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A B S T R A C T   

COVID-19 is a pneumonia-like disease with highly transmittable and pathogenic properties caused by severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which infects both animals and humans. Although 
many efforts are currently underway to test possible therapies, there is no specific FDA approved drug against 
SARS-CoV-2 yet. miRNA-directed gene regulation controls the majority of biological processes. In addition, the 
development and progression of several human diseases are associated with dysregulation of miRNAs. In this 
regard, it has been shown that changes in miRNAs are linked to severity of COVID-19 especially in patients with 
respiratory diseases, diabetes, heart failure or kidney problems. Therefore, targeting these small noncoding-RNAs 
could potentially alleviate complications from COVID-19. Here, we will review the roles and importance of host 
and RNA virus encoded miRNAs in COVID-19 pathogenicity and immune response. Then, we focus on potential 
miRNA therapeutics in the patients who are at increased risk for severe disease.   

1. Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 
which causes the coronavirus disease (COVID-19), started as a pandemic 
outbreak on December 2019 in Wuhan, China and rapidly spread across 
the world. Most patients with COVID-19 tend to have mild symptoms 
such as low-grade fever, dry cough, and tiredness. However, patients 
with respiratory failure, type 2 diabetes, heart failure and other car-
diovascular diseases or chronic kidney disease (CKD) are at increased 
risk for severe symptoms [1–4]. Due to the novelty of COVID-19, there 
are no specific treatments approved by U.S. Food and Drug Adminis-
tration (FDA) for this virus; and therefore, there is an urgent need for 
finding effective and safe therapeutic agents. 

MicroRNAs (miRNAs) are a class of endogenously initiated non-
coding RNAs (ncRNAs), which are highly conserved between different 
eukaryotic species and are responsible for gene expression regulation by 
binding to complementary target mRNAs [5]. miRNAs have autocrine 
functions but may also be involved in endocrine and paracrine manners 
through transfer in exosomes [6]. These small RNA molecules can 
mediate responses to infections especially in anti-viral defense. In 

addition, miRNAs bind to the 5′- and 3′-untranslated regions (UTRs) of 
target mRNAs or the amino acid coding sequence (CDS) of the viral 
genome and regulate their pathogenesis [7]. Notably, there are some 
miRNAs encoded by RNA viruses that may evolve in regulation of viral 
and/or host gene expression to promote favorable conditions, which 
lead to viral replication [8]. Host induced miRNAs can have anti-viral 
properties or act as pro-viral factors or help the virus to evade im-
mune response [9]. Studies have indicated that SARS-CoV-2 gains entry 
to the host cells through adhesion and penetration. Then, after nucleic 
acid biosynthesis and maturation, viral particles are released from 
infected cells by exocytosis [10]. During viral infection, a cytokine storm 
may be induced which leads to an excessive immune response that is 
detrimental to host cells [11]. Each of these stages is modulated by a 
subset of miRNAs which can be considered as therapeutic targets in the 
treatment of COVID-19 patients. Hence, modulation of miRNAs might 
mitigate COVID-19 pathological negative effects and decrease host 
damage. Moreover, it has been shown that high-dose single-miRNA 
administration is needed to achieve highest therapeutic efficiency in 
vivo, while on the other hand, it can induce adverse effects. Thus, using 
a cocktail of miRNAs might have reduced off-target side effects and be 
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more efficient than their monotherapy [12,13]. Here, we review the 
available data on genome structure and role of immune system during 
SARS-CoV-2 infection, then functionality of miRNAs in the regulation of 
this process will be summarized. Finally, we will shed a light on possible 
therapeutic targets in patients susceptible to severe diseases. 

2. SARS-CoV-2 genome structure 

SARS-CoV-2 is an enveloped single stranded positive RNA virus, 
which possesses a large genome size (29.9 kb), and belongs to the family 
Coronaviridae in the Nidovirales order and Beta coronavirus (β-CoV) 
genus [14]. It has been revealed that the CpG dinucleotides in 
SARS-CoV-2 genome occur with a low frequency that shows virus evo-
lution and adaptation in its hosts [15]. The genome of SARS-CoV-2 
comprises a variable number of open reading frames (ORFs) with 5’ 
and 3’ flanking UTRs which code for accessory proteins, structural 
proteins including spike (S), membrane (M), and envelope (E) and 
nucleocapsid (N) along with 16 nonstructural proteins (nsps), which are 
encoded by the first ORF (ORF1/ab) through a frameshift mutation 
producing pp1 a and ab (Fig. 1) [16,17]. Viral chymotrypsin-like pro-
tease (3CLpro) or the main protease (Mpro) and one or two papain-like 
proteases, play key roles in translational processing of these two poly-
peptides and convert them into 16 nsps. Nsps are required for 
replication-transcription complexes (RTC) associated with cellular 
membranes. Furthermore, ORF3a, ORF6, ORF7a, ORF7b, and ORF8 are 
processed into six accessory proteins, and structural proteins derived 
from ORFs 10 and 11 genes [18]. 

3. SARS-CoV-2 infection and the immune system 

During viral infection, both the innate and adaptive immune re-
sponses are activated. Dendritic cells (DCs) and macrophages (Mfs), 
members of the mononuclear phagocyte system (MPS), are sentinel 
innate immune cells that combat viruses and bridge the innate and 
adaptive immune responses by antigen presentation to T cells. Studies 
have shown that following infection with COVID-19 virus in respiratory 
system, oxidized phospholipids (OxPLs) are produced through enzy-
matic or non-enzymatic reactions, which activate monocyte-derived 
macrophages that lead to induced-production and secretion of type I 

interferon cytokines such as interleukin 6 (IL-6) and tumor necrosis 
factor (TNF) [19]. Therefore, type I interferons can induce the expres-
sion of angiotensin-converting enzyme 2 (ACE2), a spike protein re-
ceptor, which facilities entry of SARS-CoV-2 to the macrophage 
cytoplasm [20]. Pattern-recognition receptors (PRRs), including toll like 
receptor (TLR), retinoic acid-inducible gene I (RIG-I)-like receptors 
(RLRs) such as retinoic acid-inducible gene I (RIG-I) and melanoma 
differentiation-associated gene 5 (MDA5) at the cytoplasmic level can 
recognize viral genetic material and induce the innate immune response 
[21]. For instance, SARS-CoV-2 is recognized by TLR7 in endosomes that 
is essential in the defense against viral infections, and activates the 
myeloid differentiating primary response gene 88 (MyD88) pathways 
and ultimately increases TNFα, IL-1β, IL-6, IL-12, and interferon α (IFNα) 
expression [22]. IL-8 secreted by cells also can attract neutrophils and T 
cells which can significantly reduce the number of circulating T cells 
[23,24]. TLR3 and TLR4 use TNF receptor associated factor (TRIF) and 
activate interferon regulatory factor 3 (IFR3) and nuclear factor kappa B 
(NF-kB), and finally induce production of type I, IFNα/β [25]. Further-
more, TLR4 binds to the spike protein, and also can interact with MyD88 
and amplifies the inflammatory responses [25]. 

In addition, RLRs detect the RNA virus and mainly cooperate in 
signaling crosstalk networks with TLRs. RIG-I and MDA5 bind to 
molecule mitochondrial antiviral-signaling protein (MAVS) which leads 
to activation of the transcription factors, IRF3/7 and NF-κB through 
recruitment of TRAF3/6 and inhibitory-NF-κB kinase (IKK) [22]. Acti-
vation of these transcription factors, in turn, results in upregulation of 
pro-inflammatory cytokine and IFN production. Based on previous in-
vestigations, E, ORF3a, and ORF8b can activate the nod-like receptor 
protein 3 (NLRP3), a critical multi-protein component of the innate 
immune system that belongs to the NLR protein family that recruits and 
activates caspase-1 [26]. Afterwards, pro-IL-1β and IL-18 are cleaved by 
caspase-1 to their active mature forms (IL-1β and IL-18), which are 
secreted and induce pyroptosis, a highly inflammatory form of lytic 
programmed cell death [26–28]. Furthermore, RIG-I also can induce 
IL-1β secretion through interaction with apoptosis-associated speck-like 
protein containing a caspase-recruitment domain (ASC) independent of 
NLRP3 [21]. Upregulation and secretion of IL-1β leads to an increased 
number of activated monocyte-derived macrophages [19]. Furthermore, 
macrophages secrete IL-12 which increases the activation of natural 

Fig. 1. Schematic presentation of the SARS-CoV-2 genome structure along with human miRNA-binding sites in the genome.  
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killer (NK) cells [29]. In turn, type II interferons such as TNF, inter-
feron-γ (IFNγ) and granulocyte–macrophage colony-stimulating factor 
(GM-CSF) derived from NK cells and T cells create a positive feedback 
and increase activated macrophages which can initiate tissue damage 
when overly abundant [19,29,30]. In fact, these cytokines activate 
macrophages through targeting of JAK–STAT and AKT/mTOR/mTORC1 
signaling pathways. Studies have also shown that surface receptors of 
immune cells, Fcγ receptors (FcγRs), can bind Fc portion of IgG and help 
to internalize IgG bound-virus which results in infection production and 
more activation of macrophages [19,31]. 

Research has also revealed that the body activates cellular and hu-
moral immunity responses against COVID-19 and the majority of 
cellular immune responses in COVID-19 infection occurs in CD8+ cells 
[32,33]. T cells have the strongest immunogenicity to epitopes in the 
spike, membrane, and nucleoproteins and it has been shown that T 
helper (Th) cells are needed for effective anti-viral responses by both 
CD8 T cells and B cells. During viral infections, the antigen-specific 
immune response is executed by follicular helper CD4 T cells (Tfh) 
that play a key role in providing assistance to B cells to differentiate and 
secrete high-affinity antibodies. Differentiated B cells increase the 
number of germinal center B cell-like (GCB) cells formation in germinal 
center (GC), the site where activated B cells proliferate, that are required 
for efficient clearance of the virus [32,34]. However, in patients with 
severe COVID diseases reduction in peripheral blood T cells has been 
reported [35,36]. In addition, it was found that greater levels of cyto-
kines are secreted in those patients who have more activated and 
proliferating CD8 and CD4 T cells and Th2 cells. This is associated with a 
cytokine storm can significantly worsen coronavirus disease [37,38]. 
Although T cells are required for proper cellular immune responses to 
COVID-19 infection, a cytokine storm resulting from an unregulated 
adaptive immune system can lead to mortality in this disease. 

4. The therapeutic role of miRNAs for COVID-19 

Research reports have indicated that host miRNAs are actively 
involved in viral infection and replication. Reciprocally viral miRNAs 
can make extensive changes in the host transcriptome. Interestingly, it 
was shown that several miRNAs play vital roles in functionality of 
various immune cell types and host immune homeostasis. Therefore, due 
to the importance of miRNAs in the host-pathogen interactions during 
infection, these small molecules could be considered as anti-viral drug 
targets. Here, we have shortlisted miRNAs as potential therapeutic tar-
gets in COVID-19 (Table 1). 

5. Therapeutic potential of miRNAs for targeting SARS-CoV-2 
replication and pathogenesis 

Upon the transmission of virus, SARS-CoV-2 attaches to host-cell 
receptors and fuses directly with the cell membrane. The SARS-CoV-2 
spike protein is cleaved by the transmembrane serine protease 2 
(TMPRSS2) located on the host cell membrane and utilizes ACE2 for host 
cell entry. Therefore, targeting miRNAs, which are involved in expres-
sion or activation of TMPRSS2 and/or ACE2 has highly potential for 
therapeutic applications against COVID-19. As an initial step that can 
inhibit the host cell entry, miR-98–5p and let-7e-5p can repress 
TMPRSS2 mRNA in human cells [39,40]. Other potential miRNAs which 
have strong binding ability to TMPRSS2 are miR-7–5p, miR-92–3p, 
miR-214–3p, miR-511–3p, miR-4500, miR-6864–3p and let-7a-g/i [5, 
41]. 

ACE2 is a type 1 integral membrane glycoprotein that serves as 
transporter of amino acids and viral receptor [42,43]. A number of 
studies have suggested that miR-143 and miR-421 are negative regula-
tors of ACE2 while, the level of ACE2 is positively correlated with 
miR-27a/b and miR-145 expression [5,44,45]. Moreover, other poten-
tial ACE2 regulators are miR-106b-5p, miR-130a-3p, miR-141–3p, 
miR-200–3p, miR-300, miR-429, miR-2113 and miR-5197–3p [5,46, 

47]. Therefore, targeting the early attachment of the virus should be 
considered as an initial and feasible strategy to fight COVID-19. 

Khan et al. predicted that host miRNAs can mostly target the ORF1ab 
and S regions. However, host miRNAs can also bind and target the M, N, 
ORF3a, ORF7a, ORF8, 5’-UTR, and 3’-UTR regions [9]. Therefore, 
another potential candidate for an miRNA therapeutic is inhibition of 
the mRNA encoding the SARS-CoV-2 S protein [48]. In 2020, a study 
suggested that miR-510–3p and miR-624–5p could interact with the 
ORF of the viral spike mRNA. However, miR-624–5p suppressed the 
translation of the spike RNA more efficiently than miR-510–3p [48]. In 
addition, pab-miRNA-11409d, a miRNA expressed in the gymnosperm 
Picea abies, that has evolved as a defense against viral infection, also 
exhibits nucleotide identity to 3’ region of SARS-CoV-2 spike mRNA; 
and thus it can also be considered for COVID-19 treatment [49]. It has 

Table 1 
miRNAs and their targets involved in COVID-19. miRNAs are shown in nu-
merical order.  

miRNA Changes in 
expression 
level 

miRNA target Reference 

Replication and pathogenesis 
miR-7–5p, miR-92–3p, miR- 

98–5p, miR-4500, miR- 
214–3p, miR-511–3p, miR- 
6864–3p, let-7e-5p, let-7a-g/ 
i 

↓, ↓, ↓, 
↓, ↓, ↓, 
↓, ↓, ↓ 

TMPRSS2 [5,39–41] 

miR-27a/b, miR-106b-5p, 
miR-130a-3p, miR-141–3p, 
miR-143, miR-145, miR- 
200–3p, miR-300, miR-421, 
miR-429, miR-2113, miR- 
5197–3p 

↑, ↓, ↓, 
↓, ↓, 
↑, ↓, ↓, 
↓, ↓, ↓, 
↓ 

ACE2 [5,42–45] 

miR-510–3p, miR-624–5p, 
miR-4661–3p 

↓, ↓, ↓ S [46,47] 

miR-506–3p, miR-6817–5p, 
miR-12199 

↓, ↓, ↓ N [9,48] 

miR-21–3p ↑ replication [39,49] 
miR-323, miR-485, miR-491, 

miR-654, miR-314 
↓, ↓, ↓, ↓, ↓ RdRp [51] 

miR-3154, miR-5197–3p, miR- 
7114–5p 

↓, ↓, ↓ gRNA [50,51]  

Immune regulatory 
miR-136 ↑ RIG-I [11] 
miR-21–3p, miR-21–5p, miR- 

146a, miR-146b, miR- 
155–5p,miR-200c, let-7 

↑, ↑, ↓, 
↓, ↑, ↓, 
↓ 

IL-6 and IL-8 [11,52, 
53] 

miR-17 and miR-93–5p ↓, ↓ IL-8 [10] 
let-7b ↓ IFN1 [54] 
miR-466i ↓ IFNα [54] 
miR-5197–3p ↓ TGFβ [50] 
miR-145 ↓ TNFα [54–56] 
miR-146a, miR-351–5p ↓, ↓ IL-1β, IL-6, 

TNFα, IFNα and 
IFNβ 

[54–56] 

miR-155 ↑ IL-1 [53] 
miR-146a ↓ IL-1, IL-6 and 

TNFα 
[56] 

miR-15a/16, miR-21, miR-29a, 
miR-34a, miRNA-142–5p, 
miR-146, miR-182, miR-194, 
miR-1266 

↓,↑, ↑, 
↓, ↑, ↓, 
↓, ↓, ↑ 

IL-17 [57] 

SARS-CoV-2 coding miRNAs 
miR-147–3p ↑ TMPRSS2 [58,59] 
miR-3934–3p, miR-5197, miR- 

8066 
↑, ↑, ↑ S [58] 

MD2–5p, miR-147–3p ↑, ↑ CHAC1, RAD9 [60] 
miR198–3p ↑ ADAs [60] 
miR-328–5p ↑ RXRA [60] 
miR-66–3p ↑ TNFα [60] 
miR-147–5p ↑ IFNγ [60] 
miR-8066 ↑ NF-kB [58] 
miR-1468–5p ↑ TGF-β1 [58] 

Note: ↓: decreased expression level; ↑: increased expression level. 
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been suggested that miR-4661–3p suppresses the S gene of SARS-CoV-2 
[50]. Furthermore, targeting nonstructural proteins and the nucleo-
capsid can also be considered for COVID-19 treatment. For instance, 
Khan et al., analyzed RNA–RNA interactions of the host miRNA and 
SARS-CoV-2 genome in 67 patients and showed that miR-506–3p, 
miR-6817–5p and miR-12199 can interact with the nucleocapsid mRNA 
of SARS-CoV-2 in most patients [9,51]. 

miRNAs which can regulate viral genome replication or regulate 
their gene expression may also be considered good therapeutic tools. For 
example, miR-2911, a plant-based miRNA, which is enriched in hon-
eysuckle decoction preparation and efficiently inhibits H5N1 and H7N9 
viral replication. This small RNA also has about 30 binding sites on 
COVID-19 genome, therefore it has been proposed to inhibit the 
expression of all proteins of this virus and directly suppresses the 
replication of SARS-CoV-2. Zhou et al., recently showed that exosomes 
containing miR-2911 significantly block the replication of SARS-CoV-2 
[52]. However, miRNA-mediated virus repression is another mecha-
nism to enhance viral replication. For instance, Nersisyan et al., 
observed that miR-21–3p is 8-fold up-regulated during lung infection by 
SARS-CoV-2. It has been reported that in the early stages of infection, 
SARS-CoV-2 interacts with host miR-21–3p to inhibit its replication 
which leads to a delayed immune response and helps viral survival and 
improves reproduction [39]. miR-21–3p has a potential binding site on 
the polyprotein 1a mRNA which is conserved across human coronavi-
ruses. Furthermore, it has been hypothesized that miR-21–3p can also 
decrease the expression of histone deacetylase 8 (HDAC8) gene, an 
important modulator of chromatin structure, and therefore inhibits viral 
replication [39]. RNA-dependent RNA polymerase (RdRp), the RNA 
polymerase responsible for viral RNA synthesis, is a specific substrate of 
the virus with no host cellular homologs could be another more effective 
therapeutic target for treating COVID-19 [53]. To this end, it was shown 
that host miR-323, miR-485, miR-491, miR-654, and miR-3145 interact 
with viral RdRp and restrict viral replication [54]. 

Additionally, use of synthetic complete complementary miRNAs can 
also be an alternative therapeutic approach for inhibiting the repro-
duction of coronaviruses. For example, in a bioinformatic analysis of 
miRNA binding sites on SARS-CoV-2 genome conducted by Ivashchenko 
et al., it was shown that miR-5197–3p has effective interactions with 
SARS-CoV-2. However, this miRNA also potentially interacts with the 
mRNA of few human genes. Therefore, complementary miRNA 2 (cc- 
miR2) is created by adding G and U nucleotides at the ends of miR- 
5197–3p to increase the free interaction energy of this cc-miR with the 
gRNA of SARS-CoV-2. Thus, cc-miR2 specifically interacts with viral 
gRNA without side effects on human mRNAs [55]. Likewise, Rakhme-
tullina et al. created some cc-miRs based on miR-3154, miR-5197–3p 
and miR-7114–5p which could suppress replication of gRNA of 
SARS-CoV-2 without toxicity or side effects on human coding proteins 
[56]. 

Further targeting of the mRNAs of other key proteins such as the 
Mpro and 3CLpro proteases, with high sequence homology between 
SARS-CoV and SARS-CoV-2, may be a potential applicable treatment to 
SARS-CoV-2. 

6. Targeting immune regulatory miRNAs 

During the cytokine storm, elevated levels of IL-1β, IL-2, IL-6, IL-7, 
IL-8, IL-9, IL-10, IL-17, G-CSF, GM-CSF, IFNγ, and TNFα, as well as 
chemokines such as interferon-inducible protein 10 (IP10), monocyte 
chemoattractant protein 1 (MCP1), macrophage inflammatory protein 
1α (MIP1α) and MIP1β have been detected in patients with COVID-19 
[57]. Thus, targeting miRNAs which are implicated in exacerbated in-
flammatory responses will alleviate the complications associated with 
COVID-19. In mammalian cells, miR-136 binds to the 3′-UTR of RIG-I 
transcript and promotes IL-6 and IFNβ accumulation. Likewise, the 
expression levels of IL-6 and IL-8 were significantly increased by 
miR-21–3p, miR-21–5p and miR-155–5p [11,58,59]. On the other hand, 

miR-146a, miR-146b and miR-200c reduce the expression of IL-6, IL-8, 
and C-C motif chemokine ligand 5 (CCL5) [60,61]. Additionally, it has 
been shown that miR-17 and miR-93–5p suppress the expression of IL-8 
[10]. Furthermore, let-7 can regulate TLR4 and subsequently influences 
the activation of NF-κB. This miRNA also reduces the expression of 
pro-inflammatory cytokine IL-6 and IL-8 [62,63]. In addition, let-7b has 
been shown to regulate type I IFN while IFNα is directly targeted by 
miR-466i. Bioinformatics analysis also indicated that miR-5197–3p, 
which is critical for TGFβ pathway, can specifically bind to SARS-CoV-2 
gRNA without targeting human genes, and therefore it could have sig-
nificant therapeutic effects [56]. miR-145 results in modulation of TNFα 
production whereas, miR-146a or miR-351–5p reduce the production of 
this pro-inflammatory cytokine [62,64,65]. It has been demonstrated 
that targeting IL-1 and IL-17 may also be useful for blocking cytokine 
storm and immunopathology in patients with severe COVID-19 [66]. 
IL-1 is mostly secreted by activated macrophages, neutrophils, and 
epithelial cells, which enhance the production of T lymphocyte–derived 
cytokine and Th2 cell responses. miR-155 upregulates IL-1 signaling 
pathway, while in contrary miR-146a depletion leads to IL-1, IL-6 and 
TNFα overproduction [59,64,67]. Therefore, modulation of these miR-
NAs would be useful in the control of the immune response in severe 
COVID-19 patients. IL-17 is a pro-inflammatory cytokine produced by 
Th17 cells developed from CD4+ T-cells, and excessive production of 
this cytokine is involved in pathogenesis of several autoimmune dis-
eases. miRNA-142–5p, miR-21, miR-1266, and miR-29a positivity 
regulate IL-17 whereas miR-146a, miR-182, miR-194, miR-15a/16 and 
miR-34a can reduce IL-17 levels [68]. Thus, miRNA regulators of IL-17 
would provide potential targets for reduction of immune-mediated 
damage in patients and can alleviate their COVID-19-related 
immunopathology. 

7. Targeting SARS-CoV-2 coding miRNAs 

Previous reports have indicated that viral encoded miRNAs target 
several host immune signaling pathways such as autophagy, IFN and 
mTOR, etc., and thus, play essential roles in pathology of viral infection 
[69,70]. In a study, Liu et al. have predicted that miR-147–3p, which is 
encoded by SARS-CoV-2 can enhance the expression of TMPRSS2 in the 
gut and increase the capacity of the virus for transmission [71]. There-
fore, suppression of miR-147–3p using an antisense oligonucleotide 
might have therapeutic benefits. In another study, it was revealed that 
miR-5197, miR-8066 and miR-3934–3p are involved in N-linked and 
O-linked glycosylation of subunit S1 and S2 proteins which can increase 
the pathogenicity of SARS-CoV-2 [72]. Additionally, Yu et al., found 
three miRNA precursor sequences of the novel coronavirus using their 
newly developed method which needs further study [73]. Evidence 
came from the observation that virus-encoded miRNA, MD2–5p and 
miR-147–3p have regulatory roles on ChaC glutathione specific 
gamma-glutamylcyclotransferase 1 (CHAC1) and checkpoint clamp 
component A (RAD9A) expressions, respectively. Interestingly, CHAC1 
is a mammalian pro-apoptotic enzyme downstream of the pancreatic 
ATF4 eIF2α kinase pathway, while RAD9A is part of a checkpoint pro-
tein complex required for DNA damage repair [71]. As it has been re-
ported, miR-198–3p suppresses IFN responses via enhancing the 
expression of adenosine deaminases acting on RNA (ADARs), which 
results in prevention of PKR (protein kinase R) and MDA5 activation. 
Another viral-encoded miRNA, miR-328–5p, suppresses type I inter-
feron immune response through retinoid X receptor alpha (RXRA) 
activation. However, some miRNAs such as miR-66–3p, miR-147–5p, 
miR-1468–5p and miR-8066 affect inflammatory responses linked to the 
cytokine storm [50,71,72]. 

It has been suggested that SARS-CoV-2-encoded miRNAs are 
involved in apoptosis suppression, regulation of cytoskeleton dynamics 
and assist viral exocytosis and release. The majority of genes involved in 
Ca+ signaling are primary targets of viral miRNAs which play important 
roles as main activators of multiple signaling pathways [9]. Other 
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targets of viral miRNAs are heart and brain development-related path-
ways, so this viral infection is more severe for the patients with estab-
lished cardiovascular diseases [9]. Although majority of the miRNAs 
have a conserved sequence, some mutations have been detected in 
miR-1307–3p and miR-1468–5p of SARS-CoV-2 strains which may be 
linked to its pathogenicity [72]. However, it seems that targeting one of 
highly conserved miRNAs would be an effective approach in prevention 
and a promising therapeutic strategy for all SARS-CoV-2 strains. 

8. Respiratory disease and COVID-19 

The pulmonary system is the main and first organ system affected by 
COVID-19. Lung epithelial cells, alveolar macrophages and DCs are the 
primary cells involved in respiratory immunity [74]. Pulmonary em-
bolism (PE), a serious and potentially life-threatening condition due to a 
blockage of the pulmonary artery, has been reported in severe COVID-19 
patients [75]. Among the identified miRNAs, miR-17–5p is reported to 
play an anti-viral role in respiratory tract infection and forced expression 
of this miRNA can be considered as a potential treatment for COVID-19 
(Fig. 2) [76]. ACE2 is highly expressed in lung epithelial cells; therefore, 
miR-124, miR-135, miR-181a, miR-200c-3p, miR-214, miR-574–5p, 
miR-1246, miR-4262 and let-7b which regulate the expression of this 
receptor in respiratory system could be potential candidates for 
SARS-CoV-2 treatment in lung tissue (Fig. 2). Recent studies have 
indicated that miR-124 and miR-135a which inhibit the proliferation, 
migration and invasion of cancer cells induce downregulation of ACE2 
protein [1,77,78]. Therefore, these miRNAs can be good candidates for 
treatment of COVID-19 patients with lung cancer. In a study, Cao and 
colleagues revealed that miR-181a acts as a tumor suppressor miRNA in 
non-small cell lung cancer (NSCLC) through reduction of IL-17 [79]. 
miR-181a can indirectly reduce the ACE2 expression via targeting RAS 
components [80]. Other good approaches for targeting ACE2 protein 
could be upregulation of miR-200c-3p and suppression of miR-214 
which aid in preventing NSCLC [81,82]. MiR-200c-3p inhibits 

migration of lung cancer via reduction of HIF1α; while, miR-214 induces 
tumor proliferation, invasion, and metastasis by 
FGFR1-WNT/MAPK/AKT signaling pathway [82,83]. 

In pulmonary arterial hypertension (PAH), miR-4262 that affects 
ACE2 expression indirectly via targeting anti-apoptotic gene BCL2, can 
also be considered as a promising novel treatment for COVID-19 patients 
[50,84]. miR-574–5p is an important negative regulator of 
pro-inflammatory response that inhibits TLR4/ NF-kB signaling and 
attenuates acute respiratory distress syndrome (ARDS) [85]. 
miR-574–5p can also contribute to ACE2 expression as well. Further-
more, in NSCLC cells, overexpression of the oncogenic miR-1246 and 
suppression of let-7 enhance the tumorigenicity and metastasis [86,87]. 
Silencing of miR-1246 alleviates LPS-induced lung inflammation by 
reduction of IL-1β and TNFα, and inhibition of ACE2 [88]. let-7 directly 
targets ACE2 and inhibits Idiopathic pulmonary fibrosis (IPF) [89]. 

In a study, Matares et al. discovered that miR-98 can repress 
TMPRSS2 mRNA, a cell surface protein primarily expressed by endo-
thelial cells (Fig. 2) [40]. Additionally, this small RNA is significantly 
less expressed in patients with lung cancer and its modulation leads to 
suppression of IL-10 in B cells and cancer growth inhibition [90]. 
Therefore, in patients with respiratory diseases targeting some miRNAs 
would be a suitable approach for treatment of COVID-19 as it can lead to 
relieving signs and symptoms of the illness as well as targeting 
SARS-CoV-2 infection. 

9. Impact of diabetes, myocardial damage and heart failure, on 
COVID-19 

Diabetes mellitus (hereafter diabetes) is a metabolic disease in which 
the body does not produce or respond normally to the insulin; thus, it 
cannot regulate blood glucose levels. Studies have found a relationship 
between diabetes and increased severity and mortality of coronavirus 
disease [91–93]. Several studies have observed increased cellular 
adaptive stress and thrombotic tendency due to insulin inactivity that 

Fig. 2. Important miRNAs with potential therapeutic benefits for SARS-CoV-2 in patients with respiratory diseases, diabetes, heart failure and kidney diseases. Red 
and blue colors represent upregulated and downregulated miRNAs in patients, respectively. miRNAs are shown in numerical order. 
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may lead to vascular complications and heart failure which can be 
intensified by lung dysfunction after COVID-19 infection [91,94–99]. 
Nevertheless, modulation of miRNAs on cardiovascular system can serve 
as a therapeutic approach for patients with diabetes and COVID-19. 

Some reports suggest that there are higher risks of SARS-CoV-2 
infection, severe illness or mortality among individuals with underly-
ing cardiovascular diseases. Coronaviruses are known to induce damage 
in cardiovascular system in several ways [100–102]. It has been shown 
that infection of cardiomyocytes with SARS-CoV-2 can change the 
expression of genes involved in cellular metabolism and immune 
response, and induce cytotoxic effects. Increases in pro-inflammatory 
cytokines affect heart arrhythmias, rapid blood hypotension, restricted 
blood flow and coagulation with microvascular clotting causing occlu-
sion of small vessels. Anti-viral drugs also can increase cardiac 
dysfunction. Therefore, managing cardiovascular conditions in 
COVID-19 patients appears to be essential. 

Elevated miR-153, miR-208a-3p and miR-375 levels are associated 
with myocardial damage [31,103,104], therefore downregulation of 
these miRNAs could reduce severe COVID-19 infection in patients with 
pre-existing cardiovascular diseases (CVDs) (Fig. 2). miR-208a and 
miR-375, both of which are highly expressed in dilated cardiomyopathy 
(DCM) patients, can induce apoptosis in ischemic cardiomyocytes and 
their downregulation improves cardiac function [31,103,104]. 

ACE2 receptors are widely expressed in the vascular endothelium 
and cardiomyocytes that are involved in heart function and diabetes 
mellitus [2,31,105,106]. Thus, targeting ACE2 expression using miRNAs 
like miR-26b-5p and miR-200c-3p can be important for COVID-19 
infection in patients with pre-existing CVDs [47,107,108]. 

It has been demonstrated that miR-21–5p, miR-155–5p and miR-214 
which are overexpressed in heart failure, control the release of pro- 
inflammatory cytokines in the heart, while miR-125b and miR-223–3p 
improve cardiac function and target components of the insulin signaling 
pathway. Thus, these mRNAs effectively reduce high glucose induced 
endothelial cell injury (Fig. 2) [31,109–113]. In addition, these miRNAs 
also play an anti-inflammatory role [112,114]. Therefore, modulation of 
these miRNAs can be considered as a therapeutic approach for patients 
with diabetes/CVD and COVID-19. Likewise, dysregulation of 
miR-590–3p involved in enriched IL-6 and TNFα expression can lead to 
myocarditis and heart dysfunction. Thus, upregulation of this small RNA 
effectively restores the cardiac function by suppressing NF-κB [112]. 
miR-146a can attenuate myocardial injury and inhibit inflammation 
through reduction of NF-κB level [115]. Furthermore, this miRNA is 
significantly dysregulated in diabetes [64], thus forced expression of 
miR-146a may decreased the poor clinical outcome of COVID-19 in 
patients with sepsis induced myocardial dysfunction or diabetes (Fig. 2). 
There exists some evidence that miR-133a abundance is significantly 
downregulated in the hearts of diabetic patients which causes an upre-
gulation of serum and glucocorticoid regulated kinase 1 (SGK1) and 
insulin-like growth factor receptor 1 (IGFR1) and finally leads to cardiac 
hypertrophy [116]. miR-133a also has anti-inflammatory function 
through targeting IL-6 and IL-8 expression [11]. It appears that upre-
gulation of this miRNA could reduce the severity of COVID-19 in pa-
tients with diabetes (Fig. 2). Another miRNA involved in myocardial 
injury that can target SARS-CoV-2 is miR-30e-3p. It is speculated that 
this miRNA may suppress the replication of the virus through binding to 
a complementary site on the viral RNA genome [2]. Taken together, 
application of anti-miRNAs which improve cardiac function along with 
modulation of specific miRNAs against COVID-19 would help to relieve 
symptoms in patients with severe coronavirus disease. 

10. Kidney disease and COVID-19 

There are some reports demonstrating that renal diseases substan-
tially increase the risk of SARS-CoV-2 infection, and severity and mor-
tality of coronavirus disease [117,118]. Since the only other organ other 
than the heart with elevated ACE2 expression is the kidney, it can be a 

target of COVID-19 infection [119,120]. Interestingly, some previous 
studies have shown adverse effects of SARS-CoV-2 on kidney which 
causes podocyte injury and protein loss through the urine [121–123]. 

The consequence of SARS-CoV-2 on kidney is dehydration which 
leads to a decline in glomerular filtration rate (GFR) and acute kidney 
injury. Another possible mechanism of viral injury is sepsis that can lead 
to a cytokine storm through innate immune response. Rhabdomyolysis 
(RM), a rare but serious muscular condition, has been reported in 
COVID-19 patients, which can lead to kidney damage [124]. Further 
potential mechanisms that SARS-CoV-2 can result in injury on kidney 
are hypertension and toxic drugs. Previous reports indicate that loss of 
miRNA-141, miRNA-200a and let-7 along with upregulation of 
miR-216a increase kidney fibrosis via overexpression of TGFβ expres-
sion [125,126]. Therefore, manipulating the expression of these miRNAs 
could lead to protective effects against kidney fibrosis and COVID-19 
severity through inhibition of TGFβ signaling (Fig. 2). 

It has also been revealed that downregulation of miR-15b-5p is 
involved in sepsis-induced acute kidney injury (AKI) via mTOR signaling 
pathway [127,128]. Kim and colleagues in 2020 showed that this 
miRNA can bind to SARS-CoV-2 (Fig. 2) [129]. Therefore, more studies 
are needed to investigate therapeutic potentials of miR-15b-5p. 

Regarding the importance of ACE2 related changes in renal injury 
during SARS-CoV-2 infection, targeting miRNAs that regulate ACE2 
network would be useful in COVID patients with chronic kidney disease 
as well. For example, it is experimentally validated that miR-181a can 
target the ACE2 mRNA (Fig. 2) [84]. Furthermore, there is a negative 
correlation between miR-181a and hypertension association with renin. 
It has been evident that upregulation of miR-181a is associated with 
upregulation of signaling cascades of adaptive immunity and inflam-
mation [130]. Thus, forced expression of this miR can serve as a ther-
apeutic agent for COVID-19 [131]. 

Another miRNA that can specifically be targeted for curing COVID- 
19 in patients with chronic kidney disease is miR-421 (Fig. 2) [131]. 
Trojanowicz et al., have shown that miR-421 binds to 3’-UTR of the 
ACE2 mRNA [132]. A study conducted by Huanghas revealed that 
miR-125b is required for ACE2 reduction upon high glucose exposure in 
HK-2 renal tubular epithelial cells; therefore it can be a good candidate 
for prevention of diabetic nephropathy (Fig. 2) [57]. miR-18 which is 
highly upregulated following kidney injury and nephropathy, also plays 
a crucial role on ACE2 expression by upregulating the NOX2/ROS 
pathway [133]. Thus, downregulating ACE2 via an anti-miR-18 could 
potentially pave the way for COVID-19 treatment (Fig. 2). Over-
expression of miR-21 which was found to be related over-activated 
immune response and viral replication, can also lead to renal injury 
[39,125,126]. Thus, miR-21 knockdown is suggested to serve as a po-
tential therapeutic agent against SARS-CoV-2 (Fig. 2). Taken together, 
harnessing miRNAs which suppress ACE2 along with modulation of 
immune response might have great curative potential against COVID-19 
associated nephropathy. 

11. Conclusion and future perspectives 

COVID-19 is an infectious and highly transmittable disease which 
continues to represent a most formidable challenge to medicine and 
public health [134]. Considering that the elderly and those with un-
derlying medical conditions such as lung disease, diabetes, heart failure 
or kidney diseases are at increased risk for severe COVID-19, therefore, 
effective, novel and targeted treatments are required against the cause of 
this infectious disease [1–4]. 

A growing number of studies have shown that host and viral encoded 
ncRNAs play important roles in pathology and pathogenesis of human 
viral infections [8,9]. Therefore, targeting the expression of miRNAs 
results in modification of various signaling pathways and cellular pro-
cesses, which can affect the therapeutic efficacy against viral infections. 
In this regard, finding specific miRNAs with potential therapeutic ben-
efits against SARS-CoV-2 depends on the patient’s particular condition 
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or illness, could be considered as a promising strategy to reduce 
COVID-19 severity. For instance, regarding to the importance of ACE2 in 
SARS-CoV-2 infection, miRNA modulators of the ACE2 network might 
be helpful as therapeutic targets for personalized treatment of COVID-19 
patients. Likewise, other treatment candidates that target miRNAs 
involved in the immune response in order to calm the cytokine storm 
and other aggressive inflammatory response in COVID-19 patients. 

Combined treatment with anti-inflammatory and anti-viral miRNAs 
could be more effective than either of them alone. Meanwhile, targeting 
viral genome, key proteins or miRNAs could be a potential antiviral 
strategy for developing effective treatments against this disease. Since 
targeting a single miRNA may regulate a large number of target mRNAs, 
high-dosage of a single miRNA in vivo can lead to serious off-target 
negative side effects. Thus, using a system biology approach for syner-
gistic treatments could require lower doses of a cocktail of multiple 
therapeutic key microRNAs may effectively clear SARS-CoV-2 without 
any adverse effects. 

Generally, targeted delivery, instability and toxicity are the main 
challenges of miRNA-based therapy [135], therefore suitable carrier 
vehicles are needed for efficient and safe delivery of miRNAs to the site 
of infection. In this regard, studies have shown that mesenchymal stem 
cells (MSCs) exhibit tropism for sites of injury or inflammation [136, 
137] and can potentially be used to attenuate the cytokine storm. Thus, 
use of MSCs or their cell-free products might be considered as a prom-
ising treatment option and suitable carriers for delivery of miRNAs to 
the sites of SARS-CoV-2 infection. Cumulatively, targeting a number of 
key miRNAs might be an effective and highly promising tool against the 
virus; however, further research is required to candidate specific miR-
NAs before they can reach clinical trials. 
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