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abstRact As of April 2021, there are five commercially available chimeric antigen receptor 
(CAR) T cell therapies for hematologic malignancies. With the current transition 

of CAR T cell manufacturing from academia to industry, there is a shift toward Good Manufacturing 
Practice (GMP)–compliant closed and automated systems to ensure reproducibility and to meet the 
increased demand for patients with cancer. In this review, we describe current CAR T cell clinical manu-
facturing models and discuss emerging technologic advances that embrace scaling and production opti-
mization. We summarize measures being used to shorten CAR T cell manufacturing times and highlight 
regulatory challenges to scaling production for clinical use.

Significance: As the demand for CAR T cell cancer therapy increases, several closed and automated 
production platforms are being deployed, and others are in development. This review provides a critical 
appraisal of these technologies, which can be leveraged to scale and optimize the production of next-
generation CAR T cells.

iNtRODUctiON
Chimeric antigen receptor (CAR)–modified T cells have 

emerged as an efficacious treatment for patients with certain 
hematologic malignancies (1). Currently, five CAR T cell 

products are approved for commercial use and available on 
the U.S. market: three for B-cell leukemia and lymphoma 
(tisagenlecleucel, axicabtagene ciloleucel, lisocabtagene 
maraleucel), one for mantle cell lymphoma (brexucabtagene 
autoleucel), and one for multiple myeloma (idecabtagene 
vicleucel; refs. 2–8). These therapies involve genetically modi-
fying patient-derived (autologous) peripheral blood T cells to 
express a CAR directed against antigens present on the sur-
face of targeted tumor cells, such as the CD19 molecule, or, in 
the case of idecabtagene vicleucel, B-cell maturation antigen 
(BCMA; refs. 9–14). After antigen recognition, the intracel-
lular signaling domains activate the immune effector and 
memory functions of the CAR T cells. Once activated, these 
T cells proliferate, infiltrate tumor sites, secrete cytokines, 
and release cytolytic granules to eliminate targeted cells in 
an antigen-dependent manner (1). All approved CAR T cell 
products are second-generation CARs that incorporate CD28 
or CD137 (4–1BB) costimulatory signals, which are essential 
for eliciting a clinically relevant immune response (9–15). 
These CAR T cells were able to elicit complete responses (CR) 
in 32% to 67% of patients with lymphoma and showed better 
CR rates in patients with leukemia (16–19).

The increasing success of CAR T immunotherapies in 
relapsed/refractory hematologic malignancies sparked the 
interest of pharmaceutical companies, and several products 
targeting a variety of cancers are currently in the pipeline 
(20). However, many limitations to current CAR T cell manu-
facturing must be overcome before this modality can be fully 
integrated into routine clinical practice. First, most CAR 
T cell trials to date have used autologous peripheral blood 
and apheresis as the main cell sources for manufacturing 
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(9–18, 21, 22). Despite clinical success, autologous CAR  
T cells have sometimes suffered manufacturing delays and, in 
some instances, had difficulty meeting target doses in com-
mercial production (23). Furthermore, most clinical proto-
cols, and all the commercially approved therapies, have relied 
on viral vectors to deliver CAR transgenes into T cells (9–14, 
24–26). Although viral vectors have proven efficient in achiev-
ing stable gene transfer, their requisite extensive safety testing 
adds to the cost and time to develop and manufacture CAR 
T cell products (27, 28). Finally, many academic institutions 
prefer the use of gas-permeable bioreactors, bags, or other cell 
culture devices to stimulate, transduce, and expand T cells to 
the desired clinical dose. These systems allow for high-density 
cells to grow without complex manipulations, easy sam-
pling, and the ability to replenish nutrients and/or cytokines 
without interfering with gas exchange (29, 30). Despite their 
advantages in the academic setting, such platforms require 
trained staff and stringent cleanroom environments, making 
them less desirable for commercial CAR T cell manufacturing 
intended for a large number of patients.

By 2026, commercial CAR T cell therapies are expected to 
comprise the largest share of oncology drug sales in pediatric 
and young adult patients with acute lymphocytic leukemia 
(ALL; 44%) and adults with diffuse large B-cell lymphoma 
(46%; ref. 20). As these therapies reach commercial viability, 
there has also been a shift in both academia and industry to 
develop fully closed and automated manufacturing platforms 
with the potential for scaling. While such systems lessen the 
need for extensive manual handling of the manufactured prod-
uct, they are expensive to purchase, use costly reagents and 
disposable culture sets, and may have sole-source providers, 
which can pose a risk to the supply chain. In addition, each 
instrument can manufacture only one product at a time; thus, 
scaling production requires operating parallel instruments.

As demand for CAR T cell therapies increases, particularly 
when therapies for solid tumors reach commercial stages, 
developing manufacturing platforms that enable scaling while 
embracing the principles of “quality by design,” will be cru-
cial. These platforms may help developers achieve robust and 
reproducible CAR T cell production based on sound manufac-
turing science and quality risk management. Here, we review 
current autologous CAR T cell manufacturing processes and 
associated challenges and suggest ways to overcome these 
limitations as we move toward scalable CAR T cell production. 
We also critically appraise current technological shifts and 
methods that aim to optimize the different steps involved in a 
CAR T cell manufacturing process.

a DecaDe OF aDvaNces iN caR t ceLL 
MaNUFactURiNG
Sources to Obtain Starting Material for 
Autologous CAR T Cell Therapy

To date, autologous cells from whole blood or leukapher-
esis remain the most common starting material for CAR T 
cell products (Fig. 1). Density gradient centrifugation (DGC) 
is utilized with whole blood to remove red blood cells and 
granulocytes and to enrich for mononuclear cells. DGC, 
although effective, is laborious; may require open process-
ing; and may fail to isolate lymphocytes from cell fractions 

with similar densities, such as monocytes. Apheresis col-
lects the mononuclear cell layer from anticoagulated whole 
blood, which is rich in mature lymphocytes. For apheresis, 
patients are connected to a device that moves peripheral 
blood through a single-use disposable tubing set. Centrifugal 
force, guided by optical sensors, separates the blood into 
appropriate density bands for isolation and collection of the 
desired cell layer. Uncollected blood components are then 
returned to the patient. Peripheral blood collection is gener-
ally easier to schedule and is much less expensive than apher-
esis. However, apheresis is currently the most widely used 
method in commercial CAR T cell production protocols, as 
equipment is widely available (31) and a large cellular yield is 
usually achieved (32–34). Apheresis is preferable particularly 
when lymphocyte counts are low, as in patients with relapsed 
or refractory hematologic malignancies, or when there is a 
high tumor burden and paucity of T cells, as in many patients 
with lymphoid malignancies (32, 33).

Quality and Quantity of Starting Materials
Collected T cells must retain the ability to respond to 

stimulation signals, successfully undergo transduction (vec-
tor entry, reverse transcription, and integration), and ulti-
mately function when reinfused. However, the composition 
of autologous starting material from patients with cancer 
is highly variable, influenced by patient age and defects 
due to underlying disease or pretreatment with lymphotoxic 
agents (35–38). For instance, memory T-cell concentrations 
in patients with ALL and non-Hodgkin lymphoma decrease 
with each course of standard-of-care treatment (35). This 
depletion could result in failure of manufacture or function-
ality of CAR T cells (35). Predicting whether a patient will 
have a suboptimal T-cell yield or immunophenotype prior to 
collection remains challenging.

Cryopreservation of the apheresis product after collection 
can also influence cell quantity and quality. For instance, Panch 
and colleagues showed that recovery and viability of peripheral 
blood mononuclear cells (PBMC) was significantly reduced 
after freezing and thawing compared with fresh apheresis prod-
ucts (39). Nevertheless, the recovery of mononuclear cells after 
thawing was sufficient for consistent manufacturing of CAR T 
cells, without evidence of significant differences in expansion, 
transduction efficiency, or overall subset composition (39). 
Freezing may also preferentially deplete cell types that suppress 
ex vivo T-cell growth, such as neutrophils (40) and myeloid-
derived suppressor cells (MDSC; refs. 41, 42). In contrast, fresh 
products have logistical limitations, including a short window 
in which cell viability is adequate for CAR T cell manufactur-
ing, the need to schedule collections that take into account 
patient health, and the availability of apheresis and manufac-
turing slots.

The presence of certain cellular subsets at culture initiation 
can negatively impact T-cell activation and expansion. The 
presence of MDSCs and monocytes can hamper the ex vivo 
activation and expansion of T cells (40, 42–44). Other cellular 
contaminants such as granulocytes and red blood cells sup-
press T-cell proliferation (45, 46). Contaminating regulatory 
T cells can also interfere with the efficacy of the final product 
after infusion (47). Furthermore, transduction of cells other 
than T lymphocytes (e.g., malignant blasts) has been observed, 
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creating the risk of engineering CARs into cancer cells, giving 
rise to CAR-resistant tumor cells (48). Indeed, resistance to 
CAR therapy was induced by the accidental transduction of 
a single leukemic B cell during production, causing the CAR 
gene to bind to the CD19 epitope on the leukemic cells, mask-
ing it from being targeted by the CAR T cells (48). As such, the 
starting material ideally should be purified for robust manu-
facturing, which may be accomplished using lymphocyte or 
T-cell enrichment steps. Elutriation of the leukapheresis prod-
uct (Supplementary Table S1) can enrich for larger numbers 
of lymphocytes and reduce the number of unwanted cells.

Obtaining Pure and Viable T Cells for Genetic 
Modification

Another target cell purification method involves enrich-
ing for T cells or specific T-cell subsets using antibody-
conjugated magnetic beads for positive or negative selection, 

which may improve product purity and yield and, poten-
tially, clinical responses (Fig. 1). A few centers have focused 
on enriching T cells based on the expression of CD62L, 
CD4, and CD8, as these subsets may improve persistence or 
antitumor activity (49–51). In addition, a larger number of 
CD27+CD45RO−CD8+ T cells in the starting material corre-
lated with sustained remission in some patients with cancer 
(52). Defining a distinct ratio of CD4+ and CD8+ T cells in 
the final product may also prevent toxicities, such as cytokine 
release syndrome (CRS) and neurotoxicity (53–55). Similarly, 
the positive selection of CD8+ central memory T cells prior 
to manufacturing has been shown to reduce the occurrence 
of CRS following CAR T cell infusion (56). Nevertheless, 
enrichment reagents not only should be Good Manufactur-
ing Practice (GMP) grade, but also should not elicit unde-
sirable effects, such as premature cell activation, leading to 
rapid exhaustion or tonic signaling (57–59). Label-free T-cell 

Figure 1.  The manufacturing process of clinical scale autologous CAR T cell therapies. The process starts with the isolation of PBMCs, collected either 
from whole blood phlebotomy or, more commonly, through a leukapheresis procedure in hospital apheresis units accredited by organizations such as 
the Foundation for the Accreditation of Cellular Therapy (FACT) and the Joint Accreditation Committee of ISCT-EBMT (JACIE). The PBMCs can be either 
cryopreserved locally and then shipped to centralized manufacturing facilities or transferred as fresh products to these centers. Often, density gradient 
centrifugation or elutriation is performed to reduce unwanted contaminating cells such as granulocytes, red blood cells, and platelets. The selection or 
depletion of specific T-cell types within the PBMCs is then performed. In some protocols, the cells are enriched for CD3+ T cells prior to or concurrent 
with their activation, at which point the cells are genetically modified using viral vectors or other nonviral gene delivery methods to express the CAR. The 
cells are then expanded in the presence of cytokines to a dose suitable for patient administration. In most protocols, the expanded cells are then for-
mulated in an appropriate cryopreservation medium containing dimethyl sulfoxide (DMSO) and cryopreserved. After passing quality control and quality 
assurance lot release requirements, the gene-modified cells are shipped cryopreserved using a validated liquid nitrogen shipper to treatment locations, 
where the product is thawed under controlled conditions and infused into patients. AAPCs, artifical antigen-presenting cells. Created with BioRender.
com.
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enrichment, a process that uses T-cell biophysical properties 
to isolate the cells without prematurely activating them, is 
one possible solution to this challenge (50).

Whether a selection process is employed or not, a T-cell 
activation step is required for adequate transduction and 
expansion (Fig. 1). To achieve this goal, T cells are activated via 
polyclonal stimulation using soluble anti-CD3 antibodies or 
immobilized CD3 and CD28 antibodies (22, 60–63). Immo-
bilized anti-CD3 antibodies provide better cross-linking and 
activation of T cells, while CD28 antibodies activate costim-
ulatory pathways in the target cells. For a long time, CD3 
and CD28 antibodies have been immobilized by coating tis-
sue culture flasks, leading to efficient T-cell stimulation; this 
method, however, provides a relatively small surface area for 
T-cell adherence, limiting culture size. Paramagnetic beads, 
such as Dynabeads, can also be coated with these antibodies; 
in suspension, the coated beads provide appropriate stimula-
tion for much larger T-cell cultures (10, 14, 64–66). Prior to 
formulating the final cellular products, the beads need to 
be removed, as they could pose a hazard if infused into the 
patient. Removal is achieved by disrupting the T-cell/bead 
aggregates via agitation and then passing the suspension 
through a strong magnetic field, which retains the beads but 
allows cells to flow through. Recently, stimulation reagents 
such as Transact have been employed, which utilizes human-

ized anti-CD3 and anti-CD28 antibodies conjugated to a col-
loidal polymeric nanomatrix. The nanomatrix can be washed 
out in a centrifugation step, prior to final product formula-
tion. Another similar method of T-cell stimulation is using a 
hydrogel “stimulation matrix” incorporating antibodies (67), 
which can also be removed by washing after stimulation and  
expansion. Other approaches, such as soluble activation 
proteins, lipid microbubbles, dissolvable microspheres, and 
linked antibodies are being explored as potential options 
(67–70).

After activation, T cells are genetically engineered to 
express CAR molecules targeting specific surface antigens 
(Fig. 1; Table 1). Following transduction, the cells undergo 
expansion to achieve the necessary clinical dose and, in most 
cases, are cryopreserved before infusion into patients.

tHe evOLUtiON OF caR t ceLL 
MaNUFactURiNG PLatFORMs

Besides the challenges of obtaining pure and viable start-
ing material, significant batch-to-batch variability exists 
with autologous cells. Most current manufacturing proto-
cols rely on open, manual processing steps susceptible to  
operator-introduced errors and contamination, and not eas-
ily amenable to scale-out. Moving toward functionally closed 

table 1. Academic manufacturing protocols for CAR T cell therapy

Baylor College of 
Medicine (15, 22, 62)

Memorial Sloan  
Kettering Cancer 
Center (10, 65)

University of  
Pennsylvania (9, 11)

Fred Hutchinson  
Cancer Research 
Center (51, 53, 
55)

National Institutes 
of Health (NIH; refs. 
(12, 13, 61)

Source of the 
starting material

PBMC isolation by den-
sity gradient

Apheresis product, cell 
wash by Cytomate 
cell washer

Apheresis product 
enriched by mononu-
clear cell elutriation, 
density gradient 
separation

Apheresis product 
followed by CD4, 
CD8, or CD62L 
selection  
(CliniMACS)

Apheresis product

Fresh vs. frozen Either Frozen Either Either Fresh

Culture vessels Flasks, plates, G-Rex Bags/rocking platform 
-WAVE bioreactor 
system

Rocking platform 
-WAVE bioreactor 
system

Culture bags Culture bags

Activation Soluble OKT3, plate/
flask-bound anti-
CD3/28

CD3/CD28 antibody– 
coated paramag-
netic beads

CD3/CD28 antibody– 
coated paramagnetic 
beads

CD3/CD28 
antibodies 
conjugated to 
paramagnetic 
beads

Soluble OKT3,  
anti-CD3/CD28 
paramagnetic 
beads

Expansion media Clicks Medium/
RPMI1640

X-Vivo 15 X-Vivo 15 RPMI1640 AIMV medium

Sera FBS Human serum Human serum Human serum Human serum

Transduction  
enhancer

RetroNectin RetroNectin RetroNectin Polybrene RetroNectin

Spinoculation No No No Yes No

Cytokines IL2, IL7/15 IL2 IL2 IL2 and feeders IL2

NOTE: When CAR T cells were first explored in clinical trials, primarily single-center studies were conducted in academic settings, with manufacturing 
relying on open or semiclosed culture systems.
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and fully automated manufacturing platforms may enable 
production scalability and reduce potential human error 
(71). In addition, developing allogeneic CAR T cell products 
may offer an “off-the-shelf” option once certain barriers  
are overcome.

Shifting from Open to Functionally  
Closed Systems

Open systems for T-cell cultures are easily adaptable 
to CAR T cell expansion. Familiarity and ease of use of T 
flasks, gas-permeable culture bags, and membrane bioreac-
tors have made such systems an appealing choice for small- 
to medium-scale manufacturing processes. For example, in 
the G-Rex bioreactor, T cells are cultured on a gas-permeable  
membrane located on the bottom of the culture “bottle”  
(29, 72). This bioreactor can be placed in a regular lab incu-
bator; for media changes and cell harvests, the bioreactor 
is opened in a biosafety cabinet, to manually pipette fluids 
and cells in and out under aseptic conditions. Recently, a 
functionally closed version of this system was developed, 
allowing for a peristaltic pump to move fluids and cells in 
and out of the bioreactor (73, 74). A single unit of this bio-
reactor can provide a 500 cm2 gas-permeable surface area 
with 5 L media capacity, which is sufficient to expand large 
numbers of CAR T cells for clinical applications. The Xuri 
cell expansion system is another adaptable and functionally 
closed process for CAR T cell manufacturing based on the 
WAVE bioreactor platform, which also employs a separate 
cell washing unit (Supplementary Table S1; ref. 75). How-
ever, both the G-Rex and the Xuri systems require skilled 
operators at all stages.

The Quantum hollow fiber bioreactor platform has been 
used as a functionally closed system for cell expansion (76). 
Initially designed for adherent cell culture, this bioreactor 
has a total surface area of 2.1 m2 per disposable cartridge 
and has been adapted for the expansion of cells in a suspen-
sion culture. Further studies are necessary to investigate the 
Quantum system for genetically modified CAR T cell expan-
sion. Efforts also have been made to automate these culture 
systems to improve their scalability (Supplementary Table 
S1). However, automation comes at the cost of flexibility, 
as minor adjustments in the process often require major 
changes in both hardware and software.

Replacing Manual Processing with Automation
To achieve commercial-scale production of CAR T cell 

therapies, end-to end automation is desirable. There are cur-
rently two approaches to automation: fully automated closed 
systems or partially automated systems. Fully automated 
closed processes eliminate any handling of the product dur-
ing manufacturing but are restricted to a single product in 
each production run (77–79). Fully automated systems such 
as the CliniMACS Prodigy (Miltenyi Biotec) and the Cocoon 
(Lonza) are capable of isolating T cells (either CD3+ or CD4/
CD8 enriched) from an apheresis product and moving them 
into a functionally closed culture and transduction process 
(80–82). One major advantage of these systems is the ability 
to use them in less stringent cleanroom classifications. How-
ever, the fill-finish step of the final product is still performed 
in an ISO7 cleanroom environment and depends on a skilled 

operator. The price of such all-in-one manufacturing sys-
tems and associated reagents may limit scaling out, as many 
devices are required for manufacturing products in parallel. 
In addition, operators must gain sufficient troubleshooting 
skills to circumvent any interruptions during production.

Partially automated manufacturing approaches employ 
modular, separated processing devices for individual manu-
facturing steps. Using automated manufacturing stations 
may enhance capacity and throughput without introducing 
significant product handling. Although each device can be 
accessed individually, very precise planning for the execution 
of each component of the manufacturing chain is required, 
and the failure of just one device may significantly impact 
the production workflow. To reduce human error and vari-
ability, robotic devices could be employed (83). A robotic arm 
system that operates in a classified cleanroom environment 
and allows for the isolation, expansion, harvest, concentra-
tion, and cryopreservation of adherent and suspension cells 
has been used to manufacture human mesenchymal stromal 
cells (83, 84), which could be adapted for CAR T cells.

Moving from Autologous to Allogeneic Products
To unravel some of the complexity in scaling autologous 

CAR T cell manufacturing, considerable attempts have been 
made to develop “universal,” allogeneic CAR T cell products. 
Because cells from healthy donors have not been exposed 
to chemotherapies and are free of tumor cells, their quality 
is expected to be superior to those obtained from patients 
with cancer. The same techniques as in autologous CAR T 
cell manufacturing are required for allogeneic T-cell selec-
tion, activation, and genetic engineering. However, the result-
ing CAR T cell product can potentially be scaled up in the 
expansion step to achieve large cell numbers, allowing many 
patients to be dosed from a single-cell collection (Fig. 2).

Because allogeneic cell expansion is intended to produce 
enough cells for multiple final products, it may benefit from 
larger scale expansion platforms. Large, stirred tank bio-
reactors may be used to scale up allogeneic cell products, 
although pitfalls such as shear forces, impeller impact, une-
ven gas exchange, varying hydrostatic pressures, and the over-
all nonphysiologic environment may impact final product 
quality (85). One high-throughput platform addresses the 
issue of scaling the process to large, stirred tank bioreac-
tors by allowing scaled-down development runs in 100- to  
250-mL single-use, disposable bioreactors that can be oper-
ated and monitored in parallel under various culture condi-
tions. Such a platform might help determine ideal culture 
conditions for large-scale bioreactors and enable seamless 
scaling of production (Supplementary Table S1). The plat-
form can currently expand primary T cells to a density of 5 × 
106 cells per mL (86).

Despite these advantages, allogeneic CAR T cells face for-
midable challenges. Foremost among these is controlling 
the risk of allo-rejection of infused cells by the recipient 
immune system and, to a lesser extent, the development 
of graft-versus-host disease (87). To overcome these issues, 
gene-editing methods such as CRISPR-Cas9, transcription 
activator-like effector nucleases (TALEN), or zinc finger 
nucleases (ZFN) have been used to disrupt the expression of 
endogenous T-cell receptors and/or MHC on the allogeneic  
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T cells (refs. 88, 89; Fig. 3). While these promising approaches 
mitigate immunogenic recognition of MHC-deficient CAR T 
cells by host CD8 T cells, the infused cells become more prone 
to natural killer–cell killing (87). In addition, the tolerable 
number of potentially alloreactive CAR T cells infused into 
the recipient has yet to be established (87). Several allogeneic 
CAR T cell products have been tested in clinical trials (90–92), 
with the most recent inducing remission in patients with 
relapsed and/or refractory B-ALL. As expected, however, allo-
geneic CAR T cell persistence remains shorter as compared 
with autologous approaches.

Unlike expansion of an immortalized cell line, scaling up 
allogeneic CAR T cell products, which are derived from pri-
mary cells, requires multiple donors to meet demand and may 
thus be subject to donor-to-donor variability. Nevertheless, in 
contrast to patients with cancer, the ability to source material 
from a large number of healthy donors enables their selection 
based on T-cell quality and frequency. Allogeneic T cells, just 
as autologous cells, must be expanded without compromising 
in vivo function. T-cell exhaustion and culture-associated met-

abolic changes restrict the number of population doublings, 
overall culture times, and quantities. Overcultured cells lose 
in vivo efficacy and show hallmarks of the “exhausted” pheno-
type. Potential scale-up methods are listed in Supplementary 
Table S1. These systems are standard in biologics manufactur-
ing, although CAR T cell applications remain novel.

GeNetic MODiFicatiON stRateGies FOR 
caR t ceLLs
Using Viral Vectors for Genetic Modification

Most CAR T cells for clinical trials and all commercial 
CAR T cells use viral vectors for genetic modification (refs. 
4–8; Fig. 3). Lentiviral and gamma-retroviral vectors are the 
most commonly used, since both permanently integrate the 
transferred gene and allow for long-term gene expression. 
Lentiviral vectors are considered safer than gamma-retroviral 
vectors in terms of their semirandom integration patterns, as 
gene integration does not preferentially occur in start regions 
of active genes (93–95). Although the quality and titer of the 

Figure 2.  Autologous scaling out versus allogeneic scaling up. A, In autologous settings, the concept of “scaling out” can be employed, which entails 
setting up multiple parallel production lines for individual patient products, running simultaneously in the same manufacturing facility. Such a scaled-out 
manufacturing approach can also be transferred to other manufacturing facilities to increase output. For instance, this model is currently being adopted 
by CAR T cell biotech companies through setting up regional manufacturing facilities in the United States and Europe as well as the expansion to other 
regions. B, Conversely, “scaling up” production, which means increasing the total cell yield per product during manufacturing, would be a more suitable 
approach for allogeneic products. In this scenario, cells from healthy donors undergo abundant expansion and are stored as fully tested doses where 
multiple patients can be treated with “off-the-shelf” products. Created with BioRender.com.
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vector are the major factors determining CAR expression, 
reagents (poly-l-lysine, protamine sulfate, retroncetin, vecto-
fusin) have been routinely used to facilitate transduction or 
to colocalize viral particles and cells (60, 96). These reagents  
are either added to the culture during transduction or applied 
to coat plates, flasks, or bags. As an alternative or in addition, 
spinoculation can increase viral transduction efficiency (ref. 
55; Table 1), with the caveat that this spinning process may 
add stress to the T cells.

Split packaging systems are used to generate both vector 
types, where the transgene encoding the CAR is separate 
from the plasmids carrying viral genes essential for viral par-
ticle formation, reverse transcription, and integration of the 
gene of interest in the target cell. This system greatly reduces 
the theoretical risk of generating replication-competent len-
tivirus (RCL) or retrovirus (RCR) through recombination 
events in the packaging cell line (97). The standard vector 
manufacturing protocols for both vectors employ transient 
transfection of several plasmid DNAs into HEK 293T pro-
ducer cells. The development of stable producer cell lines for 
lentivectors pseudotyped with VSV-G is challenging, owing 
to the cytotoxicity associated with this envelope, which is 
not the case with other vector envelopes. While several lenti-
viral packaging cell lines have been described, none is com-
mercially available—an unmet need in the vector production 
space (98–101).

Adopting Nonviral Gene Delivery Systems
Well-designed vectors are required for clinical-grade CAR 

T cell manufacturing, and therefore, manufacturing vectors 
at scale for a reasonable price is a priority. Currently, adapt-
ing HEK 293T to suspension culture conditions and plasmid 
transfections using the stable cationic polymer polyethyl-
eneimine (PEI) is the method of choice to achieve satisfac-
tory numbers of vector-producing cells and intact, packaged 
vector particles secreted into the supernatant. Floating HEK 
293T cells, in theory, can support large-scale manufacturing 
in suitable bioreactors. However, producer cells can be used 
only once, and each new transfection requires a new batch 
of producer cells. To circumvent these challenges, nonviral 
vectors and DNA transfections, such as the use of Sleep-
ing Beauty or piggyBac transposons to genetically modify 
patient cells, have been investigated in clinical trials (refs. 
102–105; Fig. 3). Disadvantages of these systems include 
process complexity, need for significant method optimiza-
tion to overcome low efficiency of CAR expression, need for 
cell sorting postengineering (Supplementary Table S1), and 
significant cell loss during gene delivery (106). Furthermore, 
in a recent phase I trial, lymphoma arising from piggyBac-
transfected CAR T cells has been reported in two of nine 
patients with relapsed or refractory B-cell malignancies who 
achieved complete remission after product infusion. The 
analysis of the lymphoma samples showed an increase in the 
transgene copy numbers but with no integration in typical 
oncogenes (107, 108). These findings reiterate the need for 
better controlled and precise gene transfer modalities. Using 
CRISPR-Cas system to deliver the CAR constructs through 
homology-directed repair (HDR) might be an alternative 
option (Fig. 3), which also requires existing challenges to be 
adequately addressed.

Some investigators are genetically reprogramming T cells 
in vivo to eliminate the need for ex vivo cell manufacturing 
altogether. Gene-carrier nanoparticles can be engineered to 
transfect T cells and lead to high-efficiency CAR expression 
and relatively low target cell toxicity (109, 110). Preclinical 
studies have shown that CD8+ CAR T cells were success-
fully generated in mice through the injection of nanopar-
ticles or lentiviral vectors encoding a CAR and targeting 
CD8+ cells (111–113). Selective in vivo transduction of CD4+ 
cells with CARs was also achieved using a lentiviral vector 
(113). However, systemic administration of these systems has 
the potential to cause genomic toxicity, warranting further 
investigation.

Addressing Challenges to Genome Editing
Despite the promising applications for genome editing in 

cancer immunotherapy, there are multiple challenges with 
respect to the technology itself and its clinical application, 
such as the efficacy of targeted delivery in the cell type of 
interest, establishing cell-based assays to provide functional 
confirmation of gene editing, or investigating and mitigating 
safety concerns such as immunogenicity, tumorigenicity, and 
off-target effects (114). Especially for CRISPR-Cas technol-
ogy, there is extensive evidence on potential off-target effects 
when introducing mutations in undesired genomic loci (115) 
and induction of host immune responses upon administra-
tion (116). Off-target effects with CRISPR-Cas are initiated 
when the Cas/sgRNA complex binds at sites distal from 
the protospacer adjacent motif (PAM) target DNA-binding 
site and bear the risk of disrupting essential gene functions, 
inducing genome instability or epigenetic mutations.

When manufacturing genetically modified cell-based 
products, a general problem is the relatively low efficiency 
of stable gene transfer. For example, when applying the 
CRISPR-Cas9 platform to introduce the CAR transgene 
in T cells, this approach is still limited by technologic 
constraints mainly related to low efficiencies for knock-in 
of large gene segments (117). Moreover, besides the need 
for biodistribution studies and integration-site analysis, 
regulatory expectations also include establishing reliable 
off-target screening strategies with a robust validation of 
predetermined target sites to evaluate the extent of nuclease- 
induced off-target mutagenesis. Different approaches should 
be implemented for unbiased genome-wide screening, in silico 
analyses, and “worst-case scenario” assays (e.g., by applying 
a very high nuclease concentration) characterized by a high 
assay sensitivity.

Genome editing may offer opportunities to improve CAR  
T cell manufacturing, as it reduces supply chain constraints 
(e.g., availability of raw materials and decrease process com-
plexity) and financial constraints associated with the use of 
viral vectors if CRISPR-mediated nonviral site-specific gene 
integration is used. Applying CRISPR-Cas with nonviral deliv-
ery of template DNA to eliminate large genes (118) or for 
orthotopic placement of transgenic constructs (119) could also 
reduce the potential of off-target effects. The emergence of new 
tools such as the fusion between reverse transcriptase and cata-
lytically impaired Cas9 endonuclease might enable the delivery 
of gene cassettes without the need for double-strand breaks 
(DSB), which also induces much lower off-target editing (120). 
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However, the current iterations of such tools can only deliver 
short genetic sequences.

eFFORts tO sHORteN caR t ceLL 
MaNUFactURiNG tiMe

Shortening CAR T cell manufacturing time will enable 
patients with aggressive disease to receive treatment sooner. 
Product manufacturing time can be divided into the cell process-
ing and expansion stage and the batch release (quality control, 
or QC) stage. Recent efforts have focused on reducing the dura-
tion of the CAR T cell expansion step, which, in turn, reduces 
vein-to-vein manufacturing time. Murine studies revealed that  

CAR T cells cultured for only 3 days exhibited superior antitumor 
activity at a much lower dose (6-fold lower) compared with CAR 
T cells harvested after a longer culture period (121). In another 
study, rhesus macaque CAR T cells underwent a 4-day expansion 
in a G-Rex system after a single rapid transduction step, shorten-
ing manufacturing to 9 days (122). Similarly, Knochelmann and 
colleagues showed in a tumor mouse model that transduced 
Th17 lymphocytes, a CD4 T-cell subset that secretes cytokines 
such as IL6, displayed superior antitumor activity after a 4-day 
expansion over cells expanded for 7 or 14 days (123).

For a phase I clinical trial, researchers manufactured an 
autologous, bispecific CD19/CD22-targeted CAR T cell ther-
apy using the FasT CAR platform, reducing cell culture time 

Figure 3.  Advances in genetic modification of CAR T cells. Several gene editing tools can be used for gene delivery or gene modifications of CAR T 
cells. A, Knocking out genes that can interfere with the efficacy of CAR T cells is a strategy being implemented in autologous and allogeneic product 
manufacturing. TALENs have been used to generate universal allogeneic CAR T cells and have been tested in clinical trials (92, 148). The CRISPR-Cas9 
system has also been utilized in allogeneic CAR T cell manufacturing in a similar fashion (88). Using this system, genes such as Programmed cell death 
protein 1 (PD-1), T-cell receptor (TCR), and beta-2 microglobulin (B2M) were knocked out, generating less alloreactive and more exhaustion-resistant T 
cells. Finally, the introduction of the catalytically impaired Cas9 gene editing tools enabled gene disruption without the need for double-strand breaks 
(DSB). The system consists of a Cas9 nickase fused to a cytidine deaminase and an uracil DNA glycosylase inhibitor (UGI). The system enables high-
precision gene modifications by converting C:G to T:A base pairs. Using this technology, allogeneic CAR T cells were successfully edited to eliminate TCR, 
PD-1, and B2M (149). FokI, restriction endonuclease found in Flavobacterium okeanokoites; NHEJ, nonhomologous end joining. B, Alternatively, CRISPR-
Cas9 can deliver the CAR gene cassette by means of homology-directed repair (HDR). The Cas9 system introduces DSBs in the presence of a donor DNA 
template that contains complementary homology arms capable of integrating at the site of the DSB. Using this approach, site-specific CAR integration 
can be achieved. This strategy enables the disruption of the TCR by targeting the T-cell receptor alpha chain constant (TRAC) locus while simultaneously 
integrating the CAR construct into the genome (150). These new modalities add more options to the commonly used viral vectors as well as nonviral 
approaches such as the piggyBac and Sleeping Beauty systems. Created with BioRender.com.
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to less than 24 hours (124, 125). Ten adolescent and adult 
patients with CD19+ relapsed/refractory B-ALL received the 
CD19 FasT CAR T cells. On day 15 after cell infusion, 10/10 
(100%) patients achieved CR, with only 1 patient experiencing 
CRS (125). Earlier efforts to treat refractory CD19+ tumor 
patients with CAR T cells generated using the Sleeping Beauty 
transposon system shorten the ex vivo culture of T cells to 
14 days (126). Researchers at MD Anderson Cancer Center 
(Houston, TX) in collaboration with Ziopharm reported that 
six patients with active CD19+ lymphoid malignancy were 
infused with CAR T cells manufactured using this system. 
Median CAR expression upon infusion was 86% (range 19%–
97%), resulting in antitumor effects and no clinically signifi-
cant CRS. Interestingly, the same team initiated a clinical trial 
of CD19-directed CAR T cells for patients after allogeneic 
stem cell transplant utilizing a “rapid personalized manufac-
turing process.” T cells engineered using Sleeping Beauty were 
infused less than 2 days after electroporation, suggesting 
that the engineered T cells were infused without full char-
acterization (NCT03579888). Efforts to achieve same-day 
product manufacturing have been reported for adenoviral 
vector Ad5f35-engineered CAR monocytes using the CAR 
to target tumors overexpressing HER2 (127). A phase I clini-
cal trial to investigate this novel therapeutic approach in 18 
subjects with locally advanced (unresectable) or metastatic 
HER2+ solid tumors has commenced (NCT04660929; ref. 
128). Despite these efforts, the increased potency of rapidly 
generated CAR T cells will need to be balanced with their 
in vivo tolerability and long-term function.

tReNDs iN Qc OF tHe FiNaL caR  
t ceLL PRODUct

While the overall length of cell culture may be reduced, the 
time for QC testing remains largely fixed. QC tests usually 
include the verification of sterility, identity, specificity, and 
potency for each product. Of these parameters, the sterility tests 
require the most time. Currently, the compendial product ste-
rility tests take 14 days, and the fungal assay can take up to 42 
days. Anaerobic- and aerobic-enriched media testing that takes 
7 days is recognized by the European Pharmacopoeia as an 
alternative “rapid” test. In 2011, the FDA published a study that 
acknowledged rapid sterility tests as an alternative (129). How-
ever, the FDA does not formally recognize rapid tests. There-
fore, if alternative rapid testing is performed for product release, 
supportive data should be submitted with validation reports. 
The Cell and Gene Therapy Catapult is working with industry 
partners to produce 1-hour sterility testing (130). Such an 
advancement, if accepted by regulatory agencies, would signifi-
cantly accelerate product release and improve overall scalability. 
qPCR assays for the detection of Mycoplasma are now standard 
and reduce assay time from 28 days to 1 to 2 days (131).

Most manufacturers characterize the final CAR T cell prod-
uct by flow cytometry, with many characterization panels cur-
rently in use. Several ranges/measures exist to determine the 
total T-cell number via CD3 expression; to characterize the 
CD4+ and CD8+ subsets within this population (54); to detect 
transduced and not transduced cells; and to identify any 
contaminating cell subsets, such as monocytes/macrophages 
(CD14; ref. 44). Qualification and validation of the assay are 

required prior to obtaining a Biologics License Application 
(BLA), which is needed in the United States for commercial 
manufacturing. Currently, each manufacturer specifies their 
own potency assay and develops, in agreement with the 
regulatory agencies, specific parameters appropriate for the 
clinical-grade product they manufacture. To date, there is no 
consensus on a potency assay or platform that can accurately 
predict clinical response to CAR T cell therapy. Ideal potency 
assays should be validated to ensure their reproducibility, 
be able to quantify tumor cell lysis mediated by CAR T cells, 
and provide results in real time or at least within a few days 
for prompt product release. An automated QC testing setup 
that produces real-time measurements of cell binding and 
killing allowing for continuous product quality monitoring 
during the manufacturing process may prove advantageous 
(132). Overall, comparing currently available potency assays 
in terms of treatment outcomes may aid in determining 
which assay best correlates with in vivo function of the manu-
factured product (133).

OtHeR cONsiDeRatiONs FOR scaLiNG caR 
t ceLL PRODUctiON

As discussed earlier, considerable variability can hinder 
CAR T cell manufacturing. While variable gene expression 
is unavoidable in current CAR T cell generation protocols 
owing to retro- and lentiviral vector integration, variabilities 
in other manufacturing parameters can be better controlled 
by adopting “Quality by Design” (QBD) principles (Fig. 4). 
QBD principles evaluate theoretical variabilities in a process 
and assess risk to detect which critical parameters need to be 
kept under tight control.

One important consideration is the availability and con-
stant supply of well-characterized clinical-grade reagents 
when transitioning from the research phase to the clinical 
production phase (134). These reagents add to the overall 
costs but are necessary to ensure the quality of the adminis-
tered CAR T cell products. Production and QC staff properly 
trained to work under GMP conditions is another key element 
in product manufacture. There is consensus among academic 
GMP facilities as well as industry that identifying, hiring, and 
retaining qualified staff is challenging, creating a major barrier 
to successful GMP operations, particularly in the cell and gene 
therapy field (135). Strategies to ensure proper training and 
retention of GMP staff should be made a priority and should 
tackle issues such as competitive monetary compensations 
and cross-training for multiple projects and tasks. Existing 
initiatives for training a GMP workforce need to be expanded, 
harmonized, and accredited by the respective educational 
accreditation bodies. This need has also been recognized by 
the California Institute for Regenerative Medicine (CIRM), 
which offers educational grants to train students on cell ther-
apy manufacturing. Such programs should optimally include 
theoretical and practical technical training in actual GMP 
facilities. Finally, a strictly controlled environment, including 
cleanroom suites and storage, is vital. As these therapies move 
beyond phase I trials, meeting these requirements becomes 
more costly and time-consuming (136, 137).

Achieving compliance with regulations can be another bot-
tleneck to CAR T cell production. In the United States, the 
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FDA requires the demonstration of safety and substantial evi-
dence of efficacy from clinical trials. Data from these trials are 
then used to apply for a BLA. Full implementation of GMP 
manufacturing rules and regulations in the United States 
is less cumbersome for products manufactured at academic 
centers for phase I trials (138). For phase II or III clinical 
trials, however, the FDA more tightly regulates the process. 
Furthermore, the manufacturing process must be validated 
by the end of pivotal clinical trials supporting licensure and 
release assays (138).

A similar clinical trial phase structure exists in the Euro-
pean Union, although some GMP regulations are stricter 
in Europe (139, 140). Full GMP compliance is required 
for phase I clinical trials, which could be cumbersome for 

academic developments (141). Also, gene-modified cellular 
products are subjected to greater regulatory scrutiny in 
the European Union than non–gene-modified therapies. 
A U.S. company that seeks to manufacture CAR T cells in 
the United States and European Union must comply with 
both sets of regulations and work with strict oversight from 
both the FDA and the European Medicines Agency (EMA) 
to meet respective manufacturing standards (140, 142, 
143). This can lead to rather large regulatory discrepancies, 
particularly when raw material qualification is involved, 
since import and export of these materials are also strictly 
regulated. Therefore, developers have been keen on setting 
up production facilities in the respective geographic areas 
to fully comply with the local regulatory landscape.
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Decentralized manufacturing in multiple small facilities 
is appealing, but new models of production scaling that rely 
on this approach remain a challenge to regulate (144–146). 
Recently, the FDA discussed decentralized manufacturing 
(147), which entails product manufacturing according to the 
same protocol at different sites and analyzing pooled safety 
and efficacy data. If the benefit–risk assessment is favorable, 
separate biologics licenses could be issued to individual sites to 
allow independent manufacturing at each site. This approach 
would facilitate the development of local product manufactur-
ing and distribution to more patients. The FDA has noted that 
one of the major issues in the implementation of this model is 
having a sufficient understanding of the critical quality attrib-
utes of the product, so that the consistency of its manufacture 
can be assured from site to site. Although this may require 
additional time for upfront validation, reduction in costs and 
in lead-time delays could eventually be realized through effi-
ciency of logistics and the overall production process.

cONcLUsiON
All commercialized CAR T cell products are currently 

based on autologous T cells; however, autologous therapies 
manufactured using open methods and relying on manual 
cell handling have a number of limitations, including vari-
ability in the starting material, difficulty in scalability to meet 
market demands, batch-to-batch variation, and potential 
human error and contamination leading to batch failures. 
Because the traditional scale-up model of drug manufactur-
ing can at least be partially applied to allogeneic CAR T cell 
manufacturing, it may offer a theoretical scaling advantage 
over the autologous model. In addition, automating the 
manufacturing process may improve process reproducibility 
and robustness, and potentially lower costs when efficiently 
employed in large-scale production.

None of the approaches discussed here are mutually exclu-
sive with the current model of autologous CAR T cell manu-
facturing. To increase the accessibility of autologous CAR T 
cell products, some therapies in development are transition-
ing toward decentralized manufacturing. Products developed 
in smaller academic centers equipped with GMP laboratories 
could be used to treat patients at regional medical centers. 
In such a model, automated platforms could simplify the 
workflow, increase process robustness, enable scalability, and 
reduce costs while maintaining or even improving the efficacy 
of the resulting CAR T cell products. Allogeneic products, 
however, may become the model of choice for products man-
ufactured at scale in larger centralized commercial facilities 
once the limitations discussed above can be overcome.

Finally, novel approaches to shorten the manufactur-
ing process are being developed, such as nonviral vector 
approaches relying on electroporation of primary cells. How-
ever, incorporating new technologies with scaling in mind 
should involve careful planning during early stages of devel-
opment as well as careful monitoring of patients for any unex-
pected serious adverse reactions once the CAR T cell product 
is infused. In summary, the manufacturing achievements 
reviewed here are a step forward toward a harmonized pro-
duction protocol for CAR T cell therapies. Broadly accepted 
levels of standardization for CAR T cell manufacturing will 

enable a more rapid assessment by regulatory authorities and 
facilitate commercialization to meet increased demand for 
these therapies.
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