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abstract

PURPOSE Early identification of childhood cancer survivors at high risk for treatment-related cardiomyopathy
may improve outcomes by enabling intervention before development of heart failure. We implemented artificial
intelligence (AI) methods using the Children’s Oncology Group guideline–recommended baseline ECG to predict
cardiomyopathy.

MATERIAL AND METHODS Seven AI and signal processing methods were applied to 10-second 12-lead ECGs
obtained on 1,217 adult survivors of childhood cancer prospectively followed in the St Jude Lifetime Cohort
(SJLIFE) study. Clinical and echocardiographic assessment of cardiac function was performed at initial and
follow-up SJLIFE visits. Cardiomyopathy was defined as an ejection fraction , 50% or an absolute drop from
baseline≥ 10%. Genetic algorithm was used for feature selection, and extreme gradient boosting was applied to
predict cardiomyopathy during the follow-up period. Model performance was evaluated by five-fold stratified
cross-validation.

RESULTS The median age at baseline SJLIFE evaluation was 31.7 years (range 18.4-66.4), and the time
between baseline and follow-up evaluations was 5.2 years (0.5-9.5). Two thirds (67.1%) of patients were
exposed to chest radiation, and 76.6% to anthracycline chemotherapy. One hundred seventeen (9.6%)
patients developed cardiomyopathy during follow-up. In the model based solely on ECG features, the
cross-validation area under the curve (AUC) was 0.87 (95% CI, 0.83 to 0.90), whereas the model based on
clinical features had an AUC of 0.69 (95% CI, 0.64 to 0.74). In the model based on ECG and clinical
features, the cross-validation AUC was 0.89 (95% CI, 0.86 to 0.91), with a sensitivity of 78% and a
specificity of 81%.

CONCLUSION AI using ECG data may assist in the identification of childhood cancer survivors at increased risk for
developing future cardiomyopathy.

JCO Clin Cancer Inform 5:459-468. © 2021 by American Society of Clinical Oncology

INTRODUCTION

Because of improved treatment and supportive care,
5-year survival rates for childhood cancer now exceed
85% with more than 500,000 childhood cancer sur-
vivors alive in the United States today.1 Patients treated
with anthracycline chemotherapy or cardiac-directed
radiation are at increased risk for adverse cardiovas-
cular sequelae,2 including cardiomyopathy, coronary
artery disease, and valvular heart disease.

Surveillance guidelines have been developed by a
variety of oncology groups to guide long-term moni-
toring with the goal of identifying those who might
benefit from early medical interventions.3 While of-
fering an opportunity for early detection of myocardial
dysfunction, screening guidelines do not identify pa-
tients with preserved function who may yet develop
cardiomyopathy.

We investigated whether childhood cancer survi-
vors at risk of developing late-onset cardiomyopathy
could be accurately identified before the develop-
ment of echocardiographic evidence of dysfunction
using machine learning algorithms directed at ECG
waveforms.

MATERIALS AND METHODS

Study Population and Design

The St Jude Lifetime Study (SJLIFE) cohort is an on-
going study with prospective clinical follow-up of
survivors of childhood cancer treated at St Jude
Children’s Research Hospital, Memphis, TN.4,5 Par-
ticipants in this analysis were at least 10 years from
cancer diagnosis and ≥ 18 years of age at cohort entry
and had completed at least two comprehensive clinical
assessments on the St Jude Children’s Research
Hospital campus including physical examination, a
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core laboratory battery, 12-lead ECG (GE MAC 1200 ma-
chine), and two-dimensional Doppler ultrasound echo-
cardiography (GE Medical Systems, Milwaukee, WI) with
three-dimensional imaging for left ventricular volumes.
Medical record abstraction was performed to determine
cumulative anthracycline and cardiac radiation exposures.
For survivors treated with radiation, cumulative dose, ori-
entation, beam energy, field size, weighting, blocking, and
anatomical position were abstracted. For each individual,
all radiation therapy (RT) fields were reconstructed on
computational phantoms scaled to their age at RT. To be
eligible for our study, participants had to have an ejection
fraction ≥ 50% at the time of their baseline SJLIFE
assessment.

As of December 31, 2018, 1,326 participants had . 1 on-
campus clinical assessment including ECHO and ECG
screening. Our final study cohort included 1,217 of 1,326
with no cardiomyopathy at their first visit with ECHO
screening (Data Supplement).

Outcome. Cardiomyopathy was defined as an ejection
fraction , 50% or an absolute drop from the
baseline ≥ 10% obtained by echocardiogram during any of
the follow-up visits.

Treatment exposures. Four treatment exposures were in-
cluded in the analysis. Cumulative anthracycline dose
(milligram per square meter) was calculated by summing
adriamycin, daunorubicin, epirubicin, idarubicin, and
mitoxantrone in adriamycin equivalent doses.6 Radiation to
the chest was used in two different forms as a yes or no
variable and maximum total dose. Mean heart doses (stray
dose from leakage and scatter radiation from nonchest-
directed radiation) were calculated by radiation physicists
at MD Anderson Cancer Center, Houston, TX.7

Additional covariates. A total of 12 demographic and
clinical variables were used in the analysis: age at diagnosis

and at time of echocardiography (years), race, sex, body
surface area (per square meter), primary cancer diagnosis,
heart rate (beats/min), respiratory rate (respirations/min),
systolic and diastolic blood pressures (mm Hg), smoking
(yes or no), and the presence of clinically assessed car-
diovascular risk factors (diabetes [treated by diet and/or
medication], hypertriglyceridemia [fasting triglycerides
≥ 150 mg/dL and/or on a lipid lowering agent], hyper-
tension [systolic blood pressure . 140 mm Hg and/or
diastolic blood pressure . 90 mm Hg and/or on antihy-
pertensive agents], or hypercholesterolemia [fasting total
cholesterol. 200 mg/dL and/or on a lipid lowering agent]).
We also included respiratory rate (respiration/min) as subtle
changes in respiratory rate may reflect underlying heart
disease even in the early stages of disease. In addition to
these, we extracted features (described in detail below)
from 12-lead ECGs for use in the models.

Statistical Methods

Overview. The study was approved by the Institutional
Review Board, and all survivors provided informed consent
before participation. Characteristics of the survivors at
baseline assessment were expressed as median and range
for continuous variables and as count and percentage for
categorical variables. They were compared between those
who developed cardiomyopathy and those who did not.
Categorical variables were compared using Pearson chi-
square test and Fisher’s exact test, and numerical variables
were compared using Student’s t-test. The results of sta-
tistical tests were considered to be significant if the two-
sided P value was , .05.

We used waveform data from 12-lead ECG recordings
sampled at 500 Hz. Features were extracted using both
signal processing and deep learning methods, and those
features most discriminating for cardiomyopathy (diag-
nosed during follow-up) were selected using a stochastic
optimization method, genetic algorithm (GA).8 Features
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were also selected from clinical data using GA (Fig 1).
Extreme Gradient Boosting (XGboost)9 method was applied
to the selected features of ECG from each method sepa-
rately and then combined with clinical data to predict
cardiomyopathy.

Feature extraction. Using baseline ECG data, we generated
measures from each lead, including mean, median, kur-
tosis, skewness, variance, and other general features in-
cluding root mean square and mean crossing rate of
observed amplitude values. Sample entropy was calculated
for each ECG lead as a measure of signal regularity of the
signal. We segmented each ECG recording to 1 second
epochs and computed sample entropy for each epoch
sequentially. For probabilistic symbolic pattern recognition
features, dissimilarities were calculated with reference to
1,100 healthy ECG recordings.10 We decomposed ECG
signals using a Fourier transform into basic sinusoidal
waves at different frequencies and used amplitudes and
phases of the waves as a feature. Both continuous and
discrete wavelet transformations were used to extract

features from the frequency spectrum. The discrete wavelet
transformation was implemented by calculating descriptive
statistics from a five-level wavelet decomposition. The
continuous wavelet transformation was completed by cal-
culating the similarity between signal and wavelets at each
frequency and time points by shifting wavelets through
signals to obtain a two-dimensional scaleogram. We then
trained a convolutional neural network to extract features
from the scaleograms. Finally, features were extracted
using waveform data from 12-lead ECG recordings. Each
12-lead ECG signal was overlaid on top of each other to
form one signal with 12 channels. Residual neural networks
were used to extract features. We designed our neural
network architectures in Python using the Keras library with
TensorFlow backend (see the Data Supplement for full
listing of all feature extraction approaches).

Feature selection. We implemented a GA algorithm to
select the best subset of all ECG features and clinical
variables for the predictive model, which provided the
minimum classification error. The GA was started with a

ECG and Clinical Model

(XGboost algorithm)
(five-fold stratified cross-validation)

Predict cardiomyopathy using the
selected ECG and clinical features

Predict cardiomyopathy using
selected ECG features

Feature selection
(genetic algorithm)

ECG Model

(XGboost algorithm)
(five-fold stratified cross-validation)

10-second 12-lead ECGs

     Descriptive statistics
     Sample entropy
     Probabilistic symbolic pattern
     recognition
     Fourier transformation
     Discrete wavelet transformation
     CNN
     CNN on continuous wavelet
     transformation

Feature extraction using methods

Predict cardiomyopathy using
selected clinical features

Feature selection
(genetic algorithm)

Clinical Model

(XGboost algorithm)
(five-fold stratified cross-validation)

      Respiratory rate
      Body surface area
      Anthracycline dose
      Smoke, yes or no
      Chest radiation, yes or no
      Chest radiation dose
      Heart radiation dose

Clinical data

Missing data imputation
(MICE algorithm)

FIG 1. First column shows the analytic flow for
developments of the clinical model (light blue),
including the missing data imputation, deter-
mination of important clinical features, and
clinical model building. The second column
shows the analytic flow for development of the
ECG model (light blue), including the feature
extraction through signal processing and deep
learning methods, determination of important
extracted ECG features of each method, and
ECGmodel building. The bottom row shows the
combination of selected ECG and clinical fea-
tures and final model building (dark blue).
CNN, convolutional neural network; XGboost,
extreme gradient boosting.
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random subset of features (different variable combinations)
and iteratively mixed subsets (to obtain different feature
combinations) based on their performance (area under the
curve [AUC] value in predicting cardiomyopathy) to obtain
feature combinations yielding better performance. XGboost
was used as a fitness function on the iterated GA processes
from 40 generations, with a crossover probability of .5 and a
mutation probability of .05. We implemented GA separately
on features extracted from each feature extraction method
and then combined selected features for the final pre-
diction models.

Missing data imputation. Of the 20 clinical variables, all
except two had , 1% missingness. Dose to the heart from
RT had the highest missing rate (2.8%), followed by chest
radiation dose (0.9%), and chest radiation (yes or no)
(0.8%). We imputed missing clinical data using the mul-
tivariate imputation by chained equation method in the
MICE package in R.11

Predictive modeling. Although there are many machine
learning algorithms for classification tasks, XGBoost has
shown superior performance in several complex problems
and data science competitions such as Kaggle
challenges.9,12 For the computationally intensive classifi-
cation at multiple stages (classification models based on
features from individual feature extraction methods, ECG
features selected from feature extraction methods and
clinical data, and a combination of ECG features and
clinical data), we used the XGboost algorithm for all clas-
sification tasks. We used Bayesian hyperparameter opti-
mization for tuning hyperparameters in the XGBoost model.
For the XGBoost model (Data Supplement), optimization
occurred when the learning rate was 0.16 and the total
number of trees was 1,869. Following five-fold stratified
cross-validation, model performance was assessed using
metrics including sensitivity, specificity, and AUC.

RESULTS

Study Population Characteristics

Among 1,217 eligible survivors (51%male and 86%White),
the median time between baseline and subsequent visits
was 5.2 (range 0.5-9.2) years. The median age at cancer
diagnosis was 8.4 (0.0-22.7) years and 31.7 (18.4-66.4)
years at baseline SJLIFE assessment. Eight hundred sev-
enteen (67.1%) were exposed to chest radiation (median
dose 2,600 cGy, 150-6,200), and 932 (76.6%) to anthra-
cycline therapy (median cumulative dose 168.7 mg/m2,
35.1-734.2). Half (n = 609) had at least one cardiovascular
risk factor, including 92 (7.6%) with diabetes, 249 (20.5%)
with hypertriglyceridemia, 247 (20.3%) with hypertension,
and 383 (31.5%) with hypercholesterolemia. Demographic
and clinical characteristics of the study participants at the
time of baseline visit are shown in Table 1.

One hundred seventeen (9.6%) survivors developed car-
diomyopathy between the baseline and subsequent follow-
up visit. Survivors who developed cardiomyopathy were

significantly older at cancer diagnosis (10.2 v 8.2; P, .04)
and baseline SJLIFE assessment (33.9 v 31.4; P , .01).
Those with cardiomyopathy had a higher median anthra-
cycline (206.3 mg/m2 v 157.2 mg/m2; P, .001) and heart
radiation (2,320 cGy v 2,025 cGy; P , .001) dose.

Cardiomyopathy Prediction

Feature extraction. A total of 168 ECG features (such as
mean, median, skewness, etc) were extracted from 12
leads (14 features per lead). Among these features, eight
were selected by GA and found by XGBoost to predict
cardiomyopathy with a sensitivity of 65%, a specificity of
67%, and a five-fold cross-validated AUC of 0.74. In a
similar manner, 72 features reflecting sample entropy were
extracted and, of these, 10 variables were selected by GA.
With XGboost, these 10 features predicted cardiomyopathy
with a sensitivity of 63%, a specificity of 65%, and a five-
fold cross-validated AUC of 0.67. The list of all feature
extraction methods considered and their associated five-
fold cross-validated model performance metrics are shown
in Table 2. Detailed information about the predictors is
presented in the Data Supplement.

Model performance of ECG data. Overall model perfor-
mance was calculated using the 86 selected ECG features
extracted from the combination of methods listed in the
Data Supplement and applying XGBoost. Cardiomyopathy
was predicted with a five-fold cross-validated sensitivity of
76%, a specificity of 79%, and an AUC of 0.87 (95% CI,
0.83 to 0.90) using these 86 ECG features.

Model performance of clinical data. Of the 20 clinical
features that were evaluated, seven were selected for the
clinical data model: respiratory rate, body surface area,
cumulative anthracycline dose, smoking, chest radiation
(both as a dichotomous variable [yes or no] and cumulative
dose), and mean heart dose from RT. The model con-
structed with these variables had a five-fold cross-validated
sensitivity of 62%, a specificity of 66%, and an AUC of 0.69
(95% CI, 0.64 to 0.74).

Model performance of ECG plus clinical data. The 86 se-
lected ECG features were combined with the seven clinical
features to build a final model. The confusion matrix for
prediction of cardiomyopathy is provided in Table 3. The
model correctly predicted 78% of patients who developed
cardiomyopathy, with a positive predictive value of 30%.
The model correctly predicted 81% of patients who did not
develop cardiomyopathy, with a negative predictive value of
97%. Overall, 81% of the model predictions were correct,
with an AUC of 0.89 (95% CI, 0.86 to 0.91). Receiver
operating characteristic curves of these models are shown
in Figure 2.

Subgroup analysis. A subgroup analysis was conducted to
assess model performance for predicting cardiomyopathy
at 0.5-5 years and 5-9 years following the baseline SJLIFE
assessment. At 0.5-5 years, the sensitivity was 79%,
specificity 81%, and AUC 0.89 (95% CI, 0.85 to 0.93), and
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TABLE 1. Characteristics of the Study Population at Baseline SJLIFE Assessment

Risk Factors

Total (N = 1,217) Cardiomyopathy (n = 117)
No Cardiomyopathy

(n = 1,100)

PNo. % No. % No. %

Sex .10

Female 602 49.5 49 41.9 553 50.3

Male 615 50.5 68 58.1 547 49.7

Race .06

Black 156 12.8 22 18.8 134 12.2

White 1,041 85.6 94 80.3 947 86.1

Others 20 1.6 1 0.9 19 1.7

Diagnosis , .01

Leukemia 501 41.2 30 25.6 471 42.8

Sarcoma 150 12.3 23 19.7 127 11.5

Hodgkin lymphoma 206 16.9 31 26.5 175 15.9

Non-Hodgkin lymphoma 88 7.2 15 12.8 73 6.6

CNS 85 7.0 5 4.3 80 7.3

Neuroblastoma 59 4.9 4 3.4 55 5

Wilms tumor 99 8.1 6 5.1 93 8.5

Others 29 2.4 3 2.6 26 2.4

Cardiovascular risk factors .29

Hypertriglyceridemia 249 20.5 29 24.8 220 20

Hypertension 247 20.3 19 16.2 228 20.7

Hypercholesterolemia 383 31.5 42 35.9 341 31

Diabetes 92 7.6 16 13.7 76 6.9

Any of the above 609 50 65 55.6 544 49.5

Smokinga .93

Yes 479 39.4 47 40.2 432 39.3

No 738 60.6 70 59.8 668 60.7

Chest radiation , .01

Yes 415 34.1 55 47.0 360 32.7

No 802 65.9 62 53.0 740 67.3

(Continued on following page)
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TABLE 1. Characteristics of the Study Population at Baseline SJLIFE Assessment (Continued)

Risk Factors

Total (N = 1,217) Cardiomyopathy (n = 117) No Cardiomyopathy (n = 1,100)

PMedian Range Median Range Median Range

Age at diagnosis, years 8.4 0.0-22.8 10.2 0.4-21.2 8.2 0.0-22.8 .04

Age at baseline SJLIFE evaluation, years 31.7 18.4-66.4 33.9 19.7-54.7 31.4 18.4-66.4 .01

Survival time, years 22.7 10.4-49.8 23.6 11.4-45.3 22.6 10.4-49.8 .36

Time from baseline assessment, years 5.2 0.5-9.2 5.3 0.9-9.5 5.2 0.5-9.2 .15

Heart rate, beats/min 76.0 41-138 78.0 46-115 76.0 41-138 .56

Respiratory rate, breaths/min 18.0 12-28 18.0 14-24 18.0 12-28 .04

Systolic blood pressure, mm Hg 123.0 84-224 124.0 93-200 122.0 84-224 .27

Diastolic blood pressure, mm Hg 76.0 49-118 77.0 55-111 76.0 49-118 .11

Body surface area 1.86 1.1-3.0 1.9 1.3-2.8 1.9 1.1-3.0 .02

Anthracycline, mg/m2b 168.7 35.1-734.2 206.3 49.2-693.3 157.2 35.1-734.2 , .01

Chest radiation dose, cGy 2,600.0 150-6,200 2,600.0 450-4,500 2,600.0 150-6,200 , .01

Mean heart radiation dose, cGyc 2,070.0 50-4,920 2,320.0 170-4,920 2,025.0 50-4,520 , .01
Abbreviation: SJLIFE, St Jude Lifetime Cohort.
aCurrent and past smoking.
bAdriamycin equivalent dose.
cAmong participants with chest-directed radiation therapy only.
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78%, 81%, and 0.88 (95% CI, 0.84 to 0.92), respectively,
5-9 years after the baseline visit (Data Supplement).

DISCUSSION

Machine learning techniques applied to ECG data collected
among a large clinically assessed cohort of adult survivors
of childhood cancer (22 years from cancer diagnosis) were
able to accurately classify the risk for late-onset cardio-
myopathy (AUC 0.89 for the model incorporating ECG and
clinical data). A model using only ECG features was similar
(AUC 0.87, sensitivity 76%, and specificity 79%), and both
outperformed the clinical model (AUC 0.69 sensitivity 62%,
and specificity 66%). Our model performance predicting
cardiomyopathy in 0.5-5 years or 5-9.2 years was similar,
suggesting time invariant cardiomyopathy risk up to 9.2
from the baseline ECG. Artificial intelligence (AI) may help
classify high-risk cancer survivors before clinical detection
could occur and in doing so identify survivors in need of
enhanced surveillance and/or early intervention to ame-
liorate long-term morbidity. If these findings hold, AI may
also help limit subsequent costly evaluations and proce-
dures in patients who are less likely to develop events such
as cardiomyopathy.

Predictive models for heart disease are increasingly com-
mon. Our model performance exceeded that reported
among survivors participating in the well-characterized
Childhood Cancer Survivor Study. Using self-reported
data from more than 13,000 five-year cancer survivors
(median age at follow-up 32 years and range 6-59 years;
median survival time 19 years and range 0-34 years) in a
model focused primarily on chemotherapy and radiation
exposures yielded an AUC ranging from 0.68-0.82 for
predicting heart failure at age 40 years13 Using similar
models, the same investigators reported AUCs ranging from

0.66-0.67 for ischemic heart disease and 0.68-0.72 for
stroke by age 50 years in this population.14 Chen
et al15 incorporated traditional cardiovascular risk factors
(hypertension, dyslipidemia, and diabetes) reported by
Childhood Cancer Survivor Study participants to predict risk
for heart failure at 50 years and obtained AUCs between
0.69 and 0.77 across age categories 20-35 years. Addi-
tionally, applying convolutional neural networks in a large
(n = 180,922) noncancer population evaluated over 24
years, Attia et al16 recently reported an AUC of 0.87 for
identifying atrial fibrillation based on a single ECG. Our
model, which applies AI to ECG data, predicts cardiomy-
opathy as well as, or better than, these previous studies.

AI has also shown promise for the early detection of cardiac
dysfunction in other populations. Cardiac sympathetic de-
nervation has been recognized as an early feature in Par-
kinson’s Disease (PD),17-20 and reduced heart rate variability
has been associated with increased risk of PD.21 Work from
our group has shown that classification of PD is possible
using ECGs collected in the presymptomatic state.22 Attia
et al23 have also used neural networks on 12-lead ECGs to
identify asymptomatic left ventricular dysfunction, suggest-
ing that early disease might subtly affect cardiac conduction.

The use of a relatively inexpensive and widely available test
such as an ECG to generate risk stratification for childhood
cancer survivors holds appeal. Currently recommended as
a baseline assessment by the Children’s Oncology Group’s
Long-Term Follow-up Guidelines for Survivors of Child-
hood, Adolescent, and Young Adult Cancers, the focus has
largely been to monitor QT intervals (25). Our study sug-
gests additional value from ECGs obtained on cancer
survivors. The addition of seven clinical variables to the ECG
data yielded only a marginal improvement in AUC, from

TABLE 2. Model Performance Results of Each ECG Feature Extraction Method
Method No. Features Extracted No. Features Selected AUC Sensitivity (%) Specificity (%)

Descriptive statistics 168 8 0.74 65 67

Sample entropy 84 10 0.67 63 65

PSPR 72 10 0.80 68 72

Fourier transformation 528 14 0.72 63 66

Discrete wavelet transformation 384 14 0.73 65 67

Continuous wavelet transformation 372 15 0.73 66 69

CNN 448 15 0.76 71 71

Abbreviations: AUC, area under the curve; CNN, convolutional neural network; PSPR, probabilistic symbolic pattern recognition.

TABLE 3. The Confusion Matrix for Prediction of Cardiomyopathy
Predicted

No Cardiomyopathy Cardiomyopathy

Actual
No cardiomyopathy True negatives: 892 False positives: 208 Specificity: 81%

Cardiomyopathy False negatives: 26 True positives: 91 Sensitivity: 78%

Negative predictive value: 97% Positive predictive value: 30% Accuracy: 81%
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0.87 to 0.89, highlighting the informative value of the digital
ECG data. The performance of such predictive models
suggests the possibility for remote monitoring via mobile or
wearable devices with ECG recording functionality. With
such an approach, at-risk patients can potentially be
identified for heightened surveillance that could potentially
be facilitated by remote applications.

Understandably, the features identified in our models are
not immediately interpretable and bear little relationship to
classical ECG characteristics such as p-waves, QRS
complexes, and t-waves typically used for diagnosis of
chamber dysfunction. Clinical use of our model will require
its execution on the digital data underlying standard 12-
lead ECGs—a computationally simple task—to generate a
risk score for future cardiomyopathy. The development of
such predictive models might assist clinicians by identifying
those who could benefit from early initiation of preventive

therapeutics to reduce or minimize the risk of future car-
diomyopathy and associated heart failure.

Despite the large volume of clinically assessed data available
in the SJLIFE cohort, there are a number of limitations to
acknowledge. Cohort participants comprised childhood
cancer survivors evaluated at a single institution, and al-
though we performed five-fold cross-validation for model
training and testing, external validation is warranted in other
cancer cohort data sets where clinically assessed long-term
follow-up is available. However, it should be noted that there
is no other comparable childhood cancer survivor cohort to
SJLIFE in the United States with similarly clinically assessed
data for external validation. Therefore, future effort for ex-
ternal validation will require international collaboration with
cohorts with sufficient long-term follow-up ECHO and ECG
screening of childhood cancer survivors cohorts. Second,
although the cohort size was relatively large (1,217 patients),
the small number of patients who developed cardiomyop-
athy precluded our ability to test whether the model per-
formed differently by sex, age, race, or other characteristics.
Additional follow-up as the SJLIFE cohort ages may permit
theses analyses. Finally, we did not evaluate whether deep
learning applied to other tools, such as echocardiograms,
could also predict cardiomyopathy, add to, or outperform the
predictions made from the ECG. Future work on these topics
is needed.

In conclusion, we developed an AI-assisted model based
on ECG features predictive of cardiomyopathy with a
sensitivity of 76%, a specificity of 79%, and an AUC of 0.87,
suggesting that machine learning may play a role in the
identification of childhood cancer survivors at risk for de-
veloping cardiomyopathy. Future investigation will focus on
validation in other cancer survivor populations and the
application of remote monitoring techniques to screen and
monitor long-term survivors of childhood cancer.
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Conception and design: Fatma Güntu ̈rkün, Oguz Akbilgic, Robert L. Davis,
Gregory T. Armstrong, Rebecca M. Howell, John L. Jefferies, Ibrahim

1.0

0.8

0.6
Se

ns
iti

vi
ty

1-Specificity

0.4

0.2

1.00.80.60.40.20.0

ECG and clinical model: AUC = 0.89 (95% CI, 0.86 to 0.91)

ECG model: AUC = 0.87 (95% CI, 0.83 to 0.90)

Clinical model: AUC = 0.69 (95% CI, 0.64 to 0.74)

FIG 2. Receiver operating characteristic curves of the models based
on ECG features, clinical features and ECG, and clinical features.
AUC, area under the curve.

Gu ̈ntürku ̈n et al

466 © 2021 by American Society of Clinical Oncology

mailto:oakbilgic@luc.edu


Karabayir, Deo Kumar Srivastava, Melissa M. Hudson, Daniel A.
Mulrooney
Financial support: Gregory T. Armstrong, Melissa M. Hudson, Leslie L.
Robison
Administrative support: Robert L. Davis, Gregory T. Armstrong, Kirsten K.
Ness, Melissa M. Hudson
Provision of study materials or patients: Gregory T. Armstrong, Melissa M.
Hudson, Leslie L. Robison, Elsayed Z. Soliman
Collection and assembly of data: Robert L. Davis, Gregory T. Armstrong,
Kirsten K. Ness, Melissa M. Hudson, Leslie L. Robison, Daniel A.
Mulrooney
Data analysis and interpretation: Fatma Gu ̈ntu ̈rku ̈n, Oguz Akbilgic,
Robert L. Davis, Gregory T. Armstrong, Rebecca M. Howell, John L.
Jefferies, Kirsten K. Ness, John T. Lucas, Deo Kumar Srivastava,
Melissa M. Hudson, Elsayed Z. Soliman, Daniel A. Mulrooney
Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF
INTEREST
The following represents disclosure information provided by authors of
this manuscript. All relationships are considered compensated unless
otherwise noted. Relationships are self-held unless noted. I = Immediate
Family Member, Inst = My Institution. Relationships may not relate to the
subject matter of this manuscript. For more information about ASCO’s
conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.
org/cci/author-center.

Open Payments is a public database containing information reported by
companies about payments made to US-licensed physicians (Open
Payments).

Rebecca M. Howell
Research Funding: MD Anderson Cancer Center

John L. Jefferies
Honoraria: Genzyme, Amicus Therapeutics, Pfizer, Abbott Diagnostics,
Stealth Biotherapeutics, Novartis, Chiesi
Consulting or Advisory Role: Abbott Diagnostics, Amicus Therapeutics,
Chiesi, Medtronic, CHF Solutions, Stealth Biotherapeutics, Pfizer,
Novartis
Speakers’ Bureau: Genzyme, Pfizer
Research Funding:Medtronic, Myokardia, Sanofi, Innolife, Novartis, Lilly,
CHF Solutions, Regeneron
Travel, Accommodations, Expenses:Genzyme, Abbott Diagnostics, Amicus
Therapeutics, Novartis, Medtronic, Chiesi, PQBypass

Deo Kumar Srivastava
Consulting or Advisory Role: GENERAL DYNAMICS Information
Technology Peer Review and Science Management

Melissa M. Hudson
Consulting or Advisory Role: Oncology Research Information Exchange
Network, Princess Máxima Center
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