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Abstract
Species may co-occur due to responses to similar environmental conditions, biological associations, or simply
because of coincident geographical distributions. Disentangling patterns of co-occurrence and potential biotic and
abiotic interactions is crucial to understand ecosystem function. Here, we used DNA metabarcoding data from litter
and mineral soils collected from a longitudinal transect in Amazonia to explore patterns of co-occurrence. We
compared data from different Amazonian habitat types, each with a characteristic biota and environmental condi-
tions. These included non-flooded rainforests (terra-firme), forests seasonally flooded by fertile white waters
(várzeas) or by unfertile black waters (igapós), and open areas associated with white sand soil (campinas). We
ran co-occurrence network analyses based on null models and Spearman correlation for all samples and for each
habitat separately. We found that one third of all operational taxonomic units (OTUs) were bacteria and two thirds
were eukaryotes. The resulting networks were nevertheless mostly composed of bacteria, with fewer fungi, protists,
and metazoans. Considering the functional traits of the OTUs, there is a combination of metabolism modes including
respiration and fermentation for bacteria, and a high frequency of saprotrophic fungi (those that feed on dead organic
matter), indicating a high turnover of organic material. The organic carbon and base saturation indices were impor-
tant in the co-occurrences in Amazonian networks, whereas several other soil properties were important for the co-
exclusion. Different habitats had similar network properties with some variation in terms of modularity, probably
associated with flooding pulse. We show that Amazonian microorganism communities form highly interconnected
co-occurrence and co-exclusion networks, which highlights the importance of complex biotic and abiotic interactions
in explaining the outstanding biodiversity of the region.
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Introduction

Patterns of co-occurrence among species have traditionally
been explained by the species’ similar environmental prefer-
ences or tolerances, such as pH range, temperature, habitat
type, and similar biogeographic histories generating coinci-
dent distributions [1–3]. Species co-occurrence can also be
related to biotic interactions, such as predation and parasitism
[4]. Such patterns can be described with the use of ecological
network analyses, an important tool to investigate community
structure and the function and stability of ecosystems [5].
Identifying co-occurrence patterns is essential to grasp the
potential ecological interactions and their impact on biodiver-
sity and ecosystem functioning [6, 7].

In the tropics, patterns of co-occurrence can be extremely
complex due to the high diversity of species inhabiting differ-
ent kinds of habitats. The study of species interactions in trop-
ical environments has been largely neglected (but see [8–12]).
Most studies of co-occurrences have focused on groups of
symbiotic organisms, such as trees and mycorrhizas [13–15]
and trees and seed dispersers [16, 17], and are largely centered
around mutualism [18] and parasitism [19–21]. However,
many other interactions among organisms may play a crucial
role in biotic and/or abiotic interactions in the tropics, such as
those related to nutrient cycling and organic matter decompo-
sition. Unveiling these potential interactions is important to
shed light on the ecological dynamics and ecosystem func-
tions of biodiverse regions.

Microorganisms account for the majority of biodiversity in
any environment, including the tropics [22], being crucial for
ecosystem dynamics such as nutrient recycling [23, 24] and
much of organic soil decomposition [25, 26]. A negative cor-
relation between Amazonian soil organic carbon and soil bio-
diversity has been found, which could be explained by high
soil biodiversity accelerating organic decomposition and sub-
sequently locking carbon in aboveground biomass [27].

Amazonia is the world’s largest tropical forest, covering ca.
3.6% of the global surface while comprising approximately
40% of all rainforest. It harbors 10% of the world’s known
biodiversity [28] and potentially a quarter of the world’s ter-
restrial species [29]. Amazonia is home to a large number of
coexisting and potentially interacting species, which probably
make up one of the most complex webs of life on Earth. As
such, Amazonia provides a wide range of ecosystem services
through its high above- and belowground biodiversity [30],
including water cycling and carbon storage [31–33], which
are mediated through biotic and abiotic interactions.
Amazonia can be divided into four main phytophysiognomies
(hereafter habitats): non-flooded rainforests (terra-firme), for-
ests that are seasonally flooded either by fertile white waters
(várzeas) or by unfertile black waters (igapós), and naturally
open areas associated with white sand soil (campinas). The
geographical location, the degree of connectivity and

isolation, and the soil characteristics of those four main habitat
types are important determinants of their biota [34–36], which
may consequently determine species co-occurrence patterns.

Recent studies have shown that Amazonian habitat types
influence the composition of microbial communities [36].
Microorganism diversity is the richest in campina habitats
[36, 37], in contrast to known patterns of macro-organisms
that show low diversity in these habitats [38, 39]. Campinas
have a highly specialized biota, probably explained by multi-
ple stressors that affect the habitat, such as poor soils and
insular distribution [38]. Likewise, the flooded habitats have
a highly specialized biota due to stress induced by seasonal
flooding [40]. Furthermore, the soil characteristics of all these
habitats are different and explain in part the composition of the
biota, with pH and organic carbon being the most important
soil properties for microorganism richness and turnover [27].
Most microorganisms seem to occur in just one locality and
habitat type [36], indicating a potentially high degree of local
specialization or low detectability. The diversity of microbial
communities and their composition in Amazonia have already
been investigated thanks to advances in high-throughput se-
quencing (HTS) methods [27, 36, 41–45]. However, most of
these studies focused on single properties of the communities,
such as alpha and beta diversity, and less on the potential
interactions betweenmicroorganisms as revealed through eco-
logical networks. The integration of graph theory and network
analysis into metabarcoding studies allows the exploration of
complex community interactions beyond descriptive diversity
patterns [46]. Furthermore, graph properties such as density
(the rate of connection between nodes), transitivity (probabil-
ity for the network to have adjacent nodes interconnected),
and modularity (the degree of segregation between different
modules) from networks may allow an assessment of an eco-
system’s integrity and resilience [47–50].

Here, we explore the potential interactions of microorgan-
isms (bacteria, fungi, and protists) and some plants and meta-
zoans in soil using co-occurrence network analysis in four
localities in Amazonia. These localities are separated by wide
rivers and long distances (Fig. 1) and have previously been
examined for diversity using both richness and the effective
number of operational taxonomic units (OTUs [51]) [27, 36].
We also test for the importance of environmental filters based
on the soil physicochemical properties quantified in each sam-
pled plot [27]. Based on previously identified patterns of OTU
richness and distribution in each habitat [36], we expect that
the co-occurrence networks will show different structures de-
pending on habitat type. We formulated the following specific
hypotheses, based on the current literature: H1: The
Amazonia-wide network will be mostly composed of organ-
isms associated with organic decomposition; H2:
Environmental soil properties, especially pH and organic car-
bon [27, 52], will be the most important factors, acting as key
nodes, to explain co-occurrence in all the networks; and H3:
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The habitat-specific networks will show different network
structures, with the presence of flood pulse (the periodic inun-
dation of floodplains along certain rivers) as the main factor
explaining network properties. We expect that the high envi-
ronmental stress in seasonal flooding forests will act as an
abiotic filter, keeping the same set of specialized organisms
that co-occur for long periods of time, thus, resulting in a
dense and highly connected network (high transitivity, low
modularity).

Material and Methods

Sampling and Sequencing We sampled four main localities
along a longitudinal transect (Fig. 1) in November 2015, a
month of the dry season without inundation of seasonally
flooded forests (around 5 months after inundation peak). The
data was previous published in Ritter et al. [27, 36, 37]. In
each locality, we sampled all of the four habitats (terra-firme,
campinas, várzea, and igapó) whenever they were present

(Fig. 1). We used data from soil and litter metabarcoding of
the V3–V4 region of the ribosomal small subunit 16S rRNA,
targeting bacteria with primers described in Klindworth et al.
[53]; the V7 region of the ribosomal small subunit 18S rRNA
with primers described in Guardiola et al. [54], as well as the
mitochondrial cytochrome c oxidase subunit I (COI) gene,
using the forward primer described in Leray et al. [55] and
the reverse primer described in Meyer [56], both targeting
eukaryotes. Details of sampling and sequencing can be found
in Ritter et al. [36, 37]. Briefly, we filtered the low-quality
sequences, discarded the chimeras, and clustered sequences
into OTUs at 97% similarity using a “greedy” algorithm that
performs chimera filtering and OTU clustering simultaneous-
ly with the USEARCH / UPARSE v. 9.0.2132 Illumina paired
reads pipeline [57].

Classification of OTUsWe classified OTUs into two categories
by habitat occurrence: “specialist” if they occurred in only one
habitat (e.g., only in campinas) and as “generalist” if they
occurred in at least three habitats. These definitions follow

Fig. 1 Map of sampling localities. Inset panels show a zoom-in for each locality with the plot distributions. Localities are shown in different colors, while
habitat types have different color tones. The sampling covers all major habitat types in Amazonia and spans over 2000 km from west to east

Ritter C. D. et al.748



earlier studies on the distribution of organisms in Amazonia as
well as previous analyses of our data [36]. To classify the
OTUs and produce the figures, we used the tidyverse v.1.2.1
[58] and ggplot2 v.3.2.1 [59] R packages in R v.3.6.0 [60].

We assigned OTUs according to the taxonomic classifica-
tion published in Ritter et al. [36]. As far as possible, we used
the class or order for the classification of the OTU. We
assessed the bacterial OTUs for the functional traits using
the FAPROTAX database [61], which we applied to all bac-
teria in our networks. Since several bacteria were assigned to
multiple functional traits, we reviewed all classifications and
assigned them to the most probable or the dominant functional
trait based on the literature and our professional experience.
For protists, we used the study of Adl et al. [62] as a reference.
For fungi, we used the functional classification published for
the same data as in Ritter et al. [63].

Co-occurrence Network Analysis Network analyses were per-
formed using abundance matrices as recommended [3] and the
null model strategy described in Connor et al. [64], which is
regarded as the most reliable strategy for inferring both co-
occurrence and co-exclusion relationships in HTS datasets of
microbial organisms [65]. The analysis was implemented
using the NetworkNullHPC script (https://github.com/
lentendu/NetworkNullHPC). Since our study included data
from three independent sequencing runs, a normalization of
the OTU-to-sample matrices was done to ensure comparabil-
ity between the data. Drawing conclusions from data of inde-
pendent sequencing runs without normalization is prone to
misinterpretations because of technical biases, such as exces-
sive false-positive correlations among sequencing data of the
same runs. To account for this problem, NetworkNullHPC
provides several options for normalizing data from which
we chose the default one. This option considers the expected
sequencing depth of the datasets (by default set to half of the
median read abundance determined through all samples) and
then performs a normalization by scaling the sum of the read
counts in each sample to the expected sequencing depth. After
normalization, NetworkNullHPC conducted the null model
strategy by Connor et al. [64], which consists of (i) a first class
of null models, where noise is added to every entry of the
OTU matrix; (ii) the noise-added matrix is permuted, and
the distribution of similarity scores in the permuted matrix is
used to set the lower bound for the threshold; (iii) the threshold
is applied to derive the observed network. This network is
used to construct the second class of null models, Erdős-
Rényi, based on the average degree, and the Chung-Lu model,
based on the average degree distribution of the network. This
method calculates a consensus network, which contains every
pairwise interaction that is present in at least 90% of theMonte
Carlo samples to define the Spearman correlation threshold
[64]. Furthermore, only OTUs whose read abundances were
higher than 10% of the median read abundance determined

through all samples were kept for the network analyses. Low-
abundant OTUs (including singleton OTUs with a read abun-
dance of (1) were discarded at this point. In the network anal-
yses, OTUs are represented as nodes, and a statistically sig-
nificant Spearman rank correlation, calculated through the
null models described above, between two OTUs is represent-
ed by an edge between the respective OTUs. The networks
contain only OTUs that have a significant co-occurrence or
co-exclusion with at least one other OTU.We further included
soil physicochemical properties (soil texture, exchangeable
bases, pH, organic carbon, phosphorus, and aluminum) of
each sample from Ritter et al. [27] as environmental parame-
ters into the network analysis for considering significant cor-
relations between OTUs and abiotic variables.

We first produced a network with all OTUs recorded in all
samples. We then compared the patterns of co-occurrence in
each habitat type and produced networks for each habitat sep-
arately using all OTUs recorded in a determined habitat. Due
to possible regional variation and differences in the number of
replicates among habitats, we also constructed networks for
each habitat within each locality. Finally, to obtain a better
understanding of significant co-occurrences within different
taxonomic groups, we calculated networks using OTUs of
all samples for bacteria, all eukaryotes, fungi, protists, and
metazoans separately. We then used the tidyverse and igraph
v.1.2.4.1 [66] R packages to combine the resulting classifica-
tion matrices to visualize and explore the networks with the
interactive platform Gephi v.0.9.2, using the Yifan Hu layout
[67].

For comparing co-occurrence patterns within microorgan-
ism communities of the different habitats, we analyzed prop-
erties of the network structure by applying several measures of
the graph theory [68] (for a schematic representation of some
network properties, see Fig. S1): (1) the maximum component
of the network, which is the subgraph that comprises the larg-
est number of nodes (OTUs); (2) the diameter, which is the
number of edges connected in the maximal shortest path
length of the network and describes the size of the maximum
component; (3) the average path length of the network, where
length values closer to 1 indicate a more direct association of
OTUs with each other; (4) the transitivity, which is the prob-
ability of two random nodes (OTUs) being directly or indi-
rectly connected. This measure provides an indication of the
clustering in the whole network, representing the presence of
tripartite relationships (nodes connected by more than one
path); high transitivity means a tightly connected community
and might be indicative of degradation pathways or niche
filtering [69]; (5) two modularity scores that assess the com-
munity structure in the network and show if the community
consists of smaller groups of highly associated OTUs that are
poorly associated with other OTUs. Modules may indicate
different niches and have been used to study habitat prefer-
ences [69]. For this metric, we first calculated the modularity
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of the network and in a second step also identified Louvain
communities in the networks, which are groups of highly as-
sociated OTUs. Inside these groups, we calculated the modu-
larity (LCmodularity) [70].

In addition to those measures, we calculated the
assortativity, which is the tendency of nodes that share a spe-
cific attribute to be connected within the network, for each
main taxonomic group [71]. In other words, we inferred the
chance of OTUs of each taxonomic group being more con-
nected among themselves than with OTUs of other taxonomic
groups. Furthermore, we also calculated the degree of each
node, that is, the number of direct connections it has to other
nodes (Fig. S2 and S3). Finally, we calculated the key nodes,
which are articulation point nodes that have a high between-
ness centrality (the extent to which a node lies on paths be-
tween other nodes), and identified the OTUs that maintain the
network structure and, potentially, mediate several of the pro-
cesses in the community. Key nodes may represent keystone
species, and their removal can cause the ecosystem to collapse
[69]. These structural properties of the network allow compar-
ison among complex networks, making it possible to compare
the networks among habitats and therefore test our hypothe-
ses. All network analyses were calculated using the igraph R
package.

Results

We obtained a total of 39,351 OTUs, of which 9943 (25%)
were classified as bacteria, 6750 (17%) as fungi, 5568 (14%)
as protists, 5107 (13%) as metazoans, and 438 (1%) as
chloroplastida. Many OTUs (10,443; 26%) could not be clas-
sified to any resolved taxonomic level. We decided to keep
them because even though some of them could be technically
compromised, after all clean steps we consider the vast ma-
jority should be true OTUs not yet represented in available
databases, considering the limited reference sequences for
Amazonia. The bacteria were composed mostly of generalist
OTUs (~50%), in contrast to a lower proportion of generalists
among eukaryotes (~25%; Table 1; Fig. 2).

The network analysis considering all samples resulted in
72,577 edges (statistically significant correlations between
pairs of OTUs) involving 2350 OTUs (6% of the total), of
which 61,145 edges involved 2340 OTUs for the co-
occurrence network, and 11,432 edges involved 1343 OTUs
for the co-exclusion network. The Spearman’s rank correla-
tion threshold, calculated based on the null models, was set to
0.43 for the co-occurrence and − 0.42 for the co-exclusion
networks. The number of OTUs, nodes, edges, and the
Spearman’s rank correlation threshold for habitat-specific net-
works are shown in Table S1.

Overall, our Amazonian network comprised highly con-
nected OTUs. The maximum component comprised 2337

OTUs (co-occurrence = 2327, co-exclusion = 1339) with a di-
ameter (the maximal shortest path) of eight edges (both co-
occurrence and co-exclusion). The transitivity—the measure
of the clustering in the network—was 0.386 (co-occurrence =
0.432, co-exclusion = 0). The modularity score (range of −1 to
1) was low, −0.000002 (co-occurrence = −0.000008, co-ex-
clusion = −0.00003), and the LC modularity was 0.469 (co-
occurrence = 0.574, co-exclusion = 0.444).

The assortativity of the network showed that bacterial
OTUs are mainly connected with other bacterial OTUs; sim-
ilarly, eukaryotic OTUs are mainly connected with each other
(Table S2). When we divided the bacteria by phyla and eu-
karyotes into fungi and protist realms, and into the metazoan
kingdom, this tendency was still observed with few excep-
tions, that is, OTUs of one phylum or group will be more
connected with OTUs of the same phyla (Table S2). Due to
the limited number of OTUs classified as Chloroplastida, we
did not calculate assortativity for this group.

For the degree attribute, the co-occurrence network showed
that several bacterial groups were highly connected and served
as hubs (Fig. S2A). The highest degree in the co-exclusion
network, that is the nodes that were most connected (with
more edges) with other nodes, was observed for several soil
properties (pH, sodium [Na], potassium [K], phosphorus (P),
calcium [Ca], magnesium [Mg], the sum of all exchangeable
bases [SB], exchangeable aluminum [Al and H +Al], alumi-
num saturation index [m], Base Saturation Index [V], the ef-
fective cation exchange capacity [t], the cation exchange ca-
pacity [T], and soil texture), and OTUs classified as
Acidobacteria, Actinobacteria, and Proteobacteria (Fig.
S2B). On top of having a high degree, several soil properties
(base saturation index, cation exchange capacity, exchange-
able bases, exchangeable aluminum, aluminum saturation in-
dex, pH, and soil texture) were also identified as key nodes
(Table S3) in the co-exclusion network (Fig. S2B). The values
of each score by habitat are provided in Table 2. We found
that a total of 124 OTUs were classified as key nodes, mostly

Table 1 Number and proportion (in brackets) of OTUs and their
classification by habitat (generalist ≥3 and specialist = 1). More
bacterial OTUs were classified as generalists (~50%) than was the case
for eukaryotes (~25%), while eukaryotes OTUs were more specialist
(~50%) than prokaryotes (~25%)

Group Total Generalist Specialist

All 39,351 10,875 (28%) 20,495 (52%)

Bacteria 9943 5007 (50%) 2761 (28%)

Protists 6568 1659 (25%) 3395 (52%)

Fungi 6750 1394 (21%) 3843 (57%)

Metazoa 5107 1242 (24%) 2763 (54%)

Chloroplastida 438 107 (24%) 231 (53%)

Unknown 10,443 1422 (14%) 7477 (72%)

Ritter C. D. et al.750



bacteria (61%, Table S3). For networks for each taxonomic
group, see Figs. S4–S7.

Although bacteria accounted for approximately half of the
number of OTUs compared to eukaryotes in our data, they
dominated the networks, stressing the importance of

prokaryotes in soil communities. The networks are composed
mostly of Proteobacteria (Alphaproteobacteria) and
Acidobac te r i a (F ig . 3a ) . Othe r g roups such as
Chloroplastida, fungi, protists, and metazoans are also repre-
sented. Most of the OTUs classified as Chloroplastida belong

Fig. 2 The proportion of OTUs per sampling plot. aBoxplot for the main
taxonomic groups showing the mean and 95% quartiles of the
occurrences of OTUs per sampling plot. b The total number of main

taxonomic OTU groups per number of habitats. Most OTUs occur in
fewer than five plots. Bacteria are more generalist (occurring in ≥3
habitats) than eukaryotic groups

Table 2 Properties of habitat-specific networks for all samples in the same habitat (all) and for habitat within each locality (in west-to-east order: BC
Benjamin Constant, JAU Jaú, CUI Cuieras, and CXN Caxiuanã)

Campinas Terra-firme Várzea Igapó

All JAU CUI CXN all BC JAU CUI CXN all BC CXN all BC JAU CUI CXN

Max component All 728 16 14 38 972 14 14 23 38 48 13 16 820 13 11 8 10

Co-occur 666 16 12 34 920 11 11 19 34 16 12 13 745 12 9 7 10

Co-excl 147 16 14 38 322 14 14 23 38 31 13 16 327 13 11 8 10

Diameter All 17 1 1 1 14 1 1 1 1 11 1 1 13 1 1 1 1

Co-occur 20 1 1 1 24 1 1 1 1 6 1 1 17 1 1 1 1

Co-excl 16 2 2 2 15 2 2 2 2 13 2 2 15 2 2 2 2

Average path length All 5.16 1 1 1 4.38 1 1 1 1 4.24 1 1 4.4 1 1 1 1

Co-occur 6.95 1 1 1 5.85 1 1 1 1 1.95 1 1 5.72 1 1 1 1

Co-excl 6.05 1.55 1.6 1.68 5.24 1.56 1.53 1.58 1.68 4.04 1.47 1.55 5.29 1.61 1.52 1.4 1.5

Transitivity All 0.44 1 1 1 0.4 1 1 1 1 0.41 1 1 0.39 1 0.99 1 1

Co-occur 0.46 1 1 1 0.44 1 1 1 1 0.5 1 1 0.42 1 0.98 1 1

Co-excl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Modularity All 0.04 0.96 0.96 0.43 0.01 0.96 0.49 0.45 0.43 0.02 0 0.04 0.002 0 0.37 0.08 0.04

Co-occur 0.06 0.95 0.96 0.47 0.02 0.96 0.96 0.51 0.47 0.06 0.05 0.06 0.004 0 0.62 0.14 0.04

Co-excl 0.26 0.96 0.96 0.89 0.087 0.96 0.15 0.95 0.89 0.16 0.05 0.07 0.003 0.02 0.05 0.96 0.23

LC modularity All 0.64 0.96 0.96 0.86 0.63 0.96 0.95 0.94 0.86 0.89 0.95 0.93 0.56 0.96 0.97 0.97 0.97

Co-occur 0.65 0.95 0.96 0.84 0.7 0.96 0.96 0.94 0.84 0.92 0.96 0.94 0.6 0.96 0.97 0.97 0.96

Co-excl 0.78 0.96 0.96 0.9 0.63 0.96 0.89 0.95 0.9 0.88 0.95 0.91 0.66 0.95 0.96 0.96 0.96

Key nodes All 65 0 0 0 90 0 0 0 0 34 0 0 77 0 0 0 0

Co-occur 28 0 0 0 73 0 0 0 0 22 0 0 59 0 1 0 0

Co-excl 28 14 15 9 73 12 5 15 9 22 7 8 59 13 18 23 7

Assessing Biotic and Abiotic Interactions of Microorganisms in Amazonia through Co-Occurrence Networks and... 751



toMagnoliophyta, mainly from the orders Fabales, Liliopsida,
and Malpighiales. Most fungi are Dikarya, the majority be-
longs to Ascomycota and the remainder to Basidiomycota
(Fig. S5). The metazoans are mostly comprised of Hexapoda
(Fig. S6). Most protists belong to the supergroup SAR (mostly
Rhizaria, followed by Alveolata, and Stramenopiles) followed
by Amebozoa (Fig. S7). The co-exclusion network is smaller
but still features all taxonomic groups (Fig. 3b). For networks
scaled to indicate the degree of each node, see Fig. S2.

Our first hypothesis (H1)—that most OTUs in the network
will be associated with organic decomposition—was support-
ed. Most bacteria were classified as chemoheterotrophic. For
bacterial metabolism, there is a combination of respiration and
fermentation, which are complementary in the context of or-
ganic decomposition. Also, most bacteria were classified as
acidophilic or acid tolerant (Fig. 3 and S8). Most fungi were
saprotrophic, and most protists were bacterivores (Fig. 3).

Our second hypothesis (H2)—that some soil properties
(mainly pH and organic carbon) will be important factors in
explaining the co-occurrence networks—was partially sup-
ported. Soil properties were important for the co-exclusion
network and less important for the co-occurrence network
(Fig. S2, Table S3). For the network considering all OTUs,
only organic carbon (C) and base saturation index (v) were
key nodes in explaining co-occurrence, whereas several other
soil properties were key nodes for the co-exclusion, notably
soil texture, exchangeable bases, aluminum, and pH.

Our third hypothesis (H3)—that habitat networks will show
different network structures related to the presence of flood
pulse as the main factor in explaining the network
properties—was also partially supported. Campinas and
terra-firme networks were more similar in structure and prop-
erties than igapós and várzeas (Fig. 4, Table 2). Várzeas
showed by far the least complex co-occurrence network struc-
ture, but it was the habitat with the lowest number of replicates
(12 samples, Fig. 4, Table 2). For the habitat networks within
each locality, in general, there was a high modularity and
transitivity, and a low average path length, diameter, and max-
imum components, with some regional variation (Table 2).

Discussion

Due to the high diversity and turnover in Amazonia, we could
expect a neutral community assembly due to dispersion limi-
tation [72, 73] and a high redundancy of functional traits in the
microbial community [74], which would result in less con-
nected co-occurrence networks. However, here, we show that
Amazonian microorganism communities form highly inter-
connected co-occurrence and co-exclusion networks when
compared to those of other regions [12, 75]. For instance,
global-scale samples of the Tara Ocean project, with 313 sam-
ples andmore than 1million OTUs, including viruses, showed

a network composed of 29,912 OTUs and 127,000 edges with
an average degree (number of edges per node) of 4.26 [76].
Our results, with a smaller sampling of 39 Amazonian plots
(78 samples, 25% of the number of Tara Ocean samples) still
resulted in a network of 72,577 edges involving 2350 OTUs,
with an average degree of 30.88. In a study surveying soil
bacteria in France, which included 30 soil samples for differ-
ent land use categories (forest, grassland, crop system, and
vineyards), researchers found a range from 16,430 edges in-
volving 1083 nodes in forests to 2046 edges involving 1342
nodes in vineyards [12]. Our study comprised 24 samples for
terra-firme, 24 for igapós, 18 for campinas, and 12 for várzeas,
and ranged from 6223 edges involving 1047 nodes in terra-
firme to 321 edges involving 273 nodes in várzeas. Although
these studies use different methods to calculate the networks,
our results demonstrate the relatively high complexity of
Amazonian networks and highlight the importance of biotic
and/or abiotic interactions in this region.

H1: The Amazonian-wide network will be mostly composed
by organisms associated with organic decomposition: As ex-
pected in our H1, considering bacterial metabolism, there is a
combination of bacteria that rely on respiration (e.g.,
Acetobacteraceae and Planctomycetaceae) and those that rely
on fermentation (e.g., Fusobacteriales and Lactobacillales).
These two groups complement each other in ecological func-
tionality and indicate a high turnover of organic material
underpinned by both metabolisms. Some groups present in
the networks are active in degrading cellulose (e.g.,
Acidothermaceae and Polyangiaceae), which is in agreement
with our litter samples that had a high amount of plant debris.
There are also a few nitrogen-fixating groups, but they do not
seem to be very common. Yet, one third of the bacteria re-
corded in our networks are not assigned to any functional
group or preference, stressing the need for further investiga-
tion of Amazonian bacterial communities. Furthermore, the
majority of fungi found here were saprotrophic, that is, de-
composers of organic matter and, therefore, important agents
in carbon cycling [77]. Unfortunately, archaea were heavily
underrepresented in the results (just 131 OTUs) of our se-
quencing approach. We do not consider this a biologically
meaningful result but rather an artifact of the amplification
process, since archaea are commonly found in soil samples,
where they contribute to, e.g., ammonia oxidation [78, 79].
We therefore decided to exclude archaea from our analyses
and refrain from making any statements about this group of
organisms.

Deforestation alters patterns of co-occurrence, impacting
ecosystem functions [10]. The edges of Amazonian forest
fragments have an increase of soil organic carbon probably
due to high tree mortality [80], but potentially also due to an
alteration of the microbial community [81], which may have
an impact on the rate of organic decomposition and the eco-
system resilience capabili ty. With the increasing
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anthropogenic pressures in Amazonia [82], it is crucial to
understand how biological interactions are linked to decom-
position in Amazonia and the potential effects of microbial
community alteration in the world’s most diverse forest.

H2: Environmental soil properties, especially pH and or-
ganic carbon (Ritter et al. 2018), will be the most important
factors to explain co-occurrence in all networks: Our hypoth-
esis H2 was partially supported. The organic carbon and base
saturation indices were key nodes in explaining co-occurrence
in the general network, whereas several other soil properties
were key nodes for the co-exclusion, such as soil texture,
exchangeable bases, aluminum, and pH. The composition of
microorganisms in the soil is usually determined by physico-
chemical conditions such as phosphorous [83–85], pH [86,
87], and soil moisture [88]. Using the same data, Ritter et al.
[27] showed that pH was the most important factor explaining
the community turnover, and organic carbon the OTU rich-
ness [27]. This is the reason why we expected the pH to be
important for the co-occurrence network, but instead we found
it to be important just for co-exclusion.

Our results showed a predominance of bacteria that grow in
low pH regimes, especially Acidobacteria [89], which are very
abundant in soil. Amazonian soils are acidic, with pH varying
from 3.65 to 5.14 [27], which explains the large presence of
acidophilic organisms in both co-occurrence and co-exclusion
networks. However, in less acidic soils, other groups could co-
occur with acidophilic organisms, but the acidity tends to lead
to increased competition. Phyla associated with low pH, such
as Acidobacteria and Proteobacteria [85, 90], may be better
competitors in more acidic soils. Furthermore, temperature
appears to select for groups that are tolerant to high tempera-
tures up to 40 °C (Fig. S8), which can occur in Amazonia all
year. The soil properties were less important in the habitat-
specific networks. As these soil properties are associated with
the habitat types, and the same habitat presents similar soil
physicochemical conditions [27], the network analysis of hab-
itats may already be controlled by the variation in soil
properties.

H3: The habitat-specific networks will show different net-
work structures, with the presence of flood pulse (the periodic
inundation of floodplains along certain rivers) as the main
factor explaining network properties: Our hypotheses H3

was also partially supported. We expected that the high envi-
ronmental stress in igapós and várzeas due to the seasonal

flooding would act as an abiotic filter, keeping the same set
of specialized organisms that co-occur for long periods of
time, which would result in a dense and highly connected
network. However, both habitat-specific networks were
sparsely connected considering analyses within localities
(Fig. S9–S12). Both habitats remain submerged during most
of the year, up to 240 days [91]. In our data, the seasonally
flooded forests—the várzeas and igapós—were more similar
to each other in terms of community composition [36], which
could be related to similar environmental filters linked to
stress by flooding [92, 93], although the transitivity, that
may indicate niche filtering, of the habitat networks was sim-
ilar. Other factors, such as the random colonization due to
smaller area size than in terra-firme, fragmented habitat distri-
bution [94, 95], or the seasonally introduced species with the
flood pulse that brings organism from river curse, could to
some extent randomize the presence of OTUs. Várzeas differ
from igapós by being a more fertile habitat, as their waters
carry sediments from the Andes [92]. Therefore, a higher rate
of colonization by microorganisms is to be expected in
várzeas than in igapós, which are bathed by acidic, low-
fertile waters [96, 97]. Várzeas may therefore have more mi-
croorganisms that could survive this particular stress condi-
tion, not just specialists. Indeed, várzeas had fewer specialist
OTUs than igapós [36]. The difference between the sampling
size of igapós (24 replicates) and that of várzeas (12 repli-
cates), though, makes a more general comparison between
these habitats difficult.

Communities in campinas (Fig. 4a) resulted in a smaller
network (fewer nodes and fewer edges) than terra-firme (Fig.
4c) and igapós (Fig. 4e, Table 2), but larger than várzeas (Fig.
4g). However, terra-firme and igapós had more replicates (24
each) than campinas (18 replicates). Regarding network prop-
erties, campinas and terra-firme are similar (Table 2).
However, the habitat network of campinas shows two distinct
modules (Fig. 4a) that either represent two different metabolic
pathways, as the dominant bacterial phyla are different in each
module, or indicate that there is a geographical clustering [69].
The geographical clustering could be related to the natural
fragmentation of campina habitats, which makes colonization
more random than in more continuous habitats such as terra-
firme [94, 95]. Yet, comparing the campinas networks
within localities, the localities bathed by acidic,
sediment-poor black waters (Jaú and Cuieras) had more
modular networks (Fig. S9–S12, Table 2). That is also
true for terra-firme, which had the low modularity (0.47
in co-occurrence network; Table 2), in other words a
more connected network in Caxiuanã, a locality bathed
by rich sediments from a white-water river (Fig. S9–
S12). Stressful localities may have a more specialized
co-occurrence community due to the environmental fil-
ters such as low pH, while less stressful localities may
allow more organisms to co-occur.

�Fig. 3 Classification networks for Amazonian organisms, depicting
taxonomic classification for a co-occurrence, b co-exclusion, and
functional traits for c co-occurrence and d co-exclusion. Each OTU is
represented by a node (circle) colored according to its taxonomic (a and
b) or functional traits (c and d). The lines represent the edges connecting
the OTUs. The size of the node represents the OTU abundance. The co-
occurrence network is dominated by bacteria; however, fungi and meta-
zoans were more abundant. Most of the functionally classified OTUs are
associated with organic decomposition
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General Networks Composition Overall, the key nodes of our
networks are mainly affiliated to Proteobacteria (29 nodes, of
which 17 belong to Alphaproteobacteria), Acidobacteria (19),
Planctomycetes (12), and Actinobacteria (10, Table S3). These
are common groups of bacteria in soils in general [52] and also
in our samples [36, 37], being the most frequent groups in our
networks. Alphaproteobacteria are a highly diverse clade of
Gram-negative bacteria with several biological functions, in-
cluding metabolizing C1 compounds [98], fixating nitrogen
[99], endosymbiosis such as the widespread and important ge-
nus Wolbachia [100], and also intracellular pathogenicity
[101]. Actinobacteria are important for the decomposition of
organic matter from soils [102], making a range of nutrients
available to other organisms, which probably explains the im-
portance of this group in the co-occurrence network.
Planctomycetes, a phylum of mostly aquatic free-living bacte-
ria, but also found in soils [103], were also rich in our samples,
with their distribution linked to soil properties such as soil or-
ganic matter, Ca2+, and pH [103]. Interestingly, even though
Planctomycetes are associated with aquatic environments, they
were not the richest in seasonally flooded forests (Fig. 4).

The co-occurrence network for all samples is densely con-
nected, with low modularity and without differentiation ex-
plained by the habitat types, since most OTUs were classified
as habitat generalists. If habitat type was the strongest variable
to explain co-occurrence, the network should present mod-
ules, since groups belonging to a particular module should
have similar environmental preferences [69, 104]. For in-
stance, through analysis of deforestation along an
Amazonian transect, it was possible to differentiate modules
more associated with different degrees of deforestation [10].
The lack of modularity in the network for all samples may be
due to the majority of OTUs (> 98% of nodes in all our net-
works) being classified as habitat generalists (present in three
or four habitat types). The specialist OTUs (present in just one
habitat) were usually local specialists, i.e., recorded in one or
very few plots (Fig. 2), making the co-occurrence and co-
exclusion patterns for specialist organisms hard to detect.
Finally, even though networks for habitats are different from
each other, the resulting pattern when including all samples
may not show any apparent modularity, as patterns for each

habitat are overlaid, and OTUs may present additional con-
nections with OTUs from other habitats, smoothing or hiding
patterns from individual habitats.

The high number of local specialist OTUs is in agreement
with general microbial patterns elsewhere [105, 106] and also
with distribution patterns of Amazonian tree species [95]. It is
also in agreement with the competitive exclusion theory,
which postulates that species with low competitive skills
should be excluded from the community by highly competi-
tive species [107]. Yet, these “poor” competitors remain in the
communities as rare species [108]. In a global-scale study, rare
species were found to have the highest positive association
with each other, whereas common species had more negative
associations [11]. However, that study relied on the number of
observations of macro-organism species (plants and animals)
and defined rare species in terms of low abundance.
Abundance is difficult to quantify in metabarcoding studies
due to PCR biases, such as the false negatives [109]. These
biases will affect the detection of OTUs with low abundance
beyond the intrinsic low detection probability and the stochas-
tic distribution in their habitats due to their small abundance
[110]. Yet, we had a relatively highly populated co-exclusion
networks, which may be related to a high competition in soil
communities, and further supports the exclusion theory in
Amazonian microbial soil communities.

As microbial metabolic functions can differ or overlap, indi-
cating metabolic complementarity or redundancy, they can ex-
plain either co-occurrence due to mutualism or co-exclusion due
to competition [69]. For instance, several bacterial phyla are
syntrophic, with complementary ecosystem functionality, such
as microbial interactions for anaerobic methane oxidation, ther-
modynamic degradation, and nutritional exchange [111]. These
associations potentially reinforce co-occurrence patterns among
these groups and can explain the bacterial dominance in the co-
occurrence networks. On the other hand, bacteria are also dom-
inant in the co-exclusion networks, probably due to competition
between other bacteria and also with fungi and protists.
Examples of antagonist relationships between bacteria and fungi
are well established [112, 113]. Most protists recovered in the
networks feed on bacteria and some on fungi (or both), with few
eukaryotic parasites recorded. Although this pattern is very dif-
ferent from what was found in other Neotropical soils [43], our
results can be explained due to the prevalence of bacteria in our
networks.

Conclusions

We have shown that Amazonian soil communities have a dense-
ly connected network when compared with temperate forests or
oceans. Bacteria dominate both the co-occurrence and co-
exclusion networks. As some bacteria interact in ways that
affect their growth and metabolism, these cooperative

�Fig. 4 Soil community networks by habitat type. a Co-occurrence net-
work and b co-exclusion network for campinas; c co-occurrence network
and d co-exclusion network for terra-firme; e co-occurrence network and
f co-exclusion network for igapó; g) co-occurrence network and h) co-
exclusion network for várzea. Each OTU is represented by a node (circle)
colored according to its taxonomic classification. The lines represent the
edges connecting the OTUs. The size of each node represents the OTU
abundance. Campinas are composed of twomain networkmodules, while
terra-firme and igapós are composed of one main network module.
Várzeas have a co-occurrence network with very low complexity com-
posed of fewer nodes and edges compared to the other habitats
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metabolic interactions can lead to increased growth of
interacting bacteria and ultimately to positive co-
occurrence patterns. On the other hand, competition for
the same resources may lead to an inverse pattern and
explain the dominance of bacteria in co-exclusion net-
works. Co-occurrence patterns may also reflect the re-
sponse of different species to a common environmental
factor rather than their direct interactions. All habitat
networks in Amazonia were similar in structure and
properties. Although co-occurrence networks cannot
map out direct interactions in complex microbial com-
munities, microbial network studies provide a way for-
ward to understand potential intertaxon relationships in
microbial communities.
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