogen signaling in neurons.
Estrogen acting on mER conducts the leptin-independent JAK/STAT signaling, suggesting 

that the estrogen and leptin signaling are parallel in mediation of anorexigenic action. In 

contrast, estrogens synergizes leptin signaling, including JAK/STAT and MAPK, through 

increases expression of leptin receptor ① and conjugation between mER and tyrosine 

phosphatase Shp2 ②. LepR, leptin receptor; mER, membrane-associated estrogen receptor.
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