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abstRact Clonal hematopoiesis results from somatic mutations in cancer driver genes in 
hematopoietic stem cells. We sought to identify novel drivers of clonal expansion 

using an unbiased analysis of sequencing data from 84,683 persons and identified common mutations 
in the 5-methylcytosine reader ZBTB33 as well as in YLPM1, SRCAP, and ZNF318. We also identified 
these mutations at low frequency in patients with myelodysplastic syndrome. Zbtb33-edited mouse 
hematopoietic stem and progenitor cells exhibited a competitive advantage in vivo and increased 
genome-wide intron retention. ZBTB33 mutations potentially link DNA methylation and RNA splicing, 
the two most commonly mutated pathways in clonal hematopoiesis and myelodysplastic syndromes.

SIgNIfICANCe: Mutations in known driver genes can be found in only about half of individuals with 
clonal hematopoiesis. Here, we performed a somatic mutation discovery effort in nonmalignant blood 
samples, which identified novel candidate genes that may play biological roles in hematopoietic stem 
cell expansion and hematologic malignancies.
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iNtRODUctiON

Clonal hematopoiesis is an age-associated process in which 
a hematopoietic stem cell (HSC) acquires a mutation that 
promotes clonal expansion, resulting in a hematopoietic 
system disproportionately derived from a single clone (1–3). 
Individuals with clonal hematopoiesis are at increased risk 
of developing hematologic malignancies such as myelodys-
plastic syndromes (MDS) or acute myeloid leukemia (AML; 
refs. 1, 4). Clonal hematopoiesis of indeterminate potential 
(CHIP) is defined by the presence of a somatic mutation in 
a known blood cancer–associated gene with a variant allele 
fraction (VAF) greater than 2% in persons without evidence 
of hematologic malignancy (4). However, only approximately 
50% of persons with a clonal expansion state in their blood, 

which can be identified by the presence of multiple passenger 
mutations at a similar VAF, have a mutation in a known 
driver, suggesting that the catalog of mutations causing 
clonal hematopoiesis is incomplete (2, 5, 6).

Somatic driver mutation discovery efforts have focused 
on malignant rather than premalignant states due in part to 
the availability of cancer biopsy samples to analyze and the 
high mutational burden in these samples. The availability of 
sequencing data from tens of thousands of individuals from 
peripheral blood provides an opportunity for a broad gene-
discovery effort for a premalignant condition. We leveraged 
45,676 whole exomes from the Exome Aggregation Consor-
tium (ExAC) and 39,007 whole genomes from the Trans-
omics for Precision Medicine (TOPMed) data sets to identify 
prevalent mutations in four genes not previously recognized 
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to drive clonal expansion of hematopoietic cells (7). To iden-
tify whether mutations in the identified genes were also 
present in myeloid malignancies, we sequenced these genes in 
a large cohort of patients with MDS by targeted sequencing. 
We performed functional studies on the gene that was most 
frequently mutated in CHIP and MDS, ZBTB33.

ResUlts
Identification of Recurrent Somatic Mutations in 
Large Blood exome Sequencing Data Sets

To discover novel candidate drivers of clonal hematopoie-
sis, we analyzed 45,676 exomes from the ExAC (Supplemen-
tary Table S1) for the presence of recurrent somatic mutations 
using two methodologies. The first approach identified genes 
with nonsense variants that were enriched for somatic muta-
tions by systematically depleting likely germline variants and 
artifacts (Supplementary Fig. S1A; see Methods for details). 
Nonsense mutations were chosen because they have a clear 
functional consequence (truncating the protein product). 
Reassuringly, the four genes with the highest prevalence 
of candidate somatic nonsense mutations were DNMT3A, 
ASXL1, TET2, and PPM1D, which are all well-established driv-
ers of clonal hematopoiesis (Supplementary Table S2). Also 
among the most commonly mutated genes were other known 
drivers of clonal hematopoiesis or hematologic cancer such as 
BRCC3, NF1, PHIP, NXF1, RAD21, and BCORL1 (Supplemen-
tary Table S2). Several genes not previously appreciated to be 
drivers of clonal expansion were also detected.

To further refine the set of candidate genes, we developed 
an alternative approach to identify somatic drivers. We relied 
on the principle that driver mutations leading to clonal expan-
sion are likely to occur in cells that have already accumulated 
multiple passenger mutations. We utilized Phylogic NDT to 
perform Dirichlet clustering to identify clusters of somatic 
mutations, including single-nucleotide variants (SNV) and 
indels (see Methods section), at a similar VAF, indicative of a 
clonal population (Supplementary Fig. S1B and S1C; ref. 8). 
We defined the cluster with the largest VAF that was distinct 
from the germline heterozygous cluster as the “clonal somatic 
heterozygous cluster.” Considering only such clusters with at 
least four mutations (n = 2,266 cases), we identified 40 sig-
nificantly mutated genes with a false discovery rate (FDR) less 
than 0.1 (Supplementary Fig. S1D). This included commonly 
mutated genes in CHIP (DNMT3A, ASXL1, PPM1D, TET2, 
SF3B1, JAK2, CBL, TP53, GNB1, and PRPF8), as well as several 
novel candidates.

Among the novel candidate genes, four (SRCAP, YLPM1, 
ZBTB33, and ZNF318) were identified by both methods. Trun-
cating mutations, including nonsense, frameshift, and splice 
mutations, were found in all four of these genes (Fig.  1A; 
Supplementary Table S3). The only gene with a nonrandom 
pattern of putative somatic missense variants was ZBTB33, 
and we noted that these mutations clustered in the protein’s 
functional domains, described below (Fig. 1A; Supplementary 
Table S3). Mutations in some of these genes, such as ZBTB33, 
have been detected below the threshold for statistically sig-
nificant recurrence in previously published sequencing stud-
ies of myeloid malignancies (9–13). Notably, a study of 10 
patients with AML identified a ZBTB33 mutation that was 

determined to be preleukemic based on its presence in both 
leukemia cells and preleukemic HSCs but not T cells from the 
patient (14). Expansion of ZNF318 and SRCAP mutant clones 
has been reported following cytotoxic therapy (15, 16).

To validate these previously uncharacterized CHIP drivers  
in an independent data set, we evaluated whole-genome 
sequencing (WGS) of 39,007 individuals from TOPMed (ref. 17;  
Supplementary Table S4) for mutations in SRCAP, YLPM1, 
ZBTB33, and ZNF318. Mutations in these genes were found 
at similar frequencies in both TOPMed and ExAC, and these 
genes were also among the most commonly mutated genes in 
CHIP (overall mutation frequencies: SRCAP: 0.06%, YLPM1: 
0.07%, ZNF318: 0.12%, ZBTB33: 0.18%; Fig. 1B). ZBTB33 was 
the sixth most commonly mutated gene overall and was 
more frequently mutated than the canonical MDS-associated 
genes SF3B1, SRSF2, and TP53. Finally, we assessed whether 
these mutations were age associated, as would be expected for 
bona fide somatic mutations. The presence of a mutation in 
these four genes was associated with age in linear regression 
models, strongly suggesting that the identified variants were 
not germline polymorphisms or technical artifacts (Fig. 1C; 
Supplementary Tables S5 and S6).

New Candidate CHIP Drivers Are Also Mutated in 
Patients with MDS

Because CHIP can progress to MDS, we examined whether 
the candidate CHIP drivers we identified were also mutated in 
patients with MDS. We sequenced the four candidate CHIP 
genes in a cohort of 1,206 MDS cases and found 16 ZBTB33 
(1.3%), 16 YLPM1 (1.3%), 11 SRCAP (0.9%), and 4 ZNF318 
(0.3%) mutation carriers (Fig. 2A; Supplementary Table S7). 
These findings are consistent with mutations that are recur-
rent drivers of MDS but at frequencies that are too low to 
have been detected in previous exome or genome sequencing 
studies of myeloid malignancies. The observation that these 
mutations are found at higher prevalence in MDS cases than 
in CHIP supports the hypothesis that these are bona fide 
drivers of MDS.

The most frequently mutated of these new genes, ZBTB33, 
is notable due to its proposed role as a reader of methyl-
ated DNA, linking it to the biology of the two most com-
mon CHIP genes, DNMT3A and TET2. DNMT3A and TET2 
alter DNA methylation through distinct and complementary 
mechanisms, as the two genes are commonly comutated in 
the same clone (18–21). Consistent with ZBTB33 being an 
X-linked gene, the majority of mutations in this gene were 
found in male patients (Fig. 2B), and the mean ZBTB33 VAF 
was 0.63 for males and 0.23 for females (Fig. 2C).

In both CHIP and MDS, the majority of variants identified 
were missense mutations that clustered in ZBTB33’s func-
tional domains, suggesting that disruption of these domains’ 
function may be important for CHIP and/or MDS patho-
genesis (Figs. 1A and 2D). ZBTB33 belongs to the BTB/POZ 
subfamily of zinc finger (ZF) transcription factors, which 
each contain an N-terminal BTB protein–protein interaction 
domain and several C-terminal ZF DNA-binding domains, of 
which ZBTB33 contains three (18). The missense mutations 
we identified mapped to ZBTB33’s BTB and ZF domains,  
as well as to two regions necessary for ZBTB33’s association 
with centrosomes and the mitotic spindle (SA1 and SA2;  
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Figure 1.  Detection of recurrent somatic mutations in large blood exome sequencing data sets. A, Lollipop plots showing the specific mutations 
identified in SRCAP, YLPM1, ZBTB33, and ZNF318 in 45,676 exomes from ExAC. Missense mutations are shown as green squares, truncating mutations 
(including nonsense mutations, frameshift insertions/deletions, and splice-site mutations) are shown as black circles, and in-frame mutations are shown 
as brown hexagons. BTB, broad-complex, tramtrack, and bric a brac protein–protein interaction domain; NLS, nuclear localization signal; SA, spindle- 
associated domain. B, Graph comparing the number of mutations identified in specific genes in 45,676 ExAC samples versus in 39,007 samples from  
the TOPMed cohort. Novel candidate CHIP genes are labeled in red. C–f, Graphs showing the prevalence of mutation in ZBTB33 (C), ZNF318 (D),  
YLPM1 (e), and SRCAP (f) among individuals from ExAC and TOPMed in different age groups. Error bars represent 95% confidence intervals.
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Figure 2.  Identification of mutations in ZBTB33, YLPM1, SRCAP, and ZNF318 in a cohort of 1,206 patients with MDS. A, Graph depicting the number 
of mutations in potential new CHIP genes identified by targeted exome sequencing of 1,206 patients with MDS. B, Pie chart showing the sex for the 16 
cases with ZBTB33 mutations. C, The VAF of each ZBTB33 mutation is plotted as an individual point, with bars representing mean and SEM. D, Lollipop 
plot showing the specific mutations identified in ZBTB33 relative to ZBTB33’s functional domains in 1,206 MDS samples. Missense mutations are shown 
as green squares and truncating mutations are shown as black circles. BTB, broad-complex, tramtrack, and bric a brac protein–protein interaction domain; 
NLS, nuclear localization signal; SA, spindle-associated domain. e, Comutation plot showing mutations in MDS-associated genes identified in the 16 
cases with ZBTB33 mutations. Genes encoding splicing factors and genes with three or more mutations are shown.

refs. 22, 23) and its two sumo-interacting motifs (SIM; ref. 24; 
Figs. 1A and 2D).

ZBTB33 mutations co-occurred with mutations in splicing 
factor genes in MDS in 14/16 cases (Fig. 2E; Supplementary 
Fig.  S2A). The co-occurrence of ZBTB33 and SF3B1 muta-
tions was statistically significant (Fisher exact text, P = 0.03;  
Supplementary Fig.  S2B). Although SF3B1 mutations are 
powerfully associated with ring sideroblasts, iron-laden mito-
chondria that surround the nucleus, we did not find an 
association between ZBTB33 mutations and the presence of 
ring sideroblasts (Supplementary Fig. S2C). Based on analysis 
of the VAF, ZBTB33 mutations were in the founding clone 
in 11/14 splicing factor gene-mutated cases, whereas they 
appeared to be secondary events or unrelated to the MDS 
clone in the other 3 cases (Supplementary Table S8). To 
validate the co-occurrence of ZBTB33 and SF3B1 mutations, 
we sequenced ZBTB33 in an additional cohort of 127 SF3B1 
mutant MDS cases. ZBTB33 mutations were present in 2.36% 
of this cohort, which is consistent with the ZBTB33 mutation 
frequency in SF3B1 mutant cases in the initial cohort (2.83%; 
Supplementary Table S9).

CRISPR/Cas9 editing of Zbtb33 Results in Clonal 
expansion and a Competitive Advantage of Mouse 
Hematopoietic Stem and Progenitor Cells In Vivo

Dnmt3a or Tet2 loss in mouse hematopoietic stem and pro-
genitor cells (HSPC) confers increased self-renewal potential 

in vitro and clonal dominance in vivo (25–27). The identifica-
tion of clonal somatic ZBTB33 mutations in healthy people 
and patients with MDS led us to hypothesize that ZBTB33 
loss may similarly lead to clonal hematopoiesis in murine 
models. To test the ability of Zbtb33-mutated mouse HSPCs 
to expand relative to wild-type (WT) cells, we performed bone 
marrow (BM) transplantation experiments in mice.

We used CRISPR/Cas9 editing in male HSPCs to introduce 
loss-of-function mutations into the single Zbtb33 allele in 
Cas9 transgenic mice (28). We transduced c-kit+ HSPCs from 
MxCre Cas9 mice with a single-guide RNA (sgRNA) targeting 
Zbtb33 (at a sequence corresponding to the SA1 domain in 
human ZBTB33) or a control sgRNA targeting noncoding 
sequence, followed by transplantation into lethally irradi-
ated CD45.1+ mice (n = 7 per group; Fig.  3A). We verified 
that donor cells were edited by sequencing peripheral blood 
(PB) drawn from the recipient mice every 4 to 6 weeks fol-
lowing transplant and quantifying the percentage of reads 
with insertions or deletions (indels) near the CRISPR cut 
sites (Supplementary Fig.  S3A; Fig.  3B). In parallel, donor 
cell engraftment was validated by flow cytometry (Supple-
mentary Fig.  S3B). We observed significant expansion of 
Zbtb33-edited cells over 32 weeks (linear regression nonzero 
slope test, P = 0.0038), whereas the percentage of cells edited 
by the control sgRNA in noncoding sequence was not sig-
nificantly different over time (linear regression nonzero slope 
test, P = 0.80; Fig.  3B). The majority of Zbtb33 indels were 



ZBTB33 Mutations in Clonal Hematopoiesis and MDS ReSeARCH ARTICLe

 SEPTEMBER  2021 blood CANCER dISCoVERY | 505 

frameshift mutations (Supplementary Fig.  S3C), suggest-
ing that the cells that expanded inactivated Zbtb33 protein 
function. At harvest, there was no difference in spleen weight 
between mice transplanted with Zbtb33 or control noncoding 
sequence edited cells (Supplementary Fig.  S3D). To assess 
editing in an HSC-enriched population, we sequenced Zbtb33 
from BM donor LSK cells (CD45.2+Lin−Sca+Kit+) of mice that 
were sacrificed at 44 weeks. We observed 35% to 85% indels 
in Zbtb33, which confirmed that LSKs were edited and that  
an edited population persisted over the course of 44 weeks 
(Supplementary Fig. S3E).

To test directly whether Zbtb33-edited cells have a com-
petitive advantage compared with control-edited cells, we 
performed competitive transplant experiments. We trans-
planted recipient mice (n = 8) with a 1:1 mix of c-kit+ cells 
lentivirally transduced with an sgRNA targeting Zbtb33 or a 
control sgRNA (Fig.  3C). We utilized lentiviral sgRNA plas-
mids that also strongly express tagRFP or tagBFP, allowing 
us to measure the percentage of cells expressing each sgRNA 
by flow cytometry. We verified in the input c-kit+ donor cells 
that we could detect both editing of the sgRNA target sites by 
sequencing and expression of red fluorescent protein (RFP) 
and blue fluorescent protein (BFP) by FACS (Supplementary 
Fig. S3F). We also confirmed engraftment of CD45.2+ donor 

cells (Supplementary Fig. S3G). We observed increasing ratios 
of RFP+ to BFP+ cells over time (linear regression nonzero slope 
test, P = 0.00006; Fig.  3D), indicating a competitive advan-
tage of Zbtb33-edited cells. This effect was also observed in 
the CD11b+ population (linear regression nonzero slope test,  
P = 0.0002; Fig. 3E), consistent with expansion of myeloid cells.  
We also observed a significantly higher percentage of cells express-
ing RFP than BFP in c-kit+ cells enriched from BM harvested at 
the end of the experiment (two-tailed paired t test, P = 0.019; 
Fig. 3F), indicating an expansion of Zbtb33-edited HSPCs.

ZBTB33 Interacts with Splicing-Associated and 
Mitochondrial Proteins in Hematopoietic Cells

To explore ZBTB33’s cellular role in hematopoietic cells, we 
sought to identify proteins with which it interacts. Because 
ZBTB33 missense mutations cluster in ZBTB33’s functional 
domains, including the BTB domain that mediates pro-
tein–protein interactions, we also examined the interactome 
of ZBTB33 R26C, the most commonly observed missense 
mutation in the BTB domain. We expressed V5-tagged WT 
ZBTB33 or mutant ZBTB33 R26C in the TF-1 hematopoi-
etic cell line, which expresses WT ZBTB33 (Supplemen-
tary Fig.  S4A). Overexpression of ZBTB33 R26C or other 
mutations frequently observed in the clonal hematopoiesis  

Figure 3.  Expansion of Zbtb33-edited HSPCs in mouse transplant models. A, Schematic of noncompetitive transplant setup. HSPCs from male mice 
expressing Cas9 were lentivirally transduced with an sgRNA targeting Zbtb33 or a negative control sgRNA targeting a noncoding region and transplanted 
into lethally irradiated mice (n = 7 per group). B, PB was drawn every 4 to 6 weeks; DNA was extracted, PCR amplified, and sequenced; and the percentage 
of reads with indels near the CRISPR cut site was measured. For each mouse, the indel percentage at each time point was normalized to that at week 4.  
Data, mean ± SEM. Prism was used to perform a linear regression for each group of mice and compute whether the slope was significantly nonzero.  
P = 0.0038 for mice transduced with Zbtb33 sgRNA and P = 0.80 for control sgRNA. C, Schematic of competitive transplant setup. n = 8 recipients. D and  
e, The percentage of cells expressing RFP or BFP in the CD45.2+ (D) or CD45.2+ CD11b+ (e) PB at each time point, as measured by flow cytometry. Data, 
mean ± SEM. The ratio of percentage of RFP+ to percentage of BFP+ cells was calculated for each mouse at each time point, and Prism was used to 
perform a linear regression and compute whether the slope was significantly nonzero. P = 0.00006 for the CD45.2+ PB and P = 0.0002 for the CD45.2+ 
CD11b+ PB. f, The percentage of RFP- or BFP-expressing cells in the c-kit+–enriched BM 44 weeks after transplant, as measured by flow cytometry. Data 
are plotted as individual mice (n = 7), with bars representing the mean and SEM. P = 0.019, computed using a two-tailed paired t test.
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exome sequencing data (e.g., SIM2 mutant ZBTB33 G438D 
or ZF mutant ZBTB33 C552R) did not appear to affect 
stability of the protein (Supplementary Fig.  S4A). We per-
formed immunoprecipitation (IP) using V5 antibody, fol-
lowed by mass spectrometry (IP/MS; Supplementary Fig. S4B 
and S4C).

Comparisons were made between the WT ZBTB33 IP and 
untransduced control IP, or between the ZBTB33 R26C IP 
and WT ZBTB33 IP. Significant interactors were determined 
based on log fold change and adjusted P value (Supplemen-
tary Fig.  S5A and S5B). We identified significant interac-
tions between ZBTB33 and multiple proteins involved in 
RNA splicing (Fig.  4A; Supplementary Table S10), and we 
validated several of these interactions by IP/Western blot 
(Supplementary Fig. S5C–S5F). Several of these proteins were 
differentially enriched between WT ZBTB33 and the R26C 
mutant (Fig.  4B; Supplementary Table S11; Supplementary 
Fig. S5E and S5F). Additionally, many mitochondrial proteins 
were enriched in the WT and R26C ZBTB33 interactomes 
compared with the untransduced control (Supplementary 
Fig.  S5G and S5H; Supplementary Tables S10 and S11). 
ZBTB33 has never been described to localize to the mitochon-
dria previously, but it was identified using an RNA interfer-
ence screen for genes that affect mitochondrial abundance 
and function and was validated as having a functional role in 
mitochondrial respiration (29). Using cellular fractionation, 
we confirmed that exogenously expressed, epitope-tagged as 
well as endogenous ZBTB33 are present in the mitochondrial 
fractions of TF-1 cells (Supplementary Fig. S5I).

Zbtb33 Loss Leads to Increased Constitutive 
Intron Retention in Mouse HSPCs

The co-occurrence of ZBTB33 and SF3B1 mutations in 
patients with MDS and our finding that ZBTB33 interacts 
with spliceosome proteins provide two lines of evidence sug-
gesting an interaction between ZBTB33 and RNA splicing. 
We evaluated the impact of Zbtb33 loss on alternative splic-
ing in mouse HSPCs. We performed competitive transplant 
experiments as described previously except that we used 
FACS-sorted LSKs (Lin−Sca+Kit+) as donor cells to minimize 
heterogeneity (Fig.  4C). We transplanted 30,000 LSKs per 
recipient mouse (n = 5). Thirty-eight weeks after transplant, 
we FACS sorted RFP+ and RFP− LSKs from harvested BM, 
which confirmed long-term expression of the Zbtb33 sgRNA 
38 weeks after transplant (Supplementary Fig. S6). To query 
whether there are differences in alternative splicing in Zbtb33-
edited LSKs compared with control LSKs, we performed RNA 
sequencing (RNA-seq) on FACS-sorted LSK cells competi-
tively transplanted with Zbtb33 or control sgRNA.

As the entire coding sequence of Zbtb33 is located in one 
exon, the edited Zbtb33 transcript is not expected to undergo 
nonsense-mediated decay via the exon junction complex, and 
a truncated or mutant nonfunctional protein is therefore 
more likely than full knockout. Consistent with this, we con-
firmed DNA frameshift editing in Zbtb33, that Zbtb33 was still 
expressed in Zbtb33-edited cells, and that the frameshift edits 
were present in the RNA as well (Supplementary Fig. S7).

To evaluate splicing changes, we performed paired paramet-
ric tests comparing RFP+ (Zbtb33 sgRNA+) and RFP− (Zbtb33 
sgRNA−) LSKs and restricted to events that had sufficient 
(≥20) informative reads and met our thresholds for signifi-
cance (P ≤ 0.05) and effect size (≥10% absolute change in iso-
form usage or a log fold increase of ≥2). We observed minimal 
changes in usage of competing 5′ or 3′ splice sites or splicing 
efficiency of introns that are frequently retained (Supple-
mentary Fig. S8A–S8C). However, we observed an increase in 
retention of normally constitutively spliced introns in RFP+ 
cells (Fig. 4D). Further limiting to events in which the intron 
retention (IR) rate was increased by at least 5% (absolute scale) 
in Zbtb33-edited cells, we detected 908 differentially retained 
constitutive introns with P ≤ 0.05 (Supplementary Table 
S12). Using RNA-seq read coverage plots, we manually con-
firmed IR for selected events with the highest log fold change 
in IR (Supplementary Fig.  S9). We also investigated motif 
enrichment at IR events (Supplementary Fig.  S10A–S10C). 
Although IR was widespread and did not appear to act spe-
cifically on transcripts corresponding to one class of genes, 
gene ontology (GO) analysis revealed that the list of IR events 
was enriched for splicing factors, which have been reported to 
be regulated by IR previously (Supplementary Table S13). We 
also noted that retained introns were observed in transcripts 
corresponding to two of our other candidate CHIP genes, 
Ylpm1 and Srcap (Supplementary Table S12).

To investigate whether similar splicing changes were 
observed in patients with MDS, we evaluated IR in CD34+ 
BM cells from ZBTB33/SF3B1-comutated patients with 
MDS (n = 3) and quantified events that were significantly 
increased or decreased compared with patients with MDS 
with SF3B1 single mutation (n = 4) or healthy donor con-
trols (n = 3). Consistent with previous reports, we observed 
significantly decreased IR in SF3B1 mutant cases compared 
with control samples. Three hundred forty-two signifi-
cant IR events were identified with FDR <0.1 and delta psi  
> |0.1|, and 254/342 (74%) exhibited decreased IR. However, 
in cases with ZBTB33 and SF3B1 mutations, we observed 
significant differential IR events that were both increased 
[57/110 (52%)] and decreased [53/110 (48%)] compared 
with SF3B1 single-mutation cases (Fig.  4E; Supplementary 

Figure 4.  Interaction of ZBTB33 with splicing-associated proteins and increased IR upon Zbtb33 loss. A and B, Volcano plots visualizing significant 
protein interacting partners enriched in the WT ZBTB33-V5 IP compared with control (A) and differentially enriched in the WT ZBTB33-V5 and ZBTB33 
R26C-V5 IPs (B). Proteins involved in RNA splicing are colored red. C, Schematic depicting experimental setup for transplant to isolate mouse LSKs for 
RNA-seq experiment. Thirty-eight weeks after transplant, BM was harvested from recipient mice (n = 5). RFP+ and RFP− recipient LSKs were isolated by 
FACS, followed by RNA extraction and RNA-seq. D, Scatterplot comparing constitutive IR in RFP− LSKs (n = 5) versus RFP+ LSKs (n = 5). Axes measure the 
fraction of mRNAs with spliced introns. Red and blue dots represent introns that met the thresholds for significance (P ≤ 0.05) and effect size (absolute 
percentage change in isoform usage of ≥10% or log fold change ≥ 2) and were retained less or more frequently, respectively, in RFP+ compared with RFP− 
cells. e, Bar graphs plotting the percentage of significant IR events that were increased (blue) or decreased (red) in SF3B1 single-mutation MDS samples 
(n = 4) versus healthy controls (n = 3; left) and in ZBTB33/SF3B1 comutation MDS samples (n = 3) versus SF3B1 single-mutation MDS samples (n = 4; right).



ZBTB33 Mutations in Clonal Hematopoiesis and MDS ReSeARCH ARTICLe

 SEPTEMBER  2021 blood CANCER dISCoVERY | 507 

A B

Sorted LSKs Mix 1:1

Mx1-cre
Cas9
CD45.2+

Donor Recipient 

+ Zbtb33 sgRNA-RFP 

+ Control sgRNA-BFP

WT CD45.1+

       n = 5

C D

% Intron removal in RFP− LSKs

ρ = 0.33

%
 In

tr
on

 r
em

ov
al

 in
 R

F
P

+  
LS

K
s

0 25 50 75 100

0

25

50

75

100

Constitutive introns (U2-type)

Up: 68 (0.42%)
Down: 2,327 (14%)

Proteins associated
with splicing 

Proteins associated
with splicing

−3 −2 −1 0 1 2 3

20

40

60

80

Log fold change WT vs. untransduced control

WT ZBTB33-V5 vs. untransduced control

Adj P < 0.05

Adj P < 0.01
ZBTB33

−1
0l

og
10

 (
P

 v
al

ue
)

−1
0l

og
10

 (
P

 v
al

ue
)

−3 −2 −1 0 1 2 3

20

40

60

80

Log fold change WT vs. R26C

WT ZBTB33-V5 vs. ZBTB33 R26C-V5

Adj P < 0.05

Adj P < 0.01
ZBTB33

1.0

0.5

0.0

0.5

1.0

P
er

ce
nt

ag
e 

of
 to

ta
l e

ve
nt

s

Decreased IR 

Increased IR 

SF3B1 single
mutation vs.

healthy donor
control 

ZBTB33/SF3B1
comutation vs.
SF3B1 single

mutation

E



Beauchamp et al.ReSeARCH ARTICLe

508 | blood CANCER dISCoVERY SEPTEMBER  2021 AACRJournals.org

Fig. S11). Of the 57 genes in which increased IR was observed, 
only two (CCNL2/Ccln2 and DHRS4L2/Dhrs4) overlapped with 
genes in which increased IR was observed in mice.

DiscUssiON
Sequencing studies of blood from healthy individuals have 

revealed that mutations in specific genes associated with 
hematologic malignancies drive clonal hematopoiesis in a 
large proportion of the population (1, 2). Because many indi-
viduals with evidence of clonal hematopoiesis do not have a 
mutation in a known cancer gene (2, 5, 6), the focus of this 
study was to discover mutations in previously uncharacterized 
genes that drive clonal expansion of HSCs. By utilizing very 
large sequencing data sets and developing an algorithm to 
distinguish low VAF somatic mutations, we identified low fre-
quency mutations and discovered new drivers of clonal hemat-
opoiesis, including ZBTB33, YLPM1, SRCAP, and ZNF318.

Our work nominates genes that may regulate the self-
renewal or survival of HSCs and that may be implicated in 
hematologic cancers. This is supported by our findings that 
ZBTB33, YLPM1, SRCAP, and ZNF318 are mutated in patients 
with MDS. Mutations have previously been detected in several 
of these genes at frequencies that did not reach statistical sig-
nificance, which supports our findings and highlights the need 
for mutation discovery in large cohorts. Notably, the relative 
frequency of driver gene mutations in CHIP does not always 
correlate with that in MDS or AML. For example, mutations 
in DNMT3A and PPM1D are relatively more common in CHIP 
than MDS, and mutations in genes encoding splicing factors 
are relatively more common in MDS than CHIP (30, 31). 
Future work studying the biological role and function of these 
genes is likely to provide insight into mechanisms important 
for normal HSC function, clonal hematopoiesis, and MDS 
and other hematologic malignancies. For example, SRCAP is 
involved in chromatin remodeling, and ZNF318 is a putative 
RNA-binding protein, suggesting these pathways may also 
contribute to clonal hematopoiesis and MDS. Chromatin 
remodeling, transcription, RNA transport, and RNA splicing 
all influence the transcriptional state of hematopoietic stem 
cells and cellular differentiation, indicating how these muta-
tions could potentially converge on downstream effects.

We chose to focus our validation efforts on ZBTB33, as it was the 
most frequently mutated of the novel genes in multiple cohorts 
of individuals with clonal hematopoiesis and MDS, scored by 
multiple methodologies. Furthermore, we were intrigued by its 
connection to DNA methylation, a process known to be per-
turbed in hematologic malignancies. As functional validation of 
a role for ZBTB33 in HSCs, we have demonstrated that mouse 
HSPCs with inactivated Zbtb33 undergo expansion over time and 
have a competitive advantage in the transplant setting. Dnmt3a 
or Tet2 mutations confer similar effects in mouse HSPCs, indicat-
ing that Zbtb33 mutant cells exhibit phenotypes characteristic of 
well-studied CHIP mutations.

Although it was previously appreciated that DNA methyla-
tion regulates alternative splicing, specifically exon skipping/
inclusion (32–35) and IR (36), we have identified an addi-
tional 5-methylcytosine (5mC) reader, ZBTB33, that appears 
to modulate IR. Although our findings warrant more work 
and validation, our discoveries that Zbtb33-edited mouse 

LSK cells exhibit increased IR and that IR is also altered 
in ZBTB33/SF3B1-comutated MDS samples compared with 
SF3B1-mutated samples are consistent with established roles 
of DNA methylation and 5mC binding proteins in regulating 
alternative splicing. Known mechanisms of modulation of 
alternative splicing by 5mC binding proteins include altered 
recruitment of splicing factors and modulation of RNA poly-
merase II (RNA Pol II) kinetics (32–36). Our IP/MS results 
indicate that ZBTB33 binds components of the RNA spli-
ceosome and subunits of the RNA Pol II complex, providing 
rationale for a similar role for ZBTB33. Future studies will 
be necessary to determine the precise mechanisms associated 
with ZBTB33-mediated IR, including whether this process is 
directly mediated by ZBTB33 binding to 5mC.

Our work provides a precedent for future mutation discov-
ery efforts in other premalignant states. Recent studies have 
revealed a number of corresponding premalignant states in 
other organs and tissues, including the esophagus and skin 
(37–40). This study provides a framework for performing 
unbiased mutation identification studies in nonmalignant 
tissue, which could be adapted to discover potential unchar-
acterized driver genes of other premalignancies.

MethODs
Human studies were approved by ethics committees at all involved 

institutions and were conducted in accordance with ethical guide-
lines and the U.S. Common Rule.

Cohorts with Genetic Sequencing Data
For the discovery set, we used whole-exome sequencing data from 

45,676 persons included as part of the ExAC. These included 18,040 
persons from 22 cohorts in the T2D-GENES and GoT2D consortia pre-
viously analyzed by us (1), 12,404 persons who were part of a case–con-
trol study for schizophrenia and bipolar disease (2), and 15,232 persons 
who were part of the Myocardial Infarction Genetics Consortium that 
included several cohorts previously described (41). Numbers of indi-
viduals from each cohort, mean age, and CHIP prevalence are shown 
in Supplementary Table S1. CHIP variant calls were produced using 
MuTect and Indelocator as previously described (42). The protocols for 
these studies were approved by the ethics committees at all involved 
institutions and were conducted in accordance with ethical guidelines. 
Written informed consent was obtained from all participants.

For the replication set, we used WGS data from 39,007 per-
sons in five cohorts within the TOPMed project (BioMe, ref. 43;  
Cardiovascular Health Study, ref. 44; Framingham Heart Study, 
ref. 45; COPDGene, ref. 46; and Women’s Health Initiative, ref. 47;  
Supplementary Table S14). Numbers of individuals from each 
cohort, mean age, and CHIP prevalence are shown in Supplementary 
Table S4. CHIP variant calls were produced using Mutect2 as previ-
ously described (17). Written informed consent was obtained from 
all human participants by each of the studies that contributed to 
TOPMed with approval of study protocols by ethics committees at 
participating institutions, as described previously (17).

Nonsense Mutation Screen for Clonal Expansion
Clonal hematopoiesis in most studies is defined by the presence of 

a cancer-associated variant in the blood of a person without a known 
hematologic malignancy. We hypothesized that clonal hematopoiesis 
may also arise due to mutations in genes not currently appreciated 
to be cancer drivers. We first focused on nonsense variants in the 
whole exome to test this hypothesis. Nonsense variants were chosen 
because they have a clear functional consequence (truncation of the 
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protein product) and they are less subject to alignment artifacts or 
sequencing errors than frameshifts caused by small insertions/dele-
tions. Nonetheless, it is still challenging to distinguish true somatic 
variants from germline alleles or technical artifacts from data from 
a single tissue source. To do this, we implemented a strict filtering 
approach that incorporated several steps (Supplementary Fig. S1A).

Step 1: Removal of Variants that are OxoG artifacts. Guanine 
bases in DNA may be oxidized to 8-oxoguanine (OxoG) ex vivo, which 
leads to a common artifact in sequencing data (G > T or C > A) that 
can be identified by strand bias. We used the D-ToxoG package (48) 
to eliminate putative OxoG artifacts from the full set of nonsense 
variants using an adjusted P-value cutoff of 0.05.

Step 2: Removal of Genes with Many Variants at Low VaF. Het-
erozygous germline variants should have VAF distribution that cent-
ers around 0.5. However, some genes have a large number of variants 
that are at low VAF. With rare exceptions, these are very likely to 
represent genes with recurrent sequencing artifacts or alignment 
artifacts rather than true driver somatic variants. To eliminate these 
low VAF genes, we first created a file with the full list of variant calls 
output from MuTect (“callstats.txt”), which includes known ger-
mline SNPs, for 2,314 random exomes in the data set. We excluded 
variants that were homozygous for a nonreference allele (VAF >0.8) 
and required three or more alternate reads. We then calculated the 
mean VAF for each unique variant (excluding variants present less 
than five times or with VAF <0.05) in each protein coding gene across 
all 2,314 samples. If a gene had an overall mean VAF for all its vari-
ants of less than 0.4, it was excluded.

Step 3: Removal of Genes with Many Likely Germline Nonsense  
Variants. Genes in which somatic nonsense driver mutations occur 
are not expected to have a large number of germline nonsense vari-
ants also; if the latter is true, it is more likely that loss of function in 
the gene is well tolerated and unlikely to have large fitness effects on 
clones. Thus, these genes are not likely to have true somatic drivers 
and instead are enriched for germline events and artifacts. To elimi-
nate these genes, we defined a variant to be likely germline if the VAF 
was greater than 0.35. We then calculated the proportion of nonsense 
variants that had VAF below or above this cutoff in each gene. We 
excluded all genes where the proportion of nonsense variants with 
VAF >0.35 was more than 40%.

Step 4: Removal of Variants that are Highly Recurrent. True 
somatic truncating variants are less likely to be highly recur-
rent compared with germline variants or artifacts. Therefore, we 
removed all nonsense variants present seven or more times in the 
data set.

Step 5: Removal of Variants that Segregate by ancestry. Unlike 
germline variants, somatic variants should have weak or no asso-
ciation to self-reported ancestry. Within our data set, persons self-
reported as African (15.9%), East Asian (4.7%), European (46.3%), 
Hispanic (12.2%), or South Asian (20.9%) ancestry. A true somatic 
variant would be expected to have a frequency distribution similar to 
the overall composition of the data set. We used chi-square tests to 
calculate whether the actual ancestry distribution for a given variant 
deviated from the expected distribution and excluded variants that 
had an FDR-adjusted P value <0.05.

Step 6: Removal of Variants that Have a VaF that Is Not Significantly 
Different from Germline. True somatic variants are less likely to 
have a VAF of around 0.5, which is what we expect for germline vari-
ants. We calculated a binomial probability of VAF deviating from an 
expected VAF of 0.5 and retained only those variants that had an 
FDR-adjusted P value <0.05.

After these filtering steps, the remaining variants were considered 
to be putatively somatic, and the top 40 genes with the most variants 
are listed in Supplementary Table S2.

Detection of Significantly Mutated Genes Using MutSig
Mutation Calling Workflow. We identified mutations in 49,291 

individuals in the ExAC consortium that had known age annotation 
(7). We called somatic mutations using the Cancer Genome Analysis 
Team mutation calling pipeline in FireHose including OxoG filter-
ing and Panel of Normals filtering with a likelihood cutoff of −5 
to account for the heterogeneity of sequencing cohorts included 
as well as the lack of a matched normal control. We used an earlier 
iteration of this pipeline in which MuTect1 was used for SNV calling, 
and Indelocator was used for calling indels. In addition, given that 
the expected mutation rate of CHIP is 0.2/Mb instead of 1/Mb, we 
adjusted the tumor_lod threshold accordingly such that we accepted 
mutations if their “i_t_lod_fstar” was greater than 8.6 (equation 1; 
ref. 49).
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Given that CHIP can be found in healthy blood, we included 1,493 
individuals younger than 30 years old and who lacked the common 
somatic hotspots DNMT3A R882 and JAK2 V617, as evidence in the lit-
erature suggests these mutations are among the most common drivers 
of CHIP and their recurrence suggests a true somatic event as opposed 
to a common artifact (1). We filtered out indels 10 base pairs (bp) or 
longer given that most of our filtering steps demanded an accurate 
determination of allele fraction and that Indelocator underestimates 
allele fractions by including all split reads. In addition, we filtered out 
indels found in homopolymer runs greater than 6 bp long as well as 
variants that had depth greater than the 99% confidence interval of SNV 
depth. We imposed cutoffs on homopolymer length and read depth 
similar to those imposed by Strelka: filtering out variants in homopoly-
mer runs greater than 6 and those whose depth had a poisson probabil-
ity greater than 0.99 given the median depth of a sample’s SNVs (50).

Although the Panel of Normals was designed to eliminate common 
sequencing artifacts, we noticed common bleed-through artifacts in 
sequencing cohorts that were not well represented in the Panel of Nor-
mals, indicated by a preponderance of low allele fraction mutations 
whose alternate allele was shared with its reference trinucleotide con-
text as a result of adjacent fluorescence. Given that the only mutational 
signature we expect to see in control blood samples is aging signature 
(COSMIC1), we identified the expected 99% quantile of mutation fre-
quencies at each trinucleotide context based on a set of 1,000 individu-
als well represented in the Panel of Normals and showed evidence of 
aging signature (51). For each sample we analyzed, if there were more 
mutations found in a given context than expected by the set of 1,000 
individuals with aging signature and the alternate allele was shared 
with the reference context, we filtered out all mutations found in this 
trinucleotide context for that given sample with a VAF less than 50%.

Given the sequencing heterogeneity, we observed orientation bias 
artifacts that were not filtered out by the Panel of Normals. To 
account for these, we filtered out mutations whose FDR-corrected 
binomial probability of F1R2 alternate allele counts or F2R1 alter-
nate allele counts at 0.96 was greater than 0.99. A corrected binomial 
probability greater than 0.99 suggests that the mutation is more 
consistent with orientation bias artifact than a typical mutational 
process; hence, these mutations were filtered out.

To account for mismapping artifacts, we simulated reads con-
taining the mutation of interest within a sliding window of 75 bp, 
excluding the 10 reads on either end of the sequence. We eliminated 
all mutations whose next best mapping score was within 60 units 
of the maximum 76. In addition, we eliminated variants that over-
lapped with segmental duplications, common germline copy-number  
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gains and losses as per 1000 Genomes, variants excluded in the strict 
mask of 1000 Genomes, variants that were present at greater than 
1% frequency in the ExAC population, and sites that failed Hardy– 
Weinberg equilibrium in 1000 Genomes (2).

Dirichlet Clustering Identifies Clonal Somatic Mutations in Blood 
Samples without Known Hematologic Malignancies. Methods for 
identifying somatic mutations in a tumor without a matched normal 
sample rely on an estimation of the tumor purity: the proportion of a 
sample described by tumor-derived cells (52). We define purity using 
the PhylogicNDT clustering tool on the filtered SNV calls, which 
utilizes Dirichlet clustering to resolve the clonal structure of a sample 
given the VAFs of the sample’s SNVs and the sample’s ploidy, deter-
mined by its absolute somatic copy number. Because we are using 
control blood samples, the somatic copy-number ratio is 1, giving 
us a ploidy of 2; this observation means that the purity is equal to 
two times the VAF at which the largest cluster distinct from germline 
heterozygous mutations is found. We define clusters “distinct from 
germline heterozygous mutations” to be clusters not found within 
5% VAF above or below 50% and it must be less than 50%. To ensure 
that the clusters we identified were representative of clonal processes, 
we stipulated that the largest clone must have at least four muta-
tions, consistent with the definition CHIP samples as whole-exome 
outliers in Zink and colleagues (5). We included indels for only these 
samples. To ensure that these indels were somatic, we stipulated that 
the mutations had to pass a likelihood ratio test scaled by 0.4/θGermline 
in order to account for Indelocator’s counting split reads as part of 
its depth calculation, where θGermline is the allele fraction where the 
sample’s germline heterozygous mutations were found (equation 2).
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Samples Were Selected Based on True-Positive Rate and FDR of Simu-
lated Reads Given Purity, Depth, and the Germline Cluster. To evaluate 
our ability to discover true driver mutations, we simulated 10,000 alter-
nate reads on a range of purities from [0,1] using two binomial distribu-
tions: one whose probability was the VAF corresponding to the somatic 
cluster (S) and a second whose probability was the VAF corresponding 
to the germline heterozygous cluster (G) as calculated by PhylogicNDT 
clustering (equation 3). The number of trials in the binomial distribu-
tion corresponded to the median depth of the sample (equation 3).
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For each simulated read, we calculated the beta likelihood given the 
VAF of the somatic cluster and median depth of coverage to be the 
likelihood of the alternate read count belonging to the somatic cluster 
(equation 4). We performed the same calculation given the VAF of the 
germline cluster and the median depth of coverage and determined the 
log odds ratio between the germline and somatic models (equation 4).
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For the range of calculated log likelihoods, we test each value in steps 
defined by the length of the vector divided by 100 (equation 5). If the 
somatic ratio exceeds the tested likelihood and has greater than three 
simulated alternate counts, the value is a true positive; otherwise, the 
value is considered a false positive (equation 5). If the germline ratio is 
less than the tested ratio or has a simulated alternate read count less 
than or equal to three, the value is a true negative and is otherwise a false 
negative (equation 5). Once we have calculated the true-positive, false-
positive, true-negative, and false-negative counts, we determine the true-
positive rate (TPR) and the FDR for each sample, and exclude those with 
TPR less than 0.9 and FDR greater than 0.1. For our FDR calculation, we 
applied prior probabilities to the false-positive and true-positive counts 
given the expected germline mutation rate (1 × 10−3) and the expected 
somatic mutation rate (1 × 10−6), respectively (equation 5).
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Rare Germline Events Were Removed by Training a Support Vector 
Regression Model to Predict the Expected allele Fraction of Germline 
Mutations at Given Genomic Loci. Although we removed common 
germline mutations in our call set, there were a number of rare 
germline mutations that were reported at low allele fractions due to 
bait bias and mappability issues that could not be readily modeled. 
As a result, we trained a support vector regression model (SVM) 
implemented in scikit-learn using 30,000 mutations rejected by 
MuTect for the following reasons: “germline_risk,” “normal_lod,” 
and “alt_allele_in_normal” and that were present in greater than 1% 
of the ExAC population (53). The SVM regression was used to predict 
the expected germline allele fraction of an SNP at a given genomic 
locus was determined from the allele fractions of the adjacent SNPs, 
distance in genomic space to the nearest SNP, distance to Agilent bait 
boundaries, and whether the site overlaps with a segmental duplica-
tion, copy-number variation (CNV) gain, or CNV loss. We applied 
the model to the test data after k-fold validation, observing a median 
L1SmoothLoss less than 0.002. Once applying the model to test data, 
we then calculated a likelihood ratio of beta distributions comparing 
whether a variant was more consistent with the estimated purity or 
the site-specific germline SNP allele fraction, stipulating that a given 
site’s likelihood ratio should be greater than 0.9 (equation 6).
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Significantly Mutated Genes Were Identified Using MutSig2CV. 
After filtering for common and rare germline mutations, we ran 
MutSig2CV to identify significantly mutated genes. To ensure 
that we were modeling hematopoietic drivers, we ran multiple 
hypothesis correction only using genes that were expressed in  
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HSCs using the single-cell expression from Corces and colleagues, 
selecting only genes whose median expression was greater than 2 
across hematopoietic stem cells (54).

Validation of Novel Drivers of Clonal Hematopoiesis
Four genes overlapped from the list of variants identified from 

the nonsense mutation screen and those identified from MutSig 
(ZBTB33, ZNF318, YLPM1, and SRCAP). Therefore, we focused on 
these four genes for further analyses. We first queried whether 
frameshift and splice mutations could be found in these genes, which 
was true in all cases. For ZBTB33, YLPM1, and SRCAP, we observed 
truncating mutations at nongermline VAFs throughout the open 
reading frame. For ZNF318, mutations after amino acid position 
1531 were found to have high VAFs, suggesting that these were likely 
rare germline mutations with uncertain functional consequence. 
We therefore included only mutations from amino acid position 1 
to 1531 for this gene. We then asked whether there were recurrent 
missense or hotspot mutations in any of these genes. The only gene 
with a nonrandom pattern of putative somatic missense variants 
was ZBTB33, with mutations clustered in several functional domains 
(Fig. 1A). A full list of the putative somatic variants in these genes can 
be found in Supplementary Table S3. A list of variants for all previ-
ously known CHIP genes in the ExAC data set (plotted in Fig.  1B) 
can be found in Supplementary Table S15. Variants in known CHIP 
genes in the TOPMed data set were previously published (17).

To further validate that mutations in the four genes were truly 
somatic, we assessed whether carrying these mutations was associ-
ated with age, as neither germline variants nor technical artifacts 
should have any association with age. After excluding those with >1 
driver mutation, we used age as the dependent variable in a linear 
regression model and mutated CHIP gene as the explanatory variable 
(with no CHIP mutations as the referent group). The results of this 
analysis can be found in Supplementary Table S5.

Finally, we sought replication of these genes as novel drivers of 
clonal hematopoiesis in an independent data set. We used WGS data 
from TOPMed and identified mutations in these four genes using 
the same approach as in the test set (nonsense, frameshift, and splice-
site for all four genes, as well as missense mutations in functional 
domains for ZBTB33). We then used a linear regression model, as 
described above for the test set, to test whether carrying each driver 
gene was associated with age. The results of this analysis can be found 
in Supplementary Table S6.

MDS Patient Data Cohort and Analysis
Mutation status for candidate CHIP genes was acquired for a 

cohort of 1,206 samples from the University of Pavia and Karolinska 
University Hospital, consisting primarily of MDS samples with a 
small number of AML samples included. Mutations were discovered 
by targeted sequencing (covering known MDS driver genes and 
ZBTB33, YLPM1, SRCAP, and ZNF318). ZBTB33 was subsequently 
sequenced in an additional 127 SF3B1 mutant MDS cases.

To determine whether there was an association of ring sideroblasts 
with ZBTB33 and/or SF3B1 mutations, we considered only patients 
with a confirmed diagnosis of MDS (n = 1,056). A total of 150 patients 
with World Health Organization 2016 diagnoses of AML, AML-MRC 
(AML with myelodysplasia-related changes), AML T-33 [AML with 
inv(3)(q21.3q26.2 or t(3;3)(q21.3;q26.2)], NA (no diagnosis recorded), 
or NO-MDS (sample did not support MDS diagnosis) were excluded 
from this analysis. Additionally, we excluded 86 patients for whom 
ring sideroblast status was not reported.

Cell Lines and Plasmids
TF-1 cells were obtained from the ATCC and were cultured in 

RPMI-1640 (Corning), supplemented with 10% heat-inactivated fetal 
bovine serum (Omega Scientific) and 1% penicillin, streptomycin, 

and l-glutamine (Gibco), plus 2 ng/mL recombinant human GM-
CSF (Miltenyi Biotec). Cells were not authenticated or tested for 
Mycoplasma. Cells were used within 6 months of thawing.

The pLKO5.sgRNA.EFS.tRFP (Addgene, Ebert Lab), pLKO5.
sgRNA.SFFV.tRFP (James Kennedy, Ebert Lab), and pLKO5.sgRNA.
SFFV.tBFP (James Kennedy, Ebert Lab) vectors were used for CRISPR/
Cas9 experiments, and guide RNAs (sgRNAs) were cloned into the 
vectors using a BsmBI restriction site. sgRNA sequences are listed in 
Supplementary Table S16.

A human ZBTB33 cDNA was obtained from the Harvard Medical 
School PlasmID Repository and cloned into the plx307 backbone 
(Addgene) by Gateway cloning (Life Technologies), followed by site-
directed mutagenesis to replace one amino acid residue that dif-
fered from the ZBTB33 reference sequence. Site-directed mutagenesis 
was also performed to generate the ZBTB33 point mutants R26C, 
G438D, and C552R (QuickChange II XL, Agilent). These point muta-
tions were chosen as they correspond to the most common missense 
mutations observed in the BTB, SIM2, and ZF domains in the clonal 
hematopoiesis exome sequencing data. TF-1s were lentivirally trans-
duced with WT and mutant ZBTB33 plx307 plasmids and selected 
using 2 μg/mL puromycin (Gibco).

Mouse Transplant Experiments and Analysis
Experiments were executed in compliance with institutional guide-

lines and were approved by institutional review boards at Boston 
Children’s Hospital (Protocol Number: 16-04-3156R) and Brigham 
and Women’s Hospital (Protocol Number: 2017N000060). Male 
donor mice, ages 6 to 10 weeks (Cas9 Mx1Cre1+; ref. 28), were treated 
with 3 doses of 200 mg poly(I:C) HMW (high molecular weight; 
Invivogen). Two to four weeks following poly(I:C) injection, BM was 
harvested from long bones and spine. C-kit+ cells were isolated using 
magnetic beads (Miltenyi Biotec), stimulated overnight with recom-
binant mouse SCF and TPO (PeproTech), and lentivirally transduced 
the following day with plasmids containing the sgRNA of interest. 
For competitive transplants, bulk cell populations transduced with 
Zbtb33 sgRNA (targeting sequence corresponding to the human 
ZBTB33 SA1 domain) or control Gapdh sgRNA (targeting noncoding 
sequence within an intron of Gapdh; Supplementary Table S16) were 
mixed 1:1. At least 350,000 c-kit+ cells were transplanted by retro-
orbital injection into lethally irradiated (2 × 4.5 Gy) CD45.1+ recipient 
mice. PB was obtained from the recipient mice every 4 to 6 weeks 
following transplant, red blood cell lysis was performed twice (RBC 
lysis solution, Qiagen), and editing was assessed by flow cytometry for 
RFP and BFP or sequencing to detect indels near the CRISPR cut sites 
as described below. Mice with low engraftment of donor cells (<30% 
CD45.2+ cells measured by FACS) were excluded from analysis. Some 
animals died or became moribund and were euthanized before the con-
clusion of the experiment, and later time points were analyzed using 
only remaining live mice. Mice were sacrificed between 30 and 45 weeks 
after transplant, and BM and spleens were harvested. For the RNA-seq 
experiment, transplants were performed as described above but using 
sorted LSK cells (30,000 cells per recipient) as the donor population.

To evaluate expansion over time, we performed linear regres-
sion analyses in GraphPad Prism and tested whether slopes were 
significantly nonzero. For noncompetitive transplants (Fig.  3B), we 
performed separate analyses for each group of mice. For competitive 
transplants (Fig. 3D and E), we calculated the ratio of % RFP+/% BFP+ 
cells for each mouse at each time point and performed linear regres-
sion analysis on the ratios.

Confirmation of CRISPR/Cas9 Editing by  
Next-Generation Sequencing

Assessment of editing was performed by extracting genomic DNA 
(DNA blood mini kit, Qiagen) and PCR amplifying 150 to 400 bp 
of genomic sequence spanning the predicted Cas9 cut site, followed 
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by deep sequencing performed by the Massachusetts General Hos-
pital CCIB DNA Core Facility (Cambridge, MA). PCR primers are 
listed in Supplementary Table S16. The percentage of reads with 
indels was calculated using the CRISPR workflow on Basepair (www. 
basepairtech.com).

Flow Cytometry
Flow cytometry was performed using a FACSCanto II (BD Bio-

sciences) and analyzed using FlowJo. FACS sorting was performed 
using a FACSAria II (BD Biosciences).

Mouse PB cells were stained with antibodies against CD45.1 
(PerCP/Cy5.5, A20, BioLegend), CD45.2 (APC/Cy7, 104, BioLegend), 
Ly-6G (APC, 1A8, eBioscience), and CD11b (PE/Cy7, M1/70, Bio-
Legend). RFP and BFP expression were also measured to assess the 
percentage of cells expressing sgRNAs.

For the noncompetitive transplant, BM cells harvested at the end 
of the experiment were FACS sorted to isolate the CD45.2+ LSK 
population. C-kit+ cells were first isolated using magnetic beads 
(Miltenyi Biotec) and then were stained using antibodies against 
Ly-6A/E (Sca-1; PE/Cy7, D7, BioLegend), CD45.1 (APC, A20, 
BioLegend), CD45.2 (APC/Cy7, 104, BioLegend), CD3 (PerCP-
eFluor710, 17A2, eBioscience), B220 (PerCP-eFluor 710, RA3-6B2, 
eBioscience), CD11b (PerCP-Cy5.5, M1/70, eBioscience), Ly-6G 
(PerCP-eFluor 710, 1A8, eBioscience), and TER-119 (PerCP-Cy5.5, 
TER-119, eBioscience). DAPI (Roche Diagnostics) was used for a 
live/dead stain.

For the RNA-seq experiment, LSKs were sorted from donor 
mouse BM by first isolating c-kit+ cells and then staining cells with 
antibodies against Ly-6A/E (Sca-1; PE/Cy7, D7, BioLegend), CD117 
(c-Kit; APC, 2B8, BioLegend), CD3 (Pacific Blue, 17A2, BioLegend), 
B220 (Pacific Blue, RA3-6B2, BioLegend), CD11b (Pacific Blue, 
M1/70, BioLegend), Ly-6G (Pacific Blue, RB6-8C5, Bio Legend), 
and TER-119 (Pacific Blue, TER-119, BioLegend). The PE+ popu-
lation was used to gate out autofluorescent dead cells. Follow-
ing transplant, BM was harvested, and c-kit+ cells were enriched. 
CD45.2+ RFP+ and CD45.2+ RFP− LSKs were sorted after staining 
cells with antibodies against Ly-6A/E (Sca-1; PE/Cy7, D7, Bio-
Legend), CD117 (c-Kit; APC, 2B8, BioLegend), CD45.1 (PerCP/
Cy5.5, A20, BioLegend), CD45.2 (APC/Cy7, 104, BioLegend), CD3 
(PerCP-eFluor710, 17A2, eBioscience), B220 (PerCP-eFluor 710, 
RA3-6B2, eBioscience), CD11b (PerCP-Cy5.5, M1/70, eBioscience), 
Ly-6G (PerCP-eFluor 710, 1A8, eBioscience), and TER-119 (PerCP-
Cy5.5, TER-119, eBioscience).

IP/MS Experiments
TF-1 parental and overexpression cell lines were harvested in 

RIPA lysis buffer (Sigma-Aldrich) supplemented with Halt protease 
inhibitor cocktail (Life Technologies), and protein concentration 
was quantified by BCA assay (Pierce). Protein lysate (10 mg) was 
incubated overnight with V5-tag magnetic beads (MBL #167-11), fol-
lowed by four washes in lysis buffer (150 mmol/L NaCl, 50 mmol/L 
Tris pH 7.5), supplemented with Halt protease inhibitor cocktail (Life 
Technologies), using a magnetic rack.

On-Bead Protein Digestion. The beads from immunopurifica-
tion were washed once with IP lysis buffer and then three times 
with PBS. Two different lysates of each replicate were resuspended 
in 90 μL digestion buffer (2M Urea, 50 mmol/L Tris-HCl), 2 μg 
of sequencing grade trypsin was added, and then the lysates were 
shaken for 1 hour at 800 rpm. The supernatant was removed and 
placed in a fresh tube. The beads were washed twice with 50 μL diges-
tion buffer and combined with the supernatant. The supernatants 
were reduced (2 μL 500 mmol/L DTT, 30 minutes, RT), alkylated  
(4 μL 500 mmol/L IAA, 45 minutes, dark), and a longer overnight diges-
tion was performed: 2 μg (4 μL) trypsin, shake overnight. The samples 

were then quenched with 20 μL 10% formic acid and desalted on  
1 cc 10 mg Oasis HLB cartridges.

Labeling with Tandem Mass Tag Isobaric Mass Tags and Basic 
Reverse Phase Fractionation. Desalted peptides were labeled with 
TMT10 reagents (Thermo Fisher Scientific, lot # QL228730A) accord-
ing to the manufacturer’s instructions. Peptides were resuspended in 
25 μL of fresh 100 mmol/L HEPES buffer. The labeling reagent was 
resuspended in 42 μL of acetonitrile and 10 μL added to each sam-
ple (126: untransduced replicate 1, 127N: untransduced replicate  
2, 127C: WT replicate 1, 128N: WT replicate 2, 128C: C552R replicate 
1, 129N: C552R replicate 2, 129C: G438D replicate 1, 130N: G438D 
replicate 2, 130C: R26C replicate 1, and 131: R26C replicate 2).

After 1-hour incubation, the reaction was quenched with 8 μL of 
5% hydroxylamine. Differentially labeled peptides were subsequently 
mixed and prepared for basic reverse phase fractionation on 10 mg 
SepPak columns according to the following protocol: Cartridges 
were prepared for desalting by equilibrating with methanol, then 50% 
acetonitrile (ACN), 1% formic acid, and three washes with 0.1% TFA. 
Samples were loaded on to the cartridge and washed three times with  
1% formic acid. A pH switch was performed with 5 mmol/L ammo-
nium formate at pH 10, collected, and saved. Subsequent frac-
tions were collected at the following ACN concentrations: 10% ACN  
in 5 mmol/L ammonium formate; 15% ACN in 5 mmol/L ammonium 
formate; 20% ACN in 5 mmol/L ammonium formate; 30% ACN in  
5 mmol/L ammonium formate; 40% ACN in 5 mmol/L ammonium 
formate; and 50% ACN in 5 mmol/L ammonium formate.

Protein Identification with Nanolc–MS System. Reconstituted 
peptides were separated on an online nanoflow EASY-nLC 1000 
UHPLC system (Thermo Fisher Scientific) and analyzed on a bench-
top Orbitrap Q Exactive plus mass spectrometer (Thermo Fisher 
Scientific). The peptide samples were injected onto a capillary 
column (Picofrit with 10-μm tip opening/75 μm diameter, New 
Objective, PF360-75-10-N-5) packed in-house with 20-cm C18 sil-
ica material (1.9-μm ReproSil-Pur C18-AQ medium, Dr. Maisch 
GmbH, r119.aq). The UHPLC setup was connected with a custom-
fit microadapting tee (360 μm, IDEX Health and Science, UH-753), 
and capillary columns were heated to 50°C in column heater sleeves 
(Phoenix-ST) to reduce backpressure during UHPLC separation. 
Injected peptides were separated at a flow rate of 200 nL/min with 
a linear 50-minute gradient from 100% solvent A (3% acetonitrile, 
0.1% formic acid) to 30% solvent B (90% acetonitrile, 0.1% formic  
acid), followed by a linear 9-minute gradient from 30% solvent B 
to 60% solvent B and a 1-minute ramp to 90% solvent B. The Q 
Exactive instrument was operated in the data-dependent mode 
acquiring HCD MS/MS scans (R = 17,500) after each MS1 scan  
(R = 70,000) on the 12 top most abundant ions using an MS1 
ion target of 3 × 106 ions and an MS2 target of 5 × 104 ions. The 
maximum ion time utilized for the MS/MS scans was 120 ms; the 
HCD-normalized collision energy was set to 31; the dynamic exclu-
sion time was set to 20 seconds; and the peptide match and isotope 
exclusion functions were enabled.

Database Search and Data Processing. All mass spectra were pro-
cessed using the Spectrum Mill software package v7.0 prerelease 
(Broad Institute, https://proteomics.broadinstitute.org/), which 
includes modules for tandem mass tag (TMT)–based quantification. 
For peptide identification, MS/MS spectra were searched against 
human Uniprot database, to which a set of common laboratory 
contaminant proteins and V5-tagged ZBTB33 WT and mutants was 
appended. Search parameters included ESI-QEXACTIVE-HCD scor-
ing parameters, trypsin enzyme specificity with a maximum of two 
missed cleavages, 40% minimum matched peak intensity, ± 20 ppm 
precursor mass tolerance, ± 20 ppm product mass tolerance, carba-
midomethylation of cysteines, and TMT6-Full labeling of lysines and 
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peptide N-termini as fixed modifications. Allowed variable modifica-
tions were oxidation of methionine (M), acetyl (ProtN-term), and 
deamidated (N), with a precursor MH+ shift range of −18 to 64 
Da. Identities interpreted for individual spectra were automatically 
designated as valid by optimizing score and delta rank1–rank2 score 
thresholds separately for each precursor charge state in each LC-MS/
MS while allowing a maximum target-decoy–based FDR of 1.0% at 
the peptide spectrum match (PSM) level.

TMT10 ratios were obtained from the protein-comparisons export 
table in Spectrum Mill. Rather than use a physical common control, 
that is, one TMT channel containing a physical mixture of all the 
samples, we created a virtual one during data analysis. Each PSM-
level TMT ratio was calculated with a single reporter ion intensity in 
the numerator, whereas the denominator was the median intensity of 
all 10 reporter ions. This was done in Spectrum Mill with the control 
ion set to MedianMulti and all 10 reporter ions selected. To obtain 
TMT10 protein-level ratios, Spectrum Mill calculated the median 
over all PSMs assigned to a protein subgroup in each replicate. PSMs 
with a precursor isolation purity <50% were excluded from protein-
level calculations. Before calculating ratios, Spectrum Mill corrected 
the reporter ion intensities for isotopic impurities using its afRICA 
correction method, which implements determinant calculations 
according to Cramer’s rule and correction factors obtained from the 
TMT reagent manufacturer’s certificate of analysis. IP/MS data are 
available in Supplementary Table S17.

Mitochondrial Fractionation
Fractionation was performed using the Mitochondria Isolation Kit 

for Cultured Cells (Thermo Scientific). Cytoplasm and mitochon-
drial pellets were boiled with SDS loading buffer, followed by West-
ern blotting. Western blots were also probed with an antibody against 
the mitochondrial-specific protein AIF (Cell Signaling Technologies) 
to assess efficiency of fractionation.

Western Blots
Protein lysates were run on Criterion Tris-HCl 4% to 15% gels 

(Bio-Rad) or Nupage 4% to 12% Bis Tris gels (Life Technologies) 
at constant voltage and transferred either to Immobilon-P trans-
fer membranes (Millipore) or to Trans-Blot Turbo PVDF transfer 
membranes (Bio-Rad) at constant amperage. Blots were blocked in 
5% Blotto nonfat dry milk (Santa-Cruz) dissolved in Tris-buffered 
saline with 1% Tween 20. Primary antibodies against ZBTB33 (Bethyl 
#A303-558A, Santa-Cruz #98589, Sigma #HPA005732), V5 (MBL), 
AIF (Cell Signaling Technologies), actin (Abcam), HSPA8 (Abcam), 
SRSF5 (MBL), SRSF 9 (MBL), POLR2E (Abcam), HNRNPDL  
(Sigma), and PPIL1 (Abcam) were used. Secondary antibodies used 
were horseradish peroxidase–linked goat anti-mouse and goat anti-
rabbit (Prometheus Protein Biology Products). SuperSignal Chemi-
luminescent Substrate (Thermo Fisher) and a ChemiDoc (Bio-Rad) 
were used for protein detection.

RNA-seq Experiments and Data Analysis
RNa-seq of Mouse LSK Cells. RNA was isolated using the RNeasy 

mini kit (Qiagen). Library preparation and sequencing were per-
formed by Novogene, using the SMARTseq v4 (Takara) + Nextera XT 
kit (Illumina). We used poly(A) selection and unstranded libraries.  
More than 50 million paired-end read pairs (2 × 150 bp) were 
obtained per sample.

alternative Splicing analysis of Mouse LSK Cells. RNA-seq reads 
were aligned to a gene annotation for the human genome assembly 
hg19/GRCh37. This annotation was composed of a merge of the 
Ensembl v.71.1 gene annotation (55), the UCSC knownGene gene 
annotation (56), and the MISO v.2.0 isoform annotation (57). Read 
alignment was performed using RSEM v.1.2.4 (58), Bowtie v.1.0.0 

(59), and TopHat v.2.1.14 (60) as previously described (61). Isoform 
ratios for annotated alternative splicing events were estimated with 
MISO v.2.0 (57); isoform ratios for changes in constitutive intron 
splicing were estimated with junction-spanning reads as previously 
described (61). Gene-expression estimates produced by RSEM were 
normalized using the TMM method (62), with all coding genes used 
as a reference set.

Significantly differentially spliced isoforms were identified by com-
paring isoform ratios between groups with a two-sided paired t test. 
Splicing events were classified as differentially spliced if at least one 
isoform had a difference between sample groups of ≥10% (absolute, 
not relative, scale) or a fold change ≥2 with at least 20 informative 
(distinguishing between isoforms) reads and P ≤ 0.05.

GO enrichment analysis was performed on the list of genes with 
retained constitutive intron events that had an increased rate of 
retention in the RFP+ versus RFP− cells of at least 5%, were statistically 
significant with P ≤ 0.05, and had at least 20 informative reads each. 
The analysis was restricted to “biological process” GO terms.

RNA-seq analysis figures were plotted using the ggplot2 package 
in R (63).

We determined the enrichment of three previously described motifs 
for ZBTB33—the minimal core sequence CTGCNA from Daniel and 
colleagues (2002) and the full DNA-binding site TCTCGCGAGA and 
core sequence CGCG from Raghav and colleagues (2012)—across the 
regions flanking the 5′ and 3′ splice sites of constitutive exons. Only 
U2 introns were included as there was not a sufficient number of 
U12 introns retained. The enrichment was calculated by dividing the 
motif coverage in the target sequences plus a pseudocount (25% of 
the expected coverage assuming equal nucleotide frequencies) by the 
coverage in the background sequences plus the same pseudocount 
(Supplementary Fig. S10A).

We also performed ab initio motif enrichment to look for motifs of 
length 4, 5, or 6 nucleotides in three regions of the retained introns: 
5′ splice-site adjacent [+1, +100], 3′ splice-site adjacent [−100, −1], 
and the full intron [+1, −1]. The enrichment was calculated similarly, 
except a per-locus pseudocount of 10% of the expected observations 
of each k-mer was used (Supplementary Fig. S10B).

Differential Gene-Expression analysis of Mouse LSK Cells. Paired 
FASTQ files were uploaded to the Broad Institute Google Bucket 
(FireCloud by Terra), and in FireCloud, publicly available work-
flows from the Broad Methods Repository were utilized. Specifically, 
reads from FASTQ files were aligned to a reference genome (mouse 
mm10_M17) using the STAR aligner (v2.6.1c) workflow. Following 
the alignment, duplicates were marked using the Mark Duplicates 
workflow. Finally, the reads aligned to the genome were quantified 
to generate counts for each gene using the RNASEQC2 quantifica-
tion workflow (mouse gencode.vM17.GRCm38p6). Read alignments 
for specific samples were visualized by Integrative Genomics Viewer 
(IGV; Version 2.5.3).

Gene-level differential expression analyses were performed using 
R software (Version 3.6.1), R Studio (Version 1.1.463), and DESeq2 
(Version 1.24.0). For the mouse LSK experiment, a paired analysis was 
performed. Prefiltering removed genes with average counts below 10 
counts across samples. Shrinkage of log2 fold change (LFC) estimates 
was performed to account for genes that had low counts and high 
dispersion across samples. A fold-change threshold was not used. 
Genes with P-adjusted values below 0.05 were considered signifi-
cantly differentially expressed (Supplementary Table S18).

Gene Set Enrichment analysis. Functional analysis was performed 
using LFC results obtained from the differential expression analy-
sis and R software (Version 3.6.1), R Studio (Version 1.1.463). The 
genome build used for the differential expression analysis was mouse 
gencode.vM17.GRCm38p6.genes.gtf. AnnotationDbi (Version 1.46.1) 
and genome-wide annotations (Release 3.10: mouse org.Mm.eg.db) 
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were used to map Entrez Gene Identifiers to genes. Enrichment 
of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways 
(mouse mmu; https://www.genome.jp/kegg/catalog/org_list.html) 
was tested with 1,000 permutations (default) and P value cutoff set 
at 0.2 (Supplementary Table S19).

alternative Splicing analysis of MDS Patient Samples. We explored 
alternative splicing events in a previously published MDS cohort from 
IRCCS Ospedale San Matteo, Pavia, Italy (64), and these investigations 
were approved by the Ethics Committee of the Fondazione IRCCS Pro-
clinico San Matteo, Pavia, and conducted in accordance with ethical 
guidelines. Written informed consent was obtained from all patients. 
We identified three patients with concomitant ZBTB33 and SF3B1 
mutation, four with single-hit SF3B1 mutation, and three healthy nor-
mal controls. BM CD34+ cells were obtained at the time of diagnosis.

RNA-seq libraries were prepared using the TruSeq RNA library 
Illumina kit according to the manufacturer’s recommendations. 
Libraries were sequenced using the HiSeq 2500 platform with 100-bp  
paired-end read protocol. Quality control was performed on raw 
RNA-seq data using MultiQC and nf-core RNA-seq pipeline outputs 
(65, 66). Samples were aligned to the GRCh37 reference genome.

Five types of splicing events were analyzed, namely, IR, alternative 
3′ splice site (A3′SS), alternative 5′ splice site (A5′SS), exon skipping 
(SE), and mutually exclusive exons (MXE). These splicing event sub-
types were quantified using PSI (Percent Spliced In) values in each 
sample according to Mixture of Isoforms Tools (57).

Differentially spliced events were identified using rMATS tool  
(v 4.1.1). More specifically, three pairwise comparisons between 
SF3B1-single–driven MDS, SF3B1/ZBTB33-comutated MDS, and 
healthy normal controls were performed using paired-end mode (67). 
The differentially spliced events for each comparison were filtered 
with FDR <0.05.

Data Availability
Mouse RNa-seq. RNA-seq data have been deposited in the 

NCBI Sequence Read Archive with accession code “PRJNA681911”  
(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA681911/).

Proteomics. The original mass spectra and the protein sequence 
database used for searches have been deposited in the public pro-
teomics repository MassIVE (http://massive.ucsd.edu/ProteoSAFe/
static/massive.jsp) and are accessible at ftp://massive.ucsd.edu/
MSV000087304/.
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