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Abstract Pyroptosis is the process of inflammatory cell death. The primary function of pyroptosis is to

induce strong inflammatory responses that defend the host against microbe infection. Excessive pyropto-

sis, however, leads to several inflammatory diseases, including sepsis and autoimmune disorders. Pyrop-

tosis can be canonical or noncanonical. Upon microbe infection, the canonical pathway responds to

pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs),

while the noncanonical pathway responds to intracellular lipopolysaccharides (LPS) of Gram-negative

bacteria. The last step of pyroptosis requires the cleavage of gasdermin D (GsdmD) at D275 (numbering

after human GSDMD) into N- and C-termini by caspase 1 in the canonical pathway and caspase 4/5/11

(caspase 4/5 in humans, caspase 11 in mice) in the noncanonical pathway. Upon cleavage, the N-terminus

of GsdmD (GsdmD-N) forms a transmembrane pore that releases cytokines such as IL-1b and IL-18 and
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Damage-associated
molecular patterns

(DAMPs)
disturbs the regulation of ions and water, eventually resulting in strong inflammation and cell death. Since

GsdmD is the effector of pyroptosis, promising inhibitors of GsdmD have been developed for inflamma-

tory diseases. This review will focus on the roles of GsdmD during pyroptosis and in diseases.

ª 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical

Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction to GsdmD and pyroptosis

Gasdermin D, encoded by GSDMD on chromosome 8 (8q24.3), is
a protein made of a 31 kDa N-terminus (GsdmD-N) and a 22 kDa
C-terminus (GsdmD-C) connected by a peptide linker. Upon
activation, the linker is cleaved to separate GsdmD-N from its
autoinhibitory domain, GsdmD-C1e3. GsdmD-N forms a trans-
membrane pore that releases cytokines such as interleukin IL-
1b4,5 and IL-186 and also disturbs the regulation of ions and
water7, eventually resulting in pyroptosis. Pyroptosis is a form of
inflammatory cell death via GsdmD-mediated cell lysis, which
involves the participation of inflammatory caspases1. The in-
flammatory caspases are caspases 1, 4, and 5 in Homo sapiens,
and 1 and 11 in Murinae2. Mouse caspase 11 is the counterpart to
caspases 4 and 5 in humans. The most critical role of pyroptosis is
to induce strong inflammatory responses that aid in host defenses
against pathogen infection.

The pyroptotic pathways are important drug targets because
they play critical roles in several diseases, including, but not
limited to, sepsis3, Alzheimer’s disease8, human immunodefi-
ciency virus (HIV)9, and gout10. Several compounds, such as VX-
765, are currently being tested for pyroptosis-associated diseases.
Chemical danger signals like cytokines are released upon pyrop-
totic cell death, while some may even be released before cell
death11. These danger signals result in the expansion of blood
vessels in the localized area, leading to an increase in blood flow.
This leads to other symptoms of inflammation, such as swelling
and excess heat in the inflamed area. Collectively, the induction of
inflammation is a double-edged sword in that it could defend
against intracellular bacteria leading to resolution; however, it
could also promote pathological inflammations, leading to disease
development such as aberrant blood clotting and sepsis3,12,13.

The gasdermin family of proteins consists of 6 proteins: gas-
dermins AeE and deafness autosomal recessive type 59
(DFNB59, also called pejvakin). Except for DFNB59, the gas-
dermin family plays various roles in pyroptosis14. The mechanism
of how pyroptosis plays a role in the innate immune system are
discussed briefly in this review, and more details can be found in
many excellent review papers15e18.

2. Other members of gasdermin family and their roles in
pyroptosis

The gasdermin family found in humans is composed of six
members: gasdermins AeE, and DFNB59. Mice have no
GsdmB but do have three GsdmA homologues (GsdmA1e3)
and four GsdmC homologues (GsdmC1e4). Except for
DFNB59, the family members have two domains, an N-ter-
minal domain and a C-terminal domain connected by a pep-
tide linker. These two domains of the gasdermins are similar
in structure and have a sequence homology of w45%. The N-
terminal domains are generally considered the effector domain
capable of forming transmembrane pores, while the C-terminal
domains of GsdmA/D/E have been shown to play auto-
inhibitory roles. Among the gasdermins, GsdmD and GsdmE
have been better characterized for their activation and
function.

2.1. GsdmA

GSDMA maps on chromosome 17 at 17q21 and has been
associated with autoimmune diseases and cancers19. As
mentioned above, mice have three homologues of GsdmA, and
most of the mutation phenotypes in mice are mapped to
GsdmA3. These mutations of GsdmA3 have been shown to
cause strong skin inflammations20,21 suggesting a role in
pyroptosis. When the N-terminus is expressed by itself in
cells, pyroptosis is triggered22; however, the cleavage enzyme
of GsdmA is still unknown. GsdmA3 has been well charac-
terized in structure, including full length (FL) GsdmA323,24

and the pore form of the N-terminal domain24. Similar to
GsdmD, its C-terminus inhibits the N-terminus, the activation
of which triggers the formation of the transmembrane pore to
execute pyroptosis23.

2.2. GsdmB

Like GSDMA, GSDMB maps at 17q21, and its polymorphisms are
linked to autoimmune diseases such as asthma and inflammatory
bowel disease (IBD)25. GsdmB enhances the activity of caspase 4
during noncanonical pyroptosis, suggesting its role in inflamma-
tion26. Paradoxically, GsdmB can be cleaved by apoptotic cas-
pases 3/6/7, but not by inflammatory caspases, with previous
evidence suggesting the cleaved N-terminal product may not
contain the full N-terminal domain to form pores or directly
participate in inflammation27. In a recent report, however, it was
found that granzyme A from cytotoxic T cells and natural killer
cells cleave and activate gasdermin B (GsdmB), triggering
pyroptosis in tumor cells28. This suggests a more direct involve-
ment in pyroptosis than what was previously understood.
Intriguingly, GSDMB is overexpressed and considered an onco-
gene in several cancer types such as breast cancer29, gastric can-
cer27, and cervical cancer30. As such, further studies of GsdmB
regarding its roles in pyroptosis and cancers are needed.

2.3. GsdmE

GSDME, mapping on chromosome 7 at 7p15, is also named
deafness autosomal dominant 5 (DFNA5). Initially, it was asso-
ciated with hereditary hearing loss, but without assigned physio-
logical function31. Recently, GsdmE has been discovered to
contribute to the regulation of both apoptosis and pyroptosis32,33.
Its C-terminal domain also plays an inhibitory role in the N-ter-
minal domain. Upon activation by caspase 3, the N-terminal

http://creativecommons.org/licenses/by-nc-nd/4.0/
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domain forms lytic pores to execute apoptosis and/or pyropto-
sis32,33. GsdmE is also activated by killer-cell granzyme B, which
is released into tumor cells by cytotoxic lymphocytes. Subse-
quently, granzyme B cleaves GsdmE to induce pyroptosis in tu-
mors34. Consistently, GsdmE mediated pyroptosis contributes to
the cytotoxicity of many chemotherapeutic reagents33, including a
potential target for hepatocellular carcinoma patients, which uses
the secondary metabolite miltirone35.

2.4. DFNB59

DFNB59 is located at 2q31 and has not been associated with either
pore formation or pyroptosis. Compared with other gasdermin
members, DFNB59 has a shorter C-terminal domain that does not
share sequence homology with other gasdermin proteins. Muta-
tions of DFNB59 cause a neuronal defect, leading to non-
syndromic deafness36,37. It has been suggested that DFNB59
functions as a receptor/adaptor in pexophagy, which maintains
redox homeostasis of auditory hair cells to prevent noise-induced
damage38.

2.5. GsdmC

GSDMC maps on chromosome 8 at 8q24.21. Limited is known
about GsdmC, although artificial mutations cause cytotoxicity in
cell lines23. It is highly expressed in the gastrointestinal (GI) tract
and may play a role in GI cancers19,39.

3. Introduction to pyroptotic pathways

There are two major pathways for pyroptosis: canonical and
noncanonical pyroptosis (Fig. 1). Both pathways use GsdmD as
the downstream effector40e42. The canonical pathway detects both
pathogen-associated molecular patterns (PAMPs) and damage-
associated molecular patterns (DAMPs) as well as cytoplasmic
disturbances, recently coined as homeostasis altering molecular
properties (HAMPs)43. PAMPs and DAMPs are recognized
Figure 1 Activation of either caspase 1 or caspase 11 can lead to pyr

activated caspase 11 that cleaves GsdmD. Pro-caspase 1 is activated by the

formation. Caspase 1 can activate GsdmD and IL-1b/IL-18.
intracellularly by cytoplasmic pattern recognition receptors
(PRRs, Fig. 2), the activation of which assembles the inflamma-
some complex to execute pyroptosis. In contrast, the recognition
of HAMPs is through the detection of molecular processes that
perturbs cytoplasmic homeostasis, e.g., the phosphorylation of
pyrin inflammasome44,45. Generally, after the binding of a PAMP
or DAMP, PRRs interact and activate the apoptosis-associated
speck-like protein (ASC), which then oligomerizes and uses its
caspase activation and recruitment domain (CARD) to bind to the
CARD of pro-caspase 1. The binding complex of PRRs, ASC, and
pro-caspase 1 is termed the inflammasome. A CARDeCARD
interaction triggers the activation of pro-caspase 1 in order to
cleave GsdmD and pro-IL-1b/IL-18 into their active forms, initi-
ating pyroptosis. During pyroptosis, GsdmD-N selectively in-
teracts with membrane lipids to form transmembrane pores,
through which cellular contents, especially danger signals, are
released23,46. The canonical pathway also utilizes toll-like re-
ceptors (TLRs) for priming certain PRRs to enhance immune
responses. The noncanonical pathway detects intracellular lipo-
polysaccharides (LPS) of Gram-negative bacteria. LPS directly
activates pro-caspase 11 (pro-caspase 4/5 in humans) by binding
to CARD, resulting in the oligomerization and autoproteolysis of
caspase 111,13. Similar as caspase 1, active caspase 11 cleaves the
linker region of GsdmD to separate GsdmD-N and GsdmD-C,
initiating pyroptosis. The noncanonical pathway crosstalks with
the canonical pathway via NOD-like receptor family pyrin domain
containing 3 (NLRP3), which activates caspase 1 to cleave pro-IL-
1b/IL-18, promoting inflammation. Collectively, these events
trigger downstream effects, such as cell death by membrane
disruption and the release of cytokines through GsdmD-N pores,
as shown in Fig. 141,47
3.1. Canonical cascade

NOD-like receptors (NLRs), which are the cytoplasmic pattern-
recognition receptors (PRRs), can recognize PAMPs and DAMPs
to initiate the canonical inflammasome pathway. After binding
optosis. Pro-caspase 11 is directly activated by LPS, which leads to

CARD recruiting domain after receptor activation and inflammasome
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with a DAMP or PAMP, NLRs are activated (Fig. 2), followed by
the recruitment of the adaptor ASC complex. This results in the
formation of inflammasomes, which recruit and activate pro-
caspase 1. Activated caspase 1 then cleaves GsdmD to free its
N-terminus, which forms the lytic pore as the pyroptotic
effector48. Some well-characterized pathways are shown in Fig. 2
10,49,50. Except for NLRP1, NLRs typically contains three do-
mains: an N-terminal adaptor domain (such as CARD or pyrin
domain (PYD)), a central nucleotide-binding domain (NBD), and
a C-terminal leucine-rich repeat (LRR) domain. NLRP1 contains
two additional domains at its C-terminus, a CARD followed by a
function to find domain (FIIND) domain. The LRR domains are
used to sense bacterial components; the NBD domain is critical
for oligomerization and activation; the N-terminal domain is
responsible for CARD recruitment and CARDeCARD in-
teractions as well as for activating caspase 151,52. In addition to
NLRs, absent in melanoma 2 (AIM2) and pyrin, two other cyto-
plasmic PRRs, detect bacterial components and form inflamma-
somes to activate caspase 1. Individual pathways are explained in
more detail in the following paragraphs.

NLRP1, which was first identified in humans, was later found
in mice and was the first discovered NLR family member
discovered to be involved in the formation of an inflammasome
complex. NLRP1 does not require ASC and thus is able to activate
pro-caspase 1, leading to IL-b secretion without ASC oligomeri-
zation53. It is coded by a single gene in humans with three ho-
mologues NLRP1a, b, and c in mice12,50,54. NLRP1b is activated
Figure 2 Inflammasomes in canonical pyroptosis pathway. Ligands are d

inflammasome complexes to activate caspase 1. Activated caspase 1 su

transmembrane pore and functions as the executor of pyroptosis. Note: th
by anthrax lethal toxin after it cleaves an N-terminal peptide from
NLRP1b55, while human NLRP1 is not activated by the same
toxin56. However, the molecular mechanism of cleavage-mediated
NLRP1b inflammasome activation remains elusive. Using an
in vitro system consisting of recombinant proteins, NLRP1 in
humans was found to be activated by muramyl dipeptide and
ATP57. In addition, inhibitors of dipeptidyl peptidases 8 and 9
(DPP8/9) can selectively activate NLRP1 and its related protein
CARD8 in both mouse and human lymphocytes58. Interestingly,
NLRP1b responds to metabolic stress to produce IL-1859 (known
to prevent obesity and diet-induced metabolic syndrome), which
paradoxically can induce inflammation. The activation of the
NLRP1 inflammasome is also essential to the secretion of high
mobility group protein B1 (HMGB1), which stimulates inflam-
matory responses by modulating both the innate and the adaptive
immune responses50.

NLRP3 uses a similar overall mechanism as other NLRs such
as NLRP1. However, the major difference is that NLRP3 may
not directly interact with its activators; rather, it must first be
primed by a cytokine receptor or another PRR60. NLRP3 can be
activated by a wide range of DAMPs and PAMPs such as bac-
terial LPS, fungal zymosan, viral RNA extracellular ATP, reac-
tive oxygen species, nigericin, crystallines, and amyloid-b
plaque60. Lysosomal damage has also been attributed to NLRP3
activation, with lysosomal membrane damage resulting in Kþ

efflux and the release of lysosomal protease cathepsin B, both of
which initiate NLRP3 inflammasome activation61. Despite the
ifferentially recognized by PRRs, which then assembles corresponding

bsequently cleaves GsdmD to free its N-terminus, which forms the

e oligomerization of inflammasome proteins is not shown.
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diverse activators, a common downstream event is the disas-
sembly of the trans-Golgi network (TGN), which recruits
NLRP3 using phosphatidylinositol-4-phosphate (PtdIns4P) and
activates NLRP3 to form the inflammasome complexes62.
Another crucial player during NLRP3 activation is the protein
NIMA-related kinase 7 (NEK7), which participates by regu-
lating NLRP3 inflammasome formation following potassium
release and preventing inflammasome formation during mitotic
division stages of the cell cycle63,64. Co-crystal structures show
that NEK7 directly binds to two neighboring NLRP3 subunits as
a necessity for inflammasome formation65. After activation, the
NLRP3 receptor recruits the ASC by PYDePYD interaction,
assembling NLRP3 inflammasome (Fig. 2). When NLRP3 is
knocked out in mice or antagonized with inhibitors, there is a
significant reduction of pyroptosis, suggesting NLRP3’s key
involvement in the pyroptotic pathway. NLRP3 crosstalks with
other innate immune pathways66,67, suggesting that the inhibi-
tion of the NLRP3 could have a broad inhibitory effect for in-
flammatory responses. As such, NLRP3 is an attractive drug
target for patients with inflammatory diseases68. Research
involving treatments for septic shock has recently shown car-
damonin, a secondary herbal metabolite used in Chinese tradi-
tional medicine (CTM), showed inhibitory effects on NLRP3
activation within mouse bone marrow-derived macrophages
(mBMDM) and human peripheral blood mononuclear cells
(PBMC) by preventing ASC oligomerization69. It has also been
shown that overactivation of the NLRP3 pathway causes gouty
arthritis in mice models10. OLT1177, an inhibitor of NLRP3, is
in the U.S. Food and Drug Administration (FDA) clinical trials
phase II for gouty arthritis68.

NLRP6 has an N-terminal PYD, an internal NBD, and a C-
terminal LRR. Similar to other NLR inflammasomes, activated
NLRP6 causes ASC speck formation70 and subsequently caspase
1 activation. NLRP6 has been reported to play an inflammasome-
dependent role in host defenses and inflammation and an
inflammasome-independent role in intestinal homeostasis and
cancer. However, the molecular mechanisms in these processes are
not fully elucidated, and significant discrepancies exist71,72.

Like NLRP6, NLRP12 plays both inflammasome-dependent
and -independent roles. NLRP12 inflammasome participates in the
canonical pyroptotic pathway by assembling the NLRP12 pyrop-
tosomes using a similar mechanism to NLRP6 (Fig. 2).
Conversely, NLRP12 is also capable of negatively regulating
inflammation by promoting the degradation of NF-kB inducing
kinase (NIK)73. The reduction of NIK leads to attenuated nonca-
nonical NF-kB signaling, which is crucial to inflammatory re-
sponses to pathogens in the innate immune system73. NLRP12,
similar to NLRP6, is highly-expressed within intestinal tissues,
and plays a central role in maintaining intestinal inflammation,
tumorigenesis and homeostasis73,74.

Pyrin, not an NLR, has an N-terminal PYD, followed by a
B-box domain, a coiled-coil domain, and a B30.2 domain at
the C-terminus. Pyrin detects the inactivation of Rho GTPase,
especially RhoA, which is targeted by various bacterial
toxins75. Without bacterial infection, pyrin stays inactivated
when phosphorylated by protein kinase1/2 (PKN1/2), and
bound to protein 14-3-3. This inactive form is a monomer,
which dimerizes to become active76. As a means of regulation,
active RhoA promotes PKN1/2 to phosphorylate pyrin76;
toxin-induced inactivation of RhoA leads to pyrin activation.
Microtubules have also been shown to facilitate the dimer-
ization of pyrin. Upon dimerization, pyrin triggers the ASC
speck formation, which subsequently activates pro-caspase 175.
Mutations in pyrin have been correlated with inflammatory
diseases, familial Mediterranean fever (FMF)77, and hyper-
immunoglobulinemia D syndrome (HIDS). AIM2, not an NLR,
consists of an N-terminal PYD and a C-terminal positively
charged HIN (hematopoietic expression, interferon-inducible
nature, and nuclear localization) domain. AIM2 plays an
important role in the innate immunity for the detection of
cytoplasmic pathogenic dsDNA43. The HIN domain uses its
positive charge to bind the negatively charged dsDNA. This
binding is independent of DNA sequence but requires a min-
imum of 80 base pairs in length49. Once the HIN domain
detects dsDNA in the cytoplasm, AIM2 is activated and uses
its PYD to recruit ASC by PYDePYD interaction78. The ASC
speck forms and recruits pro-caspase 1 via CARDeCARD
interactions, similar to NLRP3 inflammasome49. This activa-
tion pathway further facilitates immune response, ensuring
escaped foreign DNA particles from phagosomes are tar-
geted79. Like other inflammasomes, The AIM2 inflammasome
is tightly controlled in cells and has been shown to be nega-
tively regulated by interferon-inducible protein p202 within
mBMDMs for the activation of pro-caspase 180.

NLRC4, composed of an N-terminal CARD, an NBD, and a C-
terminal LRR, plays a major role in protection against certain
Gram-negative bacteria with type III or type IV secretion sys-
tems81. NLRC4 forms complexes with NAIPs (NLR family
apoptosis inhibitory proteins), and activates NLRC4 by binding to
pathogenic proteins from flagellin or type III/IV secretion sys-
tems. Once the NLRC4 is activated, it oligomerizes and directly
interacts with pro-caspase 1 via a CARDeCARD interaction
(Fig. 2), bypassing the participation of ASC. This direct
CARDeCARD interaction between the NLRC4 and pro-caspase 1
leads to its activation as well as the formation of GsdmD-N pores
and interleukin release81. There are several gain-of-function mu-
tations in NLRC4, which have been shown to result in the
development of autoinflammatory diseases82.

3.2. Noncanonical cascade

The noncanonical pathway plays a critical role in cell immuno-
logical responses to intracellular Gram-negative bacteria13,41,83,
where LPS is detected by caspase 4/5/11.

Intracellular LPS can be derived directly from intracellular
bacteria or the extracellular space. Before encountering LPS, pro-
caspase 11 has negligible catalytic activity. The CARD domain of
pro-caspase 4/5/11 directly interacts with the lipid A moiety of
LPS, causing a significant conformational rearrangement of pro-
caspases 4/5/11. The conformational changes of these pro-
caspases result in oligomerization using their CARD domains,
further enabling limited activity for auto-proteolysis. It is impor-
tant to note that the oligomerization of caspase 11 directly in-
volves CARD, while the CARD of caspase 1 is used for ASC
binding instead of oligomerization84,85. After oligomerization,
caspase 11 auto-proteolyze after D285 with a sequence of
MEADjA to gain full activity in proteolyzing GsdmD22,41. In
contrast to caspase 1, which cleaves pro-IL-1b/IL-18 and GsdmD,
activated caspases 4/5/11 has been considered only recognize
GsdmD and cleave at D275 of hGsdmD or D276 of mGsdmD22,41

for generating pyroptotic pores (Fig. 1). Interestingly, caspase 4/11
were shown to be activated by guanylate-binding proteins 1e4,
which activate innate immunity against intracellular pathogens, on
the surface of intracellular bacterium to cleavage pro-IL-1886.
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Additionally, the active caspase 4/5/11 also crosstalk with NLRP3,
giving rise to the formation of the NLRP3 inflammasome, which
can then activate caspase 1 for the production of mature cytokines,
IL-1b/IL-1812. This crosstalk is suggested to involve a drastic
efflux of Kþ due to membrane rupturing caused by caspase 11
working as a signal to elicit NLRP3 inflammasome activation87.
The noncanonical pathway has also been suggested to involve
metabolic diseases due to mitochondrial dysfunction with the
release of mitochondrial reactive oxygen species (ROS) and
mitochondrial DNA (mtDNA). Activation of inflammasomes via
both the canonical and noncanonical pathways display immune
response variability enabling the host to elicit a variety of defense
mechanisms dependent upon the type of pathogen infection88.

4. Mechanism of GsdmD activation in pyroptosis

The activation mechanisms of hGsdmD and mGsdmD are
considered identical, but the cutting sites on the linker-region are
slightly different, with FLTDjGVP in hGsdmD and LLSDjGID
in mGsdmD41. Neither hGsdmD nor mGsdmD has a high-
resolution structure available in the pore form, although the
structures of inactive FL proteins have been solved. The N-
termini of mGsdmD and hGsdmD have a w60% sequence
similarity with the N-terminus of mGsdmA3 (Fig. 3A). As
shown in Fig. 3B, there is a significant structure overlap among
Figure 3 Similarities of the N-termini of hGsdmD, mGsdmD, and mGsd

The sequence and (B) structural alignments of the unactivated N-termini of

similar structures after pore formation. Green: hGsdmD, PDB:6N9O; Pink

are w30 amino acids at the end of N-terminal domain that are not all stru

shown in (A) and (B). The (C) top to bottom and (D) side views show th
the inactive N-termini of hGsdmD (PDB:6N9O), mGsdmD
(PDB:6N9N), and mGsdmA3 (PDB:5B5R), with an RMSD of
1.2 Å23,24,89. Therefore, the structure of mGsdmA3 in the pore
form resembles that of a GsdmD pore (Fig. 3). Using cryo-
electron microscopy (Cryo-EM), the structure of mGsdmA3
pore is solved with a resolution of 3.8 Å24. Cryo-EM resolved
the GsdmD pore structure with a resolution of low nanometers
because of insufficient homogeneity48. mGsdmA3 pore is
formed by 26e28 subunits, while GsdmD uses a similar number
of subunits for pore formation. The GsdmA3 pore, which is
formed by a series of b-barrels, has a w180 Å inner diameter
and w280 Å outer diameter (Fig. 3C). The inner diameter is
large enough to pass proteins like IL-18, IL-1b, and metabolites.
Additionally, galectin-3, an effector of the NLRP3 inflamma-
some, could also pass through the pore90, suggesting the GsdmD
pore may selectively release cellular proteins. The height of this
cross-membrane b-barrel is w70 Å (Fig. 3D), which is the
typical thickness of mammalian membranes.

Without proper activation, the inflammatory caspases 1/4/5/
11 are in catalytic inactive pro-forms, leaving GsdmD in the
inactive form40. Previous studies have shown that by mutation of
the aspartic acid within the linker, GsdmD stays in its inactive
form without being cleaved, and a pyroptotic pore cannot
form91. Additional studies have shown that overexpression of the
C-terminus suppresses the creation of pores in the membrane.
mA3, and the structure of the transmembrane pore of mGsdmA3. (A)

hGsdmD, mGsdmD, and mGSDMA3 suggest the three proteins adopt

: mGsdmD, PDB:6N9N; Cyan: mGsdmA3, PDB:5B5R. Note: There

cturally available for all three proteins, and these amino acids are not

e symmetric assembly of mGsdmA3 pore.



Table 1 Pyroptosis inhibitors, including their names, structures, targets, and type of inhibition.

Name of inhibitor Structure of inhibitor Target Type of inhibitor

Ac-YVAD-CHO Caspase 1/4 Suicide inhibitor

Ac-FLTD-CMK Caspase 1/4/5 Suicide inhibitor

Z-VAD-FMK Pan-caspase Suicide inhibitor

MCC950 NLRP3 Allosteric or competitive inhibitor

VX-765 Caspase 1/4 Competitive inhibitor

7DG Protein kinase-R Activity-independent inhibitor
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This suggests that GsdmD-C plays an inhibitory role for
GsdmD-N and does not require the linker region for the inhi-
bition of GsdmD-N89,92.

Without the activation of GsdmD, pore-forming activity and
pyroptosis are inhibited. Similarly, without the cleavage of pro-IL-
1b or pro-IL-18 to their mature forms, inflammatory responses are
limited. A full spectrum of pyroptosis includes the cleavage of
pro-IL-1b, and pro-IL-18 as well as GsdmD, capable of eliciting
significantly damaging effects to the local tissue and is not the best
choice for immune cells to resolve minor insults. Under a mild
challenge, DAMPs and PAMPs can be released independent of the
activation of the inflammatory caspases and pyroptosis13,47,93,
suggesting that pyroptosis, the highly inflammatory form of cell
death, is under tight regulation. This tight regulation of the in-
flammatory caspases prevents long-term damage such as organ
damage33,94,95, sepsis3, Alzheimer’s disease8, atherosclerosis96,
and gout10.

Compared to caspase 5, caspase 4’s and 11’s autocleavage
is better characterized and shares a similar mechanism. Upon
activation, the autocleavage of caspase 4/11 generates an
enzymatically active caspase 4/11 dimers. However, it is still
not fully elucidated if the dimer consists of p10þp32 or
p10þp22. The p10 subunit binds to the GsdmD-C domain for
substrate recognition before cleavage to separate GsdmD-N
and GsdmD-C97. When GsdmD-C is replaced with mCherry
with the cleavage site intact, free GsdmD-N cannot
be generated as the mutant GsdmD is not recognized
by the inflammatory caspases97. Consistently, in the caspase
4/GsdmD-C complex structure, the N-terminus of p10 is
shown to stretch toward a hydrophobic patch of GsdmD-C,
suggesting a direct interaction with GsdmD-C is required for
cleavage. After aligning the GsdmD structure along with the
caspase 4/GsdmD-C complex, it shows that the cleavage site,
P4eP1, of GsdmD is next to the autoprocessing (P4eP1 of
caspase 4) site, suggesting the binding of caspase 4 and
GsdmD-C in the crystal structure is physiologically relevant.
Collectively, caspase 4 binds to GsdmD-C for recognition,
followed by the cleavage and release of GsdmD-N from
GsdmD-C97. In addition to covalent interaction using the
peptide linker, GsdmD-C interacts with GsdmD-N using a
large hydrophobic patch to prevent the conformational changes
necessary for pore formation. Interestingly, some GsdmD-C is
secreted out of the pore during pyroptosis. This could be a
strategy to eliminate the noncovalent inhibition of GsdmD-C.

5. Examples of pyroptotic inhibitors

Since the uncontrolled activation of GsdmD can cause disease in
both human and mouse models, caspase 1/4/5/11 are important
drug targets for inflammation-related diseases3,8,98,99. Z-VAD-
FMK is a cell-permeable inhibitor that was originally developed to
bind irreversibly and inhibit inflammatory caspases100. The tri-
peptide, VAD, is for binding, while FMK is the warhead that can
form a covalent bond with the catalytic cysteines, permanently
preventing catalytic activities101. However, Z-VAD-FMK does not
specifically inhibit only the inflammatory caspases 1/4/5/11 as
originally designed; it also inhibits caspases 3/7/8 as a suicide
inhibitor, inhibiting both pyroptosis and apoptosis. The pro-
miscuity between caspases makes it unsuitable as a drug because
of the off-target effects100,101.

Acetyl-FLTD-chloromethylketone (Ac-FLTD-CMK) has also
been developed to inhibit inflammatory caspases (Table 1) with Kd
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values of 21.7 and 29.6 mmol/L to caspases 1 and 4, respectively.
Unlike pan-caspase inhibitors, it does not bind to apoptotic cas-
pase 3. Using ATP or nigericin-treated macrophage cells, Ac-
FLTD-CMK significantly reduced the secretion of IL-1b102, sug-
gesting its inhibitory action for pyroptosis. In an in vitro caspase
activity assay using a synthetic substrate, N-acetyl-Trp-Glu-His-
Asp-7-amido-4-methylcoumarin (Ac-WEHD-AMC), IC50 values
of Ac-FLTD-CMK differ significantly for caspases 1, 4, and 5
with values of 0.0467, 1.49, and 0.329 mmol/L, respectively. The
compound is water-soluble, similar to the previously mentioned
pan-caspase inhibitors, although it slightly violates Lipinski’s rule
of five by having a molecular weight of 569 Da103.

NEK7 directly interacts with NLRP3 for its activation63,104

(Table 1). The expression level of NEK7 has been shown to be
closely correlated with the degree of pyroptosis. As such, NEK7
has been suggested to be a marker for pyroptosis. Even though
NEK7 plays roles in multiple pathways such as cell cycle regu-
lation, NEK7 has been suggested to be a drug target for the pre-
vention of inflammation in pyroptosis105. Studies have suggested a
linkage between IBD and NEK7. During the development of IBD,
which has been directly linked to NLRP3 and pyroptosis, NEK7 is
upregulated through NF-kB and modulates NLRP3 activation by
direct interaction94,106

Rv3364c, a protein secreted by Mycobacterium tuberculosis,
was recently reported to inhibit host serine protease cathepsin G
(CTSG), enabling M. tuberculosis survival in macrophages107.
Rv3364c binds tightly to CTSG on the host cell membrane, sup-
pressing its catalytic activity and downstream activation of cas-
pase 1. This hinders the maturation of caspase 1 and inhibits
pyroptosis within infected macrophages. Consistently, the expo-
sure of M. tuberculosis resulted in the recruitment of a large
number of infected macrophages but with a lower pyroptotic rate.
However, when exposed toM. tuberculosis with Rv3364c knocked
out, cellular immunity by pyroptosis was restored. This decreased
the number of infected macrophages, with the rate of pyroptosis
increasing back to normal levels. The restoration of pyroptosis
levels was then able to prevent intracellular M. tuberculosis from
proliferating13,107. Currently, inhibitors mimicking Rv3364c
binding patterns are under development for inhibition of
inflammation107.

N-[[(1,2,3,5,6,7-Hexahydro-s-indacen-4-yl)amino]carbonyl]-4-
(1-hydroxy-1-methylethyl)-2-furansulfonamide (MCC950) is a
promising inhibitor targeting the NLRP3 pathway108. MCC950
directly binds to the Walker B motif of NLRP3, which prevents
ATP hydrolysis and associated conformational changes of NLRP3.
This locks NLRP3 in the inactive form and prevents inflamma-
some activation109. Subsequently, the formation of an NLRP3-
induced ASC oligomerization (spike) is abrogated, preventing
the downstream maturation of caspase 1. As a result, the matu-
ration and release of cytokines and the formation of pyroptotic
pores are all inhibited110,111. The IC50 for MCC950 is 7.5 nmol/L
for the release of IL-1b from IMBM cells. MCC950 decreases the
expression of caspase 1/11, NLRP3, and ASC in mice heart, lungs,
and brain upon exposure to LPS108. Further experiments are
looking at a wide range of NLRP-3 associated diseases, and it has
promising inhibitory effects for NLRP3 in blood samples from
patients with MuckleeWells syndrome108,110,111.

(S)-1-((S)-2-{[1-(4-Amino-3-chloro-phenyl)-methanoyl]-
amino}-3,3-dimethyl-butanoyl)-pyrrolidine-2-carboxylic acid
((2R,3S)-2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide (VX-765)
is a prodrug of (S)-3-({1-[(S)-1-((S)-2-{[1-(4-amino-3-
chlorophenyl)-methanoyl]-amino}-3,3-dimethyl-butanoyl)-
pyrrolidin-2yl]-methanoyl}-amino)-4-oxo-butyric acid (VRT-
043198), a competitive inhibitor of caspase 1/4. VX-765 has been
shown to be useful for inflammatory diseases, such as hepatic
ischemia-reperforation112, Alzheimer’s disease8,111, and bacterial
infections49 (Table 1). VRT-043198, the active form of VX-765,
has IC50 values of 0.2, 14.5, and 10.6 nmol/L when tested using
purified caspase 1, 4 and 5 respectively in the presence of a
peptide substrate113. In animal studies, VX-765 has been shown to
protect LPS-challenged mice by inhibiting caspase 1, thus
decreasing the production of IL-1b/IL-18. VRT-043198 selec-
tively inhibits inflammatory caspases without inhibiting apoptotic
caspases. This selectivity for inflammatory caspases makes it safer
for the treatment of inflammatory diseases, in contrast to the pan-
caspase inhibitors113. This drug is currently in phase II trials for
psoriasis, while phase II trials for Alzheimer’s disease have ceased
due to the discovery of insignificant efficacy levels. In mice, VX-
765 also showed a significant benefit in skin inflammation8,114.

7-Desacetoxy-6,7-dehydrogedunin (7DG) is a selective inhib-
itor of protein kinase-R (PKR), which plays a kinase-independent
role in pyroptosis115 (Table 1). 7DG inhibits PKR by binding to its
C-terminus, preventing ASC oligomerization in both the NLRP1
and NLRP3 inflammasome pathways. When macrophages are
challenged with Bacillus anthracis (anthrax) lethal toxin (LT),
7DG treatment almost completely blocked pyroptotic cell death
with an IC50 of 5 mmol/L112. Although this compound has shown
high efficacy in blocking pyroptosis, PKR also participates in
apoptosis and plays a vital role in the actin dynamics within
cells116, making it an unideal drug target.

Disulfiram, an inhibitor of the enzyme acetaldehyde dehydro-
genase, is an FDA-approved drug to help patients overcome
alcoholism (Table 1)117. It has been suggested to be useful for
cancer prevention in alcohol-dependent people, showing a sig-
nificant decrease in the development of cancer118. Disulfiram was
first discovered to inhibit pyroptosis when existing clinical drugs
were screened in a cell-free assay, measuring Pd3þ-release from
liposomes in the presence of active caspase 11 and GsdmD.
Subsequent studies showed that disulfiram inhibited caspase 1,
caspase 11, and the ring form of GsdmD-N by covalently
attaching to the catalytic cysteines of caspases 1 and 11, and to the
cysteine (human/mouse Cys191/Cys192) within the channel of the
GsdmD-N pore119,120. When LPS-primed macrophages were
treated with disulfiram following nigericin challenge, disulfiram
significantly inhibited pyroptosis in these cells with an IC50 of
7.67 mmol/L. In vivo, disulfiram increased viability in mice
challenged with high doses of LPS119. Disulfiram has been shown
to have inhibitory effects on a variety of proteins with differing
functions. It is speculated that disulfiram’s function is dependent
on the expression level of the target proteins. For instance, when
there is a strong pyroptotic response, it tends to target GsdmD,
whose expression is upregulated. Meanwhile, it primarily targets
acetaldehyde dehydrogenase during alcoholism treatment due to
acetaldehyde dehydrogenase being the rate-limiting enzyme for
ethanol metabolism and its high expression levels in alcohol-
dependent people117,119. Because disulfiram is a safe drug in the
clinic, its repurposing is promising to combat inflammation117,119.

Dimethyl fumarate (DMF) is the methyl ester of fumarate, an
intermediate of the citric acid cycle. It is currently used as an
orally administrated drug to treat relapsing multiple sclerosis.
DMF succinates cysteine C192 of mGsdmD to S-(2-succinyl)-
cysteine, which inhibits activation by inflammatory caspases. This
ultimately results in the inhibition of pyroptosis. When DMF was
used to treat mice models with multiple sclerosis and FMF,
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clinical scores of the treated mice were critically decreased, sug-
gesting that the diseases were alleviated with reduced neuropa-
thology. Interestingly, DMF succinates GsdmE in GsdmD
knockout BMDMs, where GsdmE-dependent cell death was
blocked due to its succination121.

While many of these studies have shown promise in vivo
treating inflammatory diseases of mice, it is important to note that
little data has been reported where clinical research has been done
in human inflammatory diseases. The listed drug candidates above
show promising ex vivo results. However, this can differ greatly
in vivo.
6. GsdmD and membrane repair

Recent evidence has been brought to light that not all cells with an
activated GsdmD protein undergo pyroptosis, suggesting an
alternate repair mechanism cells have in place. Utilizing
mBMDMs and HeLa cells, it has been shown that calcium influx
through GsdmD pores served as a signal for membrane repair
downstream of GsdmD cleavage122. The influx of calcium recruits
the endosomal sorting complexes required for transport (ESCRT)
to the GsdmD pores, where the GsdmD-damaged plasma mem-
brane is repaired. ESCRT uses annexin Vþ vesicles to remove the
damaged membrane that contains embedded GsdmD pores. A
competitive dominant-negative ESCRT mutant revealed an in-
crease in both pyroptosis and IL-1b secretion upon exposure to
LPS as compared to the control, further supporting the repairing
role of ESCRT122,123. Hence, the ESCRT machinery repairs the
GsdmD-damaged membrane to counteract pyroptotic cell death
and cytokine release.
7. GsdmD in other pathways

Proteins of the canonical and noncanonical pyroptotic pathways
have been suggested to be the drug targets for inflammatory dis-
eases such as sepsis3,124. While GsdmD is commonly known to be
activated via the caspase 1 dependent canonical pathway or via
caspase 4/5/11-dependent noncanonical pathway, recent studies
have suggested alternate proteases to cleave GsdmD. The alter-
native proteases for GsdmD have shed light on alternative drug
targets for pyroptosis and inflammatory responses.

As previously mentioned, GsdmD is cleaved at D275 in
humans (D276 in mice) by caspase 1 in the canonical pathway and
caspases 4/5/11 in the noncanonical pathway. Recent in-
vestigations showed that an apoptotic caspase, caspase 8, also
could cleave GsdmD at the same site, providing an alternative
method of activation. This further alludes to caspase 8’s plasticity
within immune functions, including the ability to both induce
apoptosis and inhibit necroptosis, programmed necrosis125. Cas-
pase 8-dependent cleavage of GsdmD was first discovered during
Yersinia pseudotuberculosis infections, where mitogen-activated
protein kinase kinase kinase 7 (MAP3K7/TAK1) and IkB kinase
complex (IKK) are inhibited by the Y. pseudotuberculosis outer
protein J (YopJ). This prevents downstream caspase 1 cleavage,
accompanied by an increase of interleukin 1 (IL-1) secretion. In
this process, GsdmD cleavage is driven by a RIP1-caspase 8
signaling cascade126. Consistently, in vitro experiments utilizing
macrophages with TAK1 inhibition successfully induced the
cleavage of GsdmD by caspase 8 and pyroptosis, independent of
caspase 1/11127. This alternate pathway has further been tested
utilizing a study of IBD in a mice model during which suppression
of FAS-associated death domain protein (FADD) elicited an
enhanced inflammatory response within intestinal epithelial. The
exaggerated inflammation results from caspase 8-mediated
GsdmD cleavage and pore formation, not from ASC-caspase1-
dependent cleavage128. It also suggests that FADD is a key
player in suppressing pyroptosis in favor of non-inflammatory
apoptosis within intestinal epithelial tissues. Consistently, recent
evidence also suggests that caspase 8 is able to directly activate
IL-1b in response to the activation by TLR, death receptor and
dectin-1 pathways129.

While GsdmD cleavage is well established in macrophages and
monocytes, recent studies suggest that neutrophil specific serine
proteases (NSPs) are also capable of cleaving and activating
GsdmD within neutrophils independent of caspases. Neutrophil
expressed elastase (ELANE), a serine protease in cytosolic gran-
ules, has recently been found to cleave GsdmD and produce a
functional N-terminal fragment capable of pore formation on
plasma membranes. The absence of ELANE or GsdmD increases
neutrophil’s lifespan, suggesting ELANE and GsdmD activation
assist in neutrophil death130. The cleavage by ELANE occurs at
C268, seven residues upstream of the caspase 1 cleavage site of
D275 of hGsdmD. Another NSP that cleaves GsdmD is CTSG,
which cleaves at L274 of mGsdmD, two amino acids upstream
from D276 of mGsdmD. The cleaved GsdmD triggers pyroptotic
death and releases inflammatory cytokines, including IL-1b, from
neutrophils. GsdmD cleavage by CTSG is negatively regulated by
Serpinb1 and Serpinb6, suggesting a strict regulation in neutrophil
death pathways and cytokine release131,132. GsdmD-induced
pyroptosis in neutrophils has also been correlated with the
release of neutrophil extracellular traps (NETs) where caspase 11
and GsdmD rupture the neutrophil plasma membrane to extrude
NETs as the last step to execute NET associated cell death
(NETosis)133.

While cleavage and activation of GsdmD via both caspase-
dependent and caspase-independent mechanisms have been
noted, cellular inhibitory pathways of GsdmD inflammasome ac-
tivity have also been studied. Two key players within apoptotic
pathways, caspases 3 and 7, have recently shown negative regu-
lation of GsdmD in human macrophages134. These two caspases
have been suggested to cleave GsdmD via an alternate pathway
resulting in a truncated N-terminal domain dictating a loss of
function. The cleaving by caspases 3 and 7 occurs at D87 of
hGsdmD, as opposed to D275 of caspase 1/4/5 site. This loss of
function within GsdmD has been proposed to execute anti-
inflammatory processes by blocking pyroptosis and promoting
apoptosis134. Consistent with this, a recent study shows that cas-
pase 8-dependent GsdmD-induced cell death is limited by caspase
3 cleavage of GsdmD in mBMDM, while mutation of D88 in
mGsdmD leads to an increase in pyroptosis135.

In addition to pyroptosis and cytokine release, GsdmD also
restricts Type 1 interferon (IFN-1) responses to DNA in the
cytosol, which is to limit the production of damaging interferon.
Like AIM2, cyclic GMP-AMP synthase (cGAS) is a dsDNA
sensor in innate immune cells and promotes cGASeSTING
(stimulator of interferon genes) for IFN-1 production136. Recent
research suggests possible crosstalks between AIM2 and cGAS
pathways in that the activation of GsdmD leads to a potassium
efflux through GsdmD-N pore, which inhibits cGAS sensing and
IFN-1 production7. In endothelial cells, GsdmD can activate
cGAS by releasing mtDNA upon LPS treatment137. Intriguingly,
STING, when triggered by bacterial infection-induced DNA
damage, can also activate GsdmD. In this process, STING is first
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phosphorylated and then interacts with inositol 1,4,5-trisphosphate
receptor type 1 (ITPR1). The STINGeITPR1 complex enables
calcium influx from the stressed endoplasmic reticulum (ER). This
influx of calcium ions further activates caspase 1/11 for GsdmD
cleavage, which releases coagulation factor 3 (F3) to trigger blood
coagulation and sepsis138. These findings suggest the diversity of
roles of GsdmD in both immune and non-immune cells.
8. GsdmD and diseases

Studies using non-small cell lung cancer (NSCLC) cells show that
knockdown of GsdmD increases caspase 3-induced apoptosis of
tumors without apoptotic stimuli, while mouse models show a
decrease in tumor growth upon inhibition of GsdmD139. When the
expression levels of GSDMD mRNA were analyzed from patients
with lung cancers, a high level of GSDMD was shown to be
associated with NSCLC. When NSCLC was subcategorized as
lung adenocarcinoma and lung squamous cell carcinoma, GsdmD
expression is correlated with the former for larger tumors and poor
prognosis139. It has also been shown that acid reflux can cause
pyroptotic cell death, which subsequently causes esophageal
cancers. Similarly, overexpression of GsdmD has also been
associated with cancer development in the bladder140. Paradoxi-
cally, pyroptosis is suppressed in many cancer types, with studies
showing that pyroptosis has hindering effects on cancer prolifer-
ation and metastasis141, such as in ovarian cancer142, colorectal
cancer143, and gastric cancers144. GsdmD is either down-regulated
or inhibited within these cancers, preventing the death of the
cancerous cells.

Alzheimer’s and Parkinson’s diseases are neurodegenerative
diseases in aging populations. Chronic neuronal inflammation
plays a major role in the neural degeneration seen in Parkinson’s
and Alzheimer’s diseases8,145. A linkage of GsdmD to both Alz-
heimer’s and Parkinson’s diseases have been suggested. After
treatment with VX-765, a caspase 1 inhibitor, mice with Alz-
heimer’s disease display more activity and a higher memory score
than without treatment8. On a cellular level, neuronal death is
protected by VX-765. This further suggests a connection to the
inflammatory death of neurons via GsdmD mediated pyroptosis8.

Vascular disease has also been shown to be related to inflam-
masome activation and pyroptosis pathways. Atherosclerosis is a
chronic inflammatory disease that is related to endothelial
dysfunction in vascular walls. This disease is characterized by the
buildup of fat- and calcium-rich plaques, where cell death is
triggered, and inflammatory cells are recruited. Although the full
mechanism of plaque formation is not elucidated, it was found to
directly activate the AIM2 pyroptotic pathway146 resulting in
GSDMD activation and pyroptosis of vascular smooth muscle
cells146. When AIM2 was overexpressed, ApoEe/e mice fed a
high-fat diet had larger plaque lesions where pyroptosis was
prominent146. Another study showed that aspirin, known for de-
cades to have anti-inflammatory effects, inhibits NLRP3 activation
in mice vascular endothelial cells. The results warrant further
research for the protective effects of aspirin for cardiovascular
diseases associated with NLRP3 inflammasomes147.

In 2010e2012, arthritis was found in an estimated 23% (more
than 52 million) of adults in the U.S., with the most common
treatment medications being non-steroidal anti-inflammatory
drugs (NSAIDs)148. Gouty arthritis (gout) is a well-studied disease
with respect to its relationship to GsdmD. Gout is caused by uric
acid crystal formation in joints during purine degradation. This
disease is exacerbated by activation of the NLRP3/GsdmD
pathway in neutrophils, causing the release of activated ILs149.
The prevention of IL activation in the NLRP3 pathway alleviates
gout symptoms149. Calcium pyrophosphate deposition disease,
commonly referred to as pseudogout, participates in pyroptosis the
same way as gout, with the main difference being calcium pyro-
phosphate deposit instead of uric acid deposit95.

FMF, also known as autoimmune encephalomyelitis, is the
most common hereditary autoinflammatory disorder. FMF is
caused by mutations on the MEFV gene, encoding pyrin. The
symptoms of FMF are fever, serositis, and ventral pain. Cells that
have mutations within MEFV have uncontrolled pyroptotic death,
which is triggered by the activation of the pyrin inflammasome.
Consistently, the viability of GsdmDe/e cells, which contain
MEFV mutations, are significantly higher than cells expressing
GsdmD, and the viability of GsdmDe/e/caspase 1�/� cells is even
greater150. Anti-inflammatory drugs are currently used to treat this
chronic disease.

Diabetic kidney disease (DKD), also called diabetic nephrop-
athy, is caused by prolonged uncontrolled diabetes. DKD is the
major cause of end-stage renal disease. Pyroptotic cell death of
renal tubular cells has recently been suggested to cause the pro-
gression of DKD. Upregulation of TLR4 and GsdmD is found in
DKD patients and DKD animal models, which is subsequently
associated with TLR4/NF-kB signaling pathway151.

Steatohepatitis is a type of nonalcoholic fatty liver disease. A
pathologic hallmark is chronic inflammation of the liver and
buildup of fat within liver cells. GsdmD has recently been
revealed to play a critical role in steatohepatitis in that GsdmDe/e

mice with nonalcoholic fatty liver disease have less hepatic
fibrosis and cytokine production. When GsdmD is over-expressed,
the mice have an increase of GsdmD-N, pyroptosis, and a decrease
in overall activity score152. In addition to its role in inflammation,
GsdmD also regulates lipogenesis and the NF-kB signaling
pathway in steatohepatitis. Currently, there is no drug approved to
treat steatohepatitis, and GsdmD is a potential drug target.

While GsdmD has been found to be involved in provoking liver
diseases such as steatohepatitis, it has also been shown to improve
hepatocyte viability in noninfectious liver injuries such as
acetaminophen-induced liver damage. A recent study utilizing
GsdmDe/e mice shows that GsdmDe/e mice have a significantly
higher level of liver damage when exposed to toxic levels of
acetaminophen153. This is correlated with an increase in caspase
8-induced apoptosis or/and necroptosis in GsdmDe/e mice, fa-
voring apoptosis over pyroptosis153. This research further suggests
that GsdmD may play a role in diseases by regulating pyroptosis,
apoptosis and necroptosis.

IBD, including ulcerative colitis (UC) and Crohn’s disease
(CD), are driven by chronic inflammation in the intestines42,94.
IBD are common chronic diseases that share symptoms of nausea,
diarrhea, constipation, and severe abdominal pain. GsdmD-
mediated pyroptotic cell death occurs if these diseases are left
untreated, causing prolonged damage to the bowel. It has been
shown that GsdmD is over-expressed in patients with IBD, trig-
gering the death of the epithelial lining in the bowel94. Treatment
with an anti-pyroptotic compound, ABX464, has reversed bowel
damage of the epithelial cells in mice with CD and has been
shown to be safe for patients with UC154.

HIV is the primary cause of acquired immunodeficiency syn-
drome (AIDS). The disease can be treated with a wide range of
drug cocktails, limiting the progression of AIDS. Current medi-
cations allow for an increase in CD4þ T-cells to the point of AIDS
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remission. CD4þ T-cell death in HIV is caused by the NLRP3
pathway by the formation of GsdmD-N pores on the membrane9.

Both IL-1b and IL-18 play roles in antiviral infections using a
caspase 1 dependent pathway; however, the roles of GsdmD in
viral infections remain largely elusive. Recent work with entero-
virus 71 (EV71), the virus known for causing hand-foot-and-
mouth disease in children, has shown that EV71 disables
GsdmD using its viral protease 3C in host cells. Viral protease 3C,
known for inducing apoptosis, can cleave GsdmD at Q193, 82
residues upper to D275, the caspase 1 cleavage site. Cleavage by
3C resulted in a stunted N-terminal fragment inducing a loss of
function, preventing the induction of pyroptosis within infected
cells155. The result suggests that GsdmD may play a role in
regulating viral infection, possibly by favoring pyroptosis over
apoptosis within virally infected cells. The study shines a light on
the antiviral roles of GsdmD as well as viral abilities to evade
immune responses.

Sepsis occurs when a patient’s body responds over-
whelmingly to infection. Common clinical symptoms include
high lactic acid levels in the blood, fever, hypotension, and, if
left untreated, expiration. Uncontrolled pyroptosis leads to
sepsis, where GsdmD-N pores release a large number of cyto-
kines (IL-18/IL-1b), causing an overwhelming inflammatory
response system-wide. Mice treated with LPS go into septic
shock, which is an established sepsis model156. LPS-induced
caspase 11 inflammasome has been well-established regarding
involvement with sepsis. Mice studies showed that inhibition of
either GsdmD or caspase 11 had increased viability when
exposed to the Gram-negative endotoxins157. Upon co-treatment
of LPS and a GsdmD inhibitor, disulfiram, the number of mice
that expired due to sepsis is significantly lowered120. As such,
proteins of the noncanonical pathway are critical targets for
inhibitor screening treating sepsis.

One study has also found positive results utilizing adrenaline, a
fight-or-flight hormone, to treat sepsis. Adrenaline reduces IL-1b
release in human monocytic cell line THP1 and significantly de-
creases the septic death of LPS-treated mice158. Adrenaline plays
its role by binding to its a-2B adrenergic receptor (ADRA2B), and
inducing the production of cyclic adenosine monophosphate
(cAMP). Subsequently, cAMP activates protein kinase A (PKA),
which then phosphorylates caspase 11 to inhibit its activity for the
cleavage of GsdmD158. A flavonoid, scutellarin, has also been
suggested as a possible treatment for sepsis also believed to inhibit
pyroptosis by affecting the cAMP/PKA signaling pathway159.

Lipid peroxidation, which activates caspase 11 for GsdmD
cleavage, can induce sepsis via GsdmD-mediated pyroptosis in
infections. Glutathione peroxidase 4 (GPX4), an antioxidant
enzyme, protects mice from septic death by degrading hydrogen
peroxide to antagonize lipid peroxidation160. Among the eight
glutathione peroxidases (GPX1e8), GPX4 is the only one upre-
gulated in peritoneal macrophages and peripheral blood mono-
nuclear cells from mice with polymicrobial infections.
Consistently, vitamin E administration showed a similar protective
effect from GsdmD activation by lipid peroxidation160.
9. Conclusions

Pyroptosis induces strong inflammation to defend against intra-
cellular pathogens, and its proper function leads to pathogen
resolution. However, excessive pyroptotic activities will lead to
numerous inflammatory diseases, including autoimmune
disorders. Hence, pyroptotic proteins are targets for drug devel-
opment for inflammatory diseases and sepsis. In addition, GsdmD
is upregulated in many cancer types, suggesting that inhibitors for
GsdmD may be used for cancer treatment. As vital players in
pyroptotic pathways, NLRP3, GsdmD, and caspase 1/4/5/11 are
actively pursued drug targets. Because the inflammatory caspases
are cysteine dependent proteases, suicide inhibitors, containing a
tri-/tetra-peptide and a covalent interaction warhead, are the
frequently designed inhibitors for caspase 1/4/5/11. The tri-/tetra-
peptides, usually selected by peptide library screening, are
preferred sequences at P3eP1/P4eP1 of the cleavage site.
Recently discovered GsdmD inhibitors covalently attach to C191
and inhibit its function of leaking cell contents; however, they
show a lack of specificity by attaching caspase 1/11120 or
GsdmE121. Future drug development should aim for specific in-
hibitors of caspase 4/5/11 or GsdmD. Caspase 1 activates GsdmD
and inflammatory cytokines IL-18 and IL-1b for pyroptosis.
However, caspase 1 inhibitors do not significantly inhibit pyrop-
tosis in mice. Hence, inhibitors upstream of caspase 1 are
considered more potent than inhibitors directly interacting with
caspase 1 or GsdmD. As such, inhibitors antagonizing NLRP3
assembly have been developed and cause the failure of ASC
oligomerization and subsequent caspase 1 activation.

Caspases 1 and 11 seem to use the same chemical mechanism
to cleave GsdmD, which requires the binding to GsdmD-C first.
However, it is puzzling why caspase 1, not caspase 11, could
cleave pro-IL-1b/IL-18. It is unclear how many overlapping roles
gasdermins play in inflammation and cancer, although they all
participate in pyroptosis in a different context. The expression of
gasdermins is differential in tissues. However, it still requires
further understanding of the tissue-specific function of each gas-
dermin, which plays a critical role in related inflammatory dis-
eases and cancers. Enzymes, especially proteases, are critical
players in pyroptosis. Inhibitor design should include further
characterizations of the kinetic mechanisms of caspase 1/11,
aiming to design differential inhibitors as future drugs.

In conclusion, pyroptosis, as a form of programmed cell death,
has implications in many diseases. As a topic of a robust field,
more specific roles of pyroptotic proteins in inflammation and
related diseases are to be elucidated. This will provide further
insight into the mechanisms and treatment of inflammatory con-
ditions and cancers.
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