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INTRODUCTION

Allogeneic hematopoietic cell transplantation (HCT) is
the only curative therapy for many patients with high-
risk acute myeloid leukemia (AML) and myelodys-
plastic syndrome (MDS). While the risk of transplant-
related mortality has decreased over the past 40 years,
disease relapse remains one of the most significant
adverse events following HCT, with up to 50% of
patients with AML relapsing after HCT.1 Outcomes for
patients who relapse after HCT are poor.1-3 The
therapeutic benefit of HCT is believed to reside in part
through an immune-mediated graft versus malignancy
(GVM),4 and over the years, many attempts to improve
outcomes have focused on investigating and exploiting
this phenomenon. In this review, we will first review the
biology of relapse after HCT, with a focus on recent
discoveries. In the second part, we will evaluate
strategies to prevent and treat relapsed disease post-
HCT, highlighting novel molecularly targeted and
immunologic treatments.

THE BIOLOGY OF RELAPSE AFTER ALLOGENEIC HCT

Leukemia Burden Pre-HCT

It has been long appreciated that the presence of
active AML at the time of transplantation is associated
with a higher risk of relapse. More recently, it has
been reported that even low levels of minimal residual
disease (MRD) at the time of transplantation lead to
worse outcomes.5 Whether additional chemotherapy
to eradicate MRD before HCT mitigates this risk has
never been directly tested, but several lines of evi-
dence suggest that aggressive chemotherapy before
HCT may be of benefit. First, in CTN 0901, patients
receiving myeloablative conditioning regimens had a
lower relapse rate than patients who received
reduced-intensity conditioning.6 Second, patients
with high-risk or secondary AML who received in-
duction and consolidation with (CPX-351) not only
had better postinduction disease control than pa-
tients who received 7 1 3, but this translated to a
lower post-HCT relapse rate as well.7 It is likely,
therefore, that deeper remissions before HCT will lead
to lower relapse risk as has been seen, for example, in
multiple myeloma.

Given these findings, accurate MRD monitoring before
and after HCT is crucial. Molecular MRDmonitoring for
mutated genes, fusion genes, and/or overexpressed
genes can be performed via multicolor flow cytometry,
quantitative reverse transcriptase polymerase chain
reaction (PCR), digital droplet PCR, or next-generation
sequencing (NGS).8 Given its improved sensitivity, re-
duced cost and turnaround time, ability to trackmultiple
molecular markers and clonal hierarchy at once and
guide molecularly directed therapies (ie, FLT3 inhibitor
or isocitrate dehydrogenase [IDH] inhibitors), and utility
in predicting clinical outcome in HCT, error-corrected
NGS is becoming feasible for routine clinical MRD
estimations before and after HCT.9

Disease Characteristics

Several cytogenetic abnormalities and gene mutations
are predictive of relapse in patients with AML andMDS
undergoing HCT. Poor-risk cytogenetics associated
with a significantly increased incidence of AML relapse
after HCT includes patients with monosomal or
complex karyotypes as well as inv(3)(q21q26)/t(3;
3)(q21;q26), del(5q), t(10;11)(p11-14;q13-23), t(6;
11)(q27;q23), and abnormalities in chromosome
17p.10,11 In MDS, abnormalities of chromosome 3 [ie,
inv(3), t(3q)] or chromosome 7 [-7, del(7q)], either
alone or as part of a complex karyotype, result in in-
ferior leukemia-free survival after HCT.12 At the gene
level, AML patients with TP53 and FLT3-ITDmutations
exhibit inferior outcomes with a higher risk of
relapse.10,13-15 Likewise, mutations in TP53 as well as
TET2, ASXL1, RUNX1, and RAS are independently
associated with an increased risk of relapse after HCT
for MDS.16-19

The biological mechanisms mediating the increased
risk of relapse after HCT in patients with AML andMDS
with the cytogenetic and molecular disease states
discussed above remain poorly characterized. In ad-
dition to its role as a tumor suppressor, TP53 regulates
several innate and adaptive immune responses in-
cluding antigen processing and presentation, cytokine
production, type 1 interferon signaling, and expression
of immune inhibitory receptors.20 Recently, the ex-
amination of bone marrow samples obtained from
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patients with MDS or AML with TP53 mutations demon-
strated higher CD81 T cell, ICOShigh/PD-1neg regulatory
T cell (Treg), and natural killer (NK) cell infiltration, with
increased expression of immune checkpoints (PD-L1,
TIGIT, and LAG3) and interferon-gamma (IFNg) signaling
compared with other AML subtypes.21-24

Downregulation of Tumor Cell HLA Expression

First reported in 2009, loss of mismatched HLA loci in AML
cells is associated with relapse in haploidentical HCT
(haplo-HCT) through impairment of donor T cell recogni-
tion.25 This loss, observed in roughly one third of relapses
after haplo-HCT, is copy number neutral, representing a
form of acquired somatic uniparental disomy (ie, loss of a
chromosomal region followed by replacement with its ho-
mologous copy). Overall, the expression level of HLA
molecules is unchanged, including major histocompati-
bility complex (MHC) class I, which may limit the activation
of antitumor NK cells.26 Loss of mismatched HLA is ob-
served in about one third of haploidentical transplants and
more frequently occurs in patients with active disease at the
time of transplant, increased donor T cell dose, and longer
time to relapse, and in patients with chronic graft-versus-
host disease (cGVHD), all factors that may lead to increased
GVM and therefore selective pressure against mismatched
HLA genes.27-29 Genetic loss of mismatched HLA alleles
has also been observed (albeit less frequently) in mis-
matched unrelated donor HCT,30-32 matched unrelated
donor HCT,31-33 and mismatched related donor HCT.34

In addition to loss of HLA genes, a wide variety of genetic
changes occur in AML cells from patients who relapse after
HCT. It has long been observed that chromosomal and
other structural abnormalities disappear and emerge at
relapse after HCT, reflecting evolution of the malignant
clone.32,35-39 More recently, panel sequencing of myeloid

malignancy–associated genes has also demonstrated gain
and loss of driver mutations in MDS and AML cells after
HCT.14,40-44 These changes resemble the spectrum of
mutations seen after chemotherapy and, unlike the loss of
HLA genes described above, are not specific for post-HCT
relapse.40,45-49 Somewhat surprisingly, given the role of
alloimmunity in preventing relapse, mutations in genes that
govern the immune response are not commonly seen in
AML relapse after HCT.31,40

At the level of gene expression, however, two groups have
recently reported significant dysregulation of immune
genes in AML cells at relapse after HCT.40,50 These studies
compared matched diagnosis and post-HCT relapse pa-
tient samples and found downregulated surface and RNA
expression of MHC class II molecules and associated genes
in 30%-50% of samples.40,50 A higher dose of infused
donor T cells correlated with a higher likelihood of HLA
class II downregulation, and in both studies AML blasts with
a low MHC class II expression failed to stimulate HLA-
mismatched T cells in vitro, suggesting that downregulation
of MHC class II genes contributes to the ability of AML cells
to evade immune effectors in relapse after HCT. As ob-
served in previous models of HCT, IFNg restored HLA
class II expression, raising the possibility that IFNg treat-
ment could resensitize AML cells to donor immune cell
killing.40,50,51 These results are consistent with those of
smaller previous reports of MHC loss at relapse.34,52

Inhibitory Immune Checkpoint Molecule Modulation

In addition to alterations in HLA expression on tumor cells,
modulation of immune checkpoint molecules on both tu-
mor cells and T cells has been described as another im-
portant mechanism of relapse post-HCT. Several groups
have reported upregulation of immune-inhibitory genes
such as PD-L1 (CD274), B7-H3 (CD276), and PVRL2
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(CD155) on AML blasts relapsing after HCT compared with
diagnosis.50,53 Expression of immune-inhibitory genes on
AML cells is associated with the upregulation of exhaustion
markers on T cells after HCT, including PD-1, TIM-3, TIGIT,
and KLRG-1.50,53-57 Noviello et al58 found increased evi-
dence of T cell exhaustion in memory stem and central
memory T cells from the bone marrow of patients who re-
lapsed compared with controls, and these exhausted bone
marrow–infiltrating T cells at relapse expressed a restricted
T cell receptor (TCR) repertoire and impaired effector
functions. The upregulation of inhibitory immune checkpoint
markers has led to several therapeutic trials of immune
checkpoint blockade to treat AML relapse after HCT, as
described below.

PREVENTION AND TREATMENT OF RELAPSE POST-HCT

Established Strategies for Enhancing Donor

Immunity Post-HCT

One of the simplest methods of enhancing donor immunity
and treating relapse after HCT is early withdrawal of im-
munosuppression, which can restore donor hematopoiesis
and transient remissions in some patients with frank re-
lapse after HCT.59-61 This strategy may be most effective in
the setting of incomplete donor chimerism61 or as a strategy
to prevent relapse after HCT for high-risk disease.62,63

Conversely, the use of in vivo T cell depletion with antith-
ymocyte globulin or alemtuzumab for graft-versus-host
disease (GVHD) prophylaxis is associated with increased
relapse risk in some studies, although not all.64-66 Similarly,
administration of fresh immune effector cells as a
donor lymphocyte infusion (DLI) can be given to prevent
relapse in high-risk patients (prophylactic or preventive DLI)
or to treat overt hematologic relapse. In the prophylactic/
preventative setting, DLI is associated with overall survival
(OS) rates of 40%-70% with GVHD rates of 15%-60%,
which compare favorably to expected outcomes in trans-
plant of high-risk AML.67-69 For patients with evidence of
MRD after transplant, DLI can reduce the incidence of
relapse, with OS rates of approximately 60% and grade II-IV
acute GVHD (aGVHD) rates of 21%-28%.70,71 In contrast,
when used to treat overt relapse after HCT, DLI (usually
administered with chemotherapy) is associated with worse
outcomes, with OS rates at 2 years of approximately
20% and grade II-IV aGVHD rates of 22%-43% in large,
registry-based retrospective analyses.72-74 In these studies,
response to DLI with or without chemotherapy was best in
patients with late relapses, suggesting that patients with
longer remissions may be more likely to benefit from graft
versus leukemia (GVL). Conversely, patients with relapse
, 6 months after HCT have particularly poor outcomes,
with long-term OS of 5%-10%. Taken together, these ob-
servations suggest that DLI may be most effective when
tumor burden is low and that in the setting of overt relapse
DLI is of limited benefit.

Second HCT represents another option for some patients
with MDS/AML relapse after an initial HCT. Registry studies
suggest OS rates of 17%-49% and grade II-IV aGVHD rates
of 26%-53% with this approach.72,75,76 Use of myeloa-
blative conditioning regimens is associated with high rates
of nonrelapse mortality (NRM), ranging from 30% to
50%.76-78 Although the use of a different donor may en-
hance the GVM effect by providing immune effector cells
with more favorable alloreactivity, several retrospective
studies have reported similar outcomes between a second
HCT from the same and a different donor.75,79,80 A 2018
European Society of Blood and Marrow Transplantation
registry study comparing second HCT versus DLI for re-
lapsed AML showed similar OS rates (15% for DLI v 19% for
HCT). Although NRM (27% v 10%) and grade II-IV aGVHD
rates (37% v 20%) were higher for the group receiving HCT,
these differences were not seen when the analysis was
restricted to patients receiving therapy in CR.75 In sum-
mary, while a subset of patients have some benefit from DLI
or second transplant, new treatment approaches are ur-
gently needed for AML relapse after HCT.

Checkpoint Inhibitors

Given the efficacy of checkpoint inhibitors in solid tumor
oncology and the evidence of T cell exhaustion in AML
relapse after HCT, there has been considerable interest in
the use of checkpoint blockade in the post-HCT setting.
Early phase trials showed promising results with ipilimumab
in patients with both lymphoid and myeloid malignancies
relapsing after HCT.81-83 In contrast, early trials of the PD-1
blocker nivolumab suggested a significantly increased risk
of toxicities including severe GVHD in HCT patients.84-87

Further study will be required to determine if the choice of
checkpoint blockade agent or use of lower doses might
reduce the toxicity seen so far with these drugs, but at this
time concerns for toxicity have limited their widespread use
after HCT.88

Hypomethylating Agents

Based on preclinical studies suggesting their ability to mit-
igate GVHD and enhance the GVM effect, hypomethylating
agents (HMAs) have been studied intensely in the post-HCT
setting over the past 10-15 years.89-92 Several small phase I/II
studies have shown that HMAs may prevent relapse in
patients with high-risk or MRD-positive MDS and AML
post-HCT, with relapse rates ranging from 17% to 65%,
relapse-free survival (RFS) rates of 46%-63%, and OS rates
of 49%-77%.90,93-97 Neutropenia and thrombocytopenia are
common significant toxicities of HMA maintenance. While
promising, these results await confirmation in larger, ran-
domized trials. A number of trials have also evaluated the use
of azacitidine in overtly relapsed disease.99-103 Complete
response (CR) rates in these studies range from 13% to 23%
with a few long-term responses, although many of the pa-
tients received concurrent DLI. Thus, it appears that HMA
treatment has a limited ability to enhance antitumor immune
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cell activity in patients with active disease after HCT andmay
be considered as maintenance therapy after HCT.

Histone Deacetylase Inhibitors

Histone deacetylase (HDAC) may promote GVM activity
while reducing GVHD after HCT in the following ways: (1)
increasing the expression of tumor antigens, MHC class I
and II, and costimulatory molecules on malignant cells; (2)
reducing the secretion of proinflammatory cytokines; (3)
promoting the recovery of the intestinal barrier function after
conditioning; and (4) expanding CD41 Tregs.104 HDAC
inhibitor monotherapy and combination therapy have shown
limited efficacy against R/R AML.105-107 However, mainte-
nance therapy with the pan-HDAC inhibitor panobinostat
alone or in combination with a DLI after HCT for AML or MDS
yielded an encouraging 2-year OS and RFS of 81% and
75%, respectively.108 A randomized phase III trial to assess
the efficacy of panobinostat maintenance therapy after HCT
is ongoing (ClinicalTrials.gov identifier: NCT04326764).

Lenalidomide

Trials evaluating maintenance therapy with lenalidomide
early (within 3 months) after T cell–replete HCT were
unsuccessful due to the high rate of aGVHD.109,110 More
recently, combination therapy with azacitidine and lena-
lidomide in patients with AML or MDS who had relapsed
after HCT yielded a CR rate of 40% (6/15; CR, n 5 3;
complete remission with incomplete hematologic recovery
[CRi], n 5 3), which was better than that in historical
controls receiving only azacitidine.111 Since only three
patients developed aGVHD (grade II, n 5 2; grade III, n 5
1) upon receipt of the combination regimen, it is possible
that azacitidine mitigates the lenalidomide-mediated ex-
acerbation of GVHD.

Tyrosine Kinase Inhibitors

A number of studies have suggested that tyrosine kinase
inhibitors have activity in preventing or treating relapse after
HCT in AML patients with activating FLT3 mutations. Re-
cently, results from randomized trials comparing sorafenib
maintenance with placebo after HCT were reported. In the
phase II Sormain trial, patients treated with sorafenib had
significantly better RFS (85%) compared with patients who
received placebo (53.3%).112 Likewise, a significantly in-
creased RFS was observed in the phase III trial (56.6%RFS
for nonmaintenance v 78.9% RFS with sorafenib at
24 months post-HCT).113 Currently, the second-generation
FLT3 inhibitor gilteritinib, which has shown single-agent
activity in nontransplant relapsed refractory (R/R) AML, is
also being studied as maintenance in FLT3-mutated
AML.114 Finally, for patients with overt relapse after HCT,
sorafenib monotherapy has shown modest activity in sev-
eral smaller studies and case reports, with CR rates of 23%-
38%, although these responses are generally short-
lived.115,116 Similar responses were reported for AML pa-
tients who relapsed after HCT and were treated with gil-
teritinib or quizartinib.117,118

The first-generation FLT3 inhibitors such as sorafenib are
relatively nonspecific for FLT3 and target other molecules and
pathways such as c-Kit, platelet-derived growth factor re-
ceptor, vascular endothelial growth factor receptor, Janus
kinase 2, and RAS/RAF/MEK pathway to induce direct killing
of malignant cells.119 FLT3 inhibitors can also promote the
GVM effect after HCT by inducing interleukin-15 (IL-15)
production from FLT3-ITD1, but not non-ITD, AML cells via
inhibition of the ATF4 transcription factor.120 This IL-15 pro-
duction promoted the GVM activity of donor CD81 T cells in
both mice and humans.120 Furthermore, FLT3 inhibitors can
modulate immunological responses by decreasing the num-
ber of immunosuppressive CD41Foxp31 Tregs andmyeloid-
derived suppressor cells (MDSCs) and inhibiting dendritic cell
(DC) proliferation, maturation, and function.121-123 Therefore,
sorafenibmay enhance GVMactivity without increasing GVHD
lethality because of its ability to reduce the numbers of im-
munosuppressive cell subsets (Tregs and MDSCs) and DCs
while concomitantly enhancing the efficacy of leukemia-
reactive CD81 T cells via the release of IL-15.

IDH Inhibitors

Ivosidenib and enasidenib, small-molecule inhibitors of
IDH 1 and 2, respectively, have been approved by the FDA
for use as single agents in patients with R/R AML. Although
limited information is available about the response rate in
the 43 transplanted R/R AML patients treated with ivosi-
denib, 10 of 29 (34%) patients who relapsed with AML after
HCT achieved a CR upon treatment with enasidenib.124

Both ivosidenib and enasidenib are currently being tested
as maintenance therapy for IDH1/2-mutant myeloid ma-
lignancies following HCT (ClinicalTrials.gov identifier:
NCT03515512 and NCT03564821).

Venetoclax

Byrne et al125 recently reported the outcomes for 21 pa-
tients with myeloid diseases who relapsed after HCT and
were treated with venetoclax salvage chemotherapy in
combination with a HMA (n 5 16) or low-dose cytarabine
(LDAC) (n5 5). An overall CR/CRi rate of 42.1% (n5 8/19)
was reported for 19 evaluable patients with five responses
in the HMA cohort and three in the LDAC group. Two
studies testing venetoclax in combination with azacitidine
as maintenance therapy after HCT in patients with AML are
ongoing (ClinicalTrials.gov identifier: NCT04161885 and
NCT04128501).

Tumor Vaccines

The period immediately after HCT may provide the best
window for tumor vaccination because of the low tumor
burden and the presence of fresh immune effector cells.126

A pilot study evaluating the delivery of a Wilms’ Tumor-1
(WT1) peptide-loaded donor-derived dendritic cell vaccine
given concurrently with DLI to patients relapsing after HCT
was safe and feasible with the evidence of WT-1–specific
T cell responses.127 More recently, Lichtenegger et al128

reported antigen-specific responses and prolonged RFS
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comparedwith a historical control cohort (1,084 v 396 days)
following vaccination of 10 patients with high-risk AML
post-HCT with TLR7/8-matured DCs transfected with RNA
encoding two AML-associated antigens, WT1 and PRAME,
as well as CMVpp65. Although a few cases have been
reported of overt AML relapse treated successfully with
tumor vaccines,129 it is likely that vaccination will prove
more effective at preventing relapse than treating overtly
relapsed AML.

Cellular Therapies Post-HCT

Many groups have attempted to improve outcomes after
HCT by improving the alloimmune effect of donor cells
toward residual recipient AML cells. One early approach
was treatment with immune-stimulating cytokines such as
interferon alpha, which has been reported to stimulate NK
and T cell effector functions in preclinical studies.130,131

While these treatments were well-tolerated, results were
mixed and likely hampered by the short in vivo half-life of
these agents in their unmodified form, and current efforts
have focused on modified long-acting cytokine agonists
such as ALT-803, described below.

A second approach to improving the GvL effect to prevent or
treat relapse is through graft engineering, the transfer of
specific immune cell subsets. Nikiforow et al132 reported a
43%CR rate (9/21; n5 11 with AML) with a 33% incidence
of clinically significant GVHD upon infusion of donor
lymphocytes depleted of CD251 T regulatory cells. Since
memory T cells cause significantly less GVHD than naive
T cells, a phase I clinical trial of 15 patients evaluated the
infusion of donor CD81 memory T cells in patients re-
lapsing after HCT (8 of 15 having AML).133 Seven of the 15
patients achieved a CR, and only one patient developed
grade II GVHD after the infusion.

In contrast to allogeneic T cells, NK cells do not cause GVHD
and they have been shown to have anti-AML activity in the
nontransplant setting where concurrent cytokine treatment
is used to improve their duration and activity.134-136 NK
cell infusions administered in the peritransplant period
have been shown to be safe and well-tolerated in early-
phase clinical trials.137-139 Additionally, Choi et al137 noted
that donor-derived NK cell infusion after reduced-
intensity conditioning haplo-HCT was associated with
reduced relapse and no increase in GVHD rates when
compared with historical controls. Since a limitation of NK
cells is their relatively low frequency in grafts and their
short in vivo persistence, Ciurea et al140 used feeder cells
expressing membrane-bound IL-21 to expand NK cells
ex vivo and reported a low incidence of relapse with
limited GVHD upon infusion into patients before and after
haplo-HCT. In a similar approach, cytokine-induced
memory-like NK cells from haploidentical donors can
be generated by ex vivo culture with IL-12, IL-15, and
IL-18 and exhibit enhanced antitumor activity.141 Clinical
trials using these cells as a prophylactic DLI and for

treatment of frank relapse are ongoing (ClinicalTrials.gov
identifier: NCT02782546 and NCT03068819). To expand
NK cells in vivo, Romee et al142 administered ALT-803, an
IL-15 superagonist, in a phase I study of 33 patients re-
lapsing. 60 days post-HCT and reported the activation and
proliferation of CD81 T and NK cells with an overall re-
sponse rate of 19%.

Direct engineering of T cells to target AML cells by trans-
duction with T cell receptors previously identified to rec-
ognize leukemia-associated antigens (TCR transgenic
T cells) or with chimeric antigen receptors (CAR-T cells)
may provide robust AML cell killing after HCT. With a
median follow-up of 44 months, Chapuis et al143 recently
reported no relapse in 12 patients with high-risk, heavily
pretreated AML treated with WT1-specific TCR transgenic
CD81 T cells after transplantation. Currently, no trials of
CAR-T cells for AML in the post-HCT relapse setting have
been reported, but the reports of anti-CD19 CAR-T cells
used after HCT suggest that this approach may be effective
and well-tolerated with a low incidence of GVHD.144,145

Bispecific Antibodies

Bispecific antibodies work by engaging tumor cells with
immune effector cells and directly activating immune cells
independently of MHC/TCR interactions. In acute lympho-
blastic leukemia (ALL), treatment with the bispecific
CD19xCD3 agent blinatumomab has been shown to be safe
and effective, including after HCT.146 In AML, several early-
phase clinical studies are testing bispecific antibodies tar-
geting CD33, CD123, and CLL-1 in patients with R/R disease,
including patients who relapsed after HCT.147 A potential
advantage of bispecific antibodies in the post-HCT setting is
that since they do not rely on MHC/TCR interactions, they
would be predicted to work in cases where HLA expression
has been lost after relapse post-HCT. Indeed, Rovatti et al148

showed in a preclinical model that an anti-CD33/CD3 bis-
pecific antibody was able to restore T cell activation by AML
cells that had lost their mismatched HLA haplotype after
haploidentical transplantation. In addition, since T cell en-
gagement leads to IFNg release within the tumor microen-
vironment, it is possible that the IFNg-induced restoration of
MHC class II expression on AML cells could contribute to
bystander immune cell killing. We have generated data using
both an anti-CD3/CD123 bispecific molecule (flotetuzumab,
MGD006) and anti-CD123 CAR-T cells that suggest that
targeting AML cells in this fashion leads to the upregulation of
MHC class II expression on surrounding AML blasts (un-
published data, see Fig 1). This reinduction of HLA class II
expression can potentially restore the GVM effect and ef-
fectively treat a subset of relapsed AML post-HCT.

Gemtuzumab Ozogamicin

Several case reports and small trials testing gemtuzumab
ozogamicin (GO) monotherapy and combination therapy in
maintenance or salvage settings suggest that the drug
exhibits clinical activity after HCT, but some concerns of
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myelosuppression and hepatic veno-occlusive disease
were noted.149 Recently, Genthon et al150 reported an
overall response rate of 72% (13/18) with a 1-year OS of
54% in patients with AML relapsing after HCT who were
treated with GO in combination with intensive chemo-
therapy. However, all patients experienced grade III-IV
neutropenia and thrombocytopenia. Ongoing clinical tri-
als are testing fractionated dosing of GO alone to treat
measurable residual disease (ClinicalTrials.gov identifier:
NCT03737955) or GO in combination with CPX-351
chemotherapy to treat relapse (ClinicalTrials.gov identi-
fier: NCT03904251).

DISCUSSION

Relapse after HCT portends a very poor prognosis, and
current management approaches such as DLI and second
HCT have a modest response rate and significant risk of
toxicity. Recent research has identified genetic and epi-
genetic changes that have resulted in the downregulation of
HLA molecules and upregulation of inhibitory checkpoint
molecules. These changes suggest a model wherein loss of
immune effector cell function contributes to relapse and
suggests possible approaches for preventing or treating
relapsed malignancies that exploit the GvL effect after HCT.
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FIG 1. T cell immunotherapy can upregulate MHC class II expression on AML blasts. (A) In 30%-50% of AML patients relapsing after allogeneic
hematopoietic cell transplantation, AML blasts have a decrease or loss of surface MHC class II expression, impairing the ability of miHA- and neoantigen-
specific T cells to recognize AML blasts and exert a GVM effect.27,38 (B) Introduction of a bispecific antibody or genetically engineered T cell (ie, CAR T cell)
capable of recognizing LAAs on AML blasts will lead to non-MHC–restricted T cell recognition of the AML blasts. (C) Non-MHC–restricted T cell recognition
of AML blasts will activate the T cells and stimulate the release of IFNg. (D) The release of IFNg will upregulate MHC class II surface expression on
surrounding AML blasts, including both blasts that are recognized and unrecognized by the T cell immunotherapy. (E) Upregulation of MHC class II
expression on AML blasts will allow for miHA- and neoantigen-specific T cells to recognize and kill the AML blasts, leading to a GVM effect. AML, acute
myelogenous leukemia; CAR-T cell, chimeric antigen receptor T cell; GVM, graft-versus-malignancy; IFNg, interferon gamma; IFNgR, interferon gamma
receptor; LAA, leukemia-associated antigen; MHC II, major histocompatibility antigen class II molecule; miHA, minor histocompatibility antigen; scFv,
single-chain variable fragment.
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