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Abstract

Throughout their life cycle, parasitic organisms experience a variety of environmental conditions. 

To ensure persistence and transmission, some protozoan parasites are capable of adjusting their 

replication or converting to distinct life cycle stages. Trypanosoma cruzi is a 'generalisť parasite 

that is competent to infect various insect (triatomine) vectors and mammalian hosts. Within the 

mammalian host, T. cruzi replicates intracellularly as amastigotes and can persist for the lifetime 

of the host. The persistence of the parasites in tissues can lead to the development of Chagas 

disease. Recent work has identified growth plasticity and metabolic flexibility as aspects of 

amastigote biology that are important determinants of persistence in varied growth conditions 

and under drug pressure. A better understanding of the link between amastigote and host/tissue 

metabolism will aid in the development of new drugs or therapies that can limit disease pathology.
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Introduction

Parasitic protozoans experience diversity in their environmental niches both within and 

between hosts. The variety of these environments includes variations in temperature, 

pH, oxygen saturation, nutrient availability, and immune activity. This heterogeneity can 

profoundly impact survival, metabolism [1], and the propensity to convert to distinct 

developmental stages to maximize transmission potential [2].

The kinetoplastid protozoan parasite Trypanosoma cruzi alternates between triatomine and 

mammalian hosts. T. cruzi can colonize a variety of mammalian species, earning its 

reputation as a 'generalist.' In humans, an infection can result in Chagas disease, which 
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most commonly manifests as cardiomyopathy. In the mammalian host, T. cruzi exists in two 

forms; the extracellular trypomastigote is motile and invades nucleated host cells followed 

by an escape from a transient parasitophorous vacuole and conversion to the intracellular 

amastigote form (Figure 1A). Amastigotes replicate by binary fission and can do so in most 

tissues [3]. Tissue damage and clinical disease are primarily dependent on the presence 

of amastigotes [4], and therefore therapies aim to eliminate these parasites. Following 

several rounds of replication, amastigotes convert to trypomastigotes and lyse the host cell 

to continue the cycle of infection. Parasitemia and tissue burden are high in the acute 

phase of the disease, but most immunocompetent individuals progress to a chronic stage 

characterized by low parasite levels without parasite eradication.

The mechanisms behind this remarkable persistence in diverse host environments, both 

between and within organisms, are still being explored, and their implications on drug 

efficacy are pertinent.

Metabolic flexibility and auxotrophy.

Parasites, by definition, are reliant on a host organism for growth and survival. The clearest 

examples of this dependence are instances where the parasite cannot synthesize a particular 

compound necessary for growth and instead have an absolute reliance on scavenging (i.e., 

auxotrophies). T. cruzi is auxotrophic for aromatic (phenylalanine, tryptophan, and tyrosine) 

and branched-chain acids (valine, leucine, and isoleucine) in addition to arginine, lysine, and 

histidine [5]. Similarly, T. cruzi is unable to synthesize heme [6], vitamins [7] and purines 

[8], making them reliant on salvage/transport pathways (Figure 1B). The free-living insect 

stage (epimastigote) has been commonly used to characterize these transport pathways, 

while less is known about the mechanisms of nutrient acquisition by the intracellular 

amastigote [5].

Conditions under which T. cruzi amastigotes retain the ability to synthesize and scavenge 

specific metabolites are less clear (Figure 1B). The evolutionary conservation of these 

anabolic pathways in the parasite may allow for metabolic flexibility that results in the 

ability of parasites to persist in a variety of environments. In this scenario, variability in 

amount, localization, or composition of scavenged metabolites is potentially balanced by de 
novo synthesis to maintain parasite viability, similar to other intracellular parasites [9–11]. 

Thus, the relative importance of specific host metabolic processes in T. cruzi amastigote 

replication is likely influenced by local environmental factors. These may include inherent 

metabolic differences in tissues colonized by the parasite [12] and arise with host immune 

responses that can control but not eliminate T. cruzi infection from the host.

Below, instances, where metabolites are synthesized and scavenged by T. cruzi are 

highlighted. We discuss the resulting implications for metabolic flexibility with a focus 

on the intracellular amastigote and its host.

Fatty Acids

Trypanosomes are capable of both scavenging fatty acids (FA) and de novo synthesis 

through a modular elongase (ELO) pathway to satisfy bulk fatty acid requirements, 
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including glycosylphosphatidylinositol production [11,13] in addition to maintaining 

components of a conventional type II FA synthase that is localized to the mitochondrion 

[14]. In T. cruzi, conversion to the intracellular, replicative amastigote is accompanied by 

a global transcriptomic shift in the parasite that includes upregulation of the ELO pathway 

transcripts [15]. Yet, the reduction of host FA metabolism or triacylglycerol (TAG) synthesis 

slows intracellular amastigote replication, suggesting that parasite de novo FA synthesis 

cannot wholly compensate for changes to the extracellular lipid environment [16]. These 

data indicate that the FA requirements of intracellular T. cruzi amastigotes are fulfilled 

through a combination of scavenging and synthesis, similar to that described for other 

protozoan parasites. Maintaining the ability for both synthesis and scavenging may allow for 

a degree of flexibility in changing host environmental conditions.

Sterols

Unlike Plasmodium and Toxoplasma, which are sterol auxotrophs [17,18], T. cruzi has 

maintained a pathway for de novo sterol synthesis in addition to scavenging cholesterol 

[19]. The products of these sterol synthesis pathways are ergostane-type sterols, distinct 

from host-derived cholesterol. Disruption of the first committed step of endogenous sterol 

synthesis (i.e., squalene synthase) leads to profound growth and morphological effects 

in both T. cruzi and T. brucei [20,21], suggesting the essentiality of these endogenous 

sterol products. Nevertheless, inhibition of sterol synthesis at points within the de novo 
synthesis pathway is tolerated by Leishmania major, a related kinetoplastid parasite, but 

is accompanied by a reduction in tolerance to various stressors [22,23]. T. cruzi enzymes 

within the de novo sterol synthesis pathway have been explored as drug targets (i.e., 

TcCYP51) due to their assumed essentiality [24]. However, the concept that endogenously 

derived sterols are important for parasite resilience raises the possibility that their 

essentiality is at least partially dependent on external factors or internal metabolic states 

[22].

Oxidative metabolism

T. cruzi amastigote replication occurs after escape from a parasitophorous vacuole, and 

consequently, during replication, amastigotes have direct access to a variety of potential 

nutrient sources. It has generally been assumed that in the host cytosol, amino acids and 

FAs provide the primary sources for energy production [25]. However, amastigotes are 

competent to utilize exogenous glucose, in addition to glutamine to support respiration 

[15,26]. Additionally, the maintenance of spare respiratory capacity by amastigotes predicts 

the ability of the parasite to flexibly meet changing energetic demands [15] like their host 

cells of residence. Overall, the ability of intracellular T. cruzi amastigotes to utilize multiple 

fuel sources likely re-enforces their ability to persist in a variety of dynamic environments. 

Inhibition of amastigote mitochondrial respiration slows but does not prohibit replication 

[27], even though the capacity for β-oxidation, as inferred from enoyl-CoA hydratase 

knockout parasites, is important for amastigote replication [28]. These studies demonstrate 

that amastigote metabolic flexibility includes the ability to rely on non-respiratory carbon 

sources.

Dumoulin and Burleigh Page 3

Curr Opin Microbiol. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Identifying the relative importance of scavenged metabolites to intracellular T. cruzi 
amastigote metabolism is particularly challenging because the host cell remains 

metabolically active as parasites divide. As such, the host cell can readily metabolize 

metabolic tracers before reaching amastigotes, complicating the interpretation of metabolic 

data, particularly for the analysis of metabolites that are rapidly turned over. While the 

ultimate goal is to understand amastigote metabolism inside host cells, several approaches 

directly study amastigotes. Axenically derived amastigotes can be generated from 

trypomastigotes but have distinct growth, morphological and biochemical characteristics 

that differentiate them from intracellular amastigotes [29–31]. Alternatively, amastigotes 

directly isolated from infected cultures are metabolically active but have limited replicative 

capacity. The development of protocols to isolate and profile the metabolites directly from 

intracellular amastigotes should aim to minimize host contamination while being rapid to 

perform to effectively quench parasite metabolism to limit isolation-related metabolic shifts 

[32]. Direct measurement of metabolites from isolated amastigotes will be essential to 

validate the metabolic networks that are predicted from genomic and transcriptional data 

[15,33].

Sensing and responding to external cues.

Metabolites

Parasites can sense, either directly or indirectly, and adapt to changes in their environment 

to ensure persistence or growth within a host while optimizing the potential for transmission 

to a new host. Failure to regulate nutrient uptake in nutrient-rich environments [34] or adjust 

proliferation rates in nutrient limiting conditions [35] can result in parasite elimination. T. 
cruzi amastigotes are able to dynamically regulate their cell cycle by extending the G1 

phase in response to shifting metabolic environments [27]. T. cruzi can also regulate the 

import of molecules such as heme that are necessary for replication but can be toxic when 

in excess [6]. While the sensing mechanisms of these processes are unknown, other parasites 

are capable of monitoring their intracellular metabolic states [35] and use external sensors 

(e.g., flagella) to probe their immediate environment [36,37]. Intriguingly, in addition to 

the predicted presence of intracellular sensors such as AMP-activated protein kinases [38], 

the short flagellum of intracellular T. cruzi amastigotes establishes close contact with host 

mitochondria and may provide a mechanism by which the parasite can gauge the immediate 

intracellular environment of the host cell [39].

Immune Responses

Infection with T. cruzi is followed by a brief incubation period and subsequent progression 

to the acute phase of the disease characterized by microscopically detectable parasitemia and 

nonspecific symptoms. Most infected individuals survive the acute phase and progress to a 

chronic stage where parasitemia is intermittently detectable by PCR. The majority of our 

understanding regarding the dynamics and localization of amastigotes in the chronic phase 

comes from mouse models of infection. In a murine host, T. cruzi can persist at low levels 

[40] in the gut, accompanied by scarce focal growth in other tissues [3,41]. During chronic 

infection, amastigotes remain replicative but have dramatically shifted cell cycle [42]. The 

specific determinants behind this process have not been characterized, but the induction 
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of self-limiting replication to ensure protection from the immune response is not without 

precedence. For instance, Leishmania parasites induce a "stringent response" in tissue 

lesions, limiting parasite growth presumably to limit macrophage activation [43,44]. In 

addition, Leishmania parasites in chronic lesions do not natively utilize all nutrient sources 

available. Instead, they are primed to catabolize nutrients that have limited ROS production 

and therefore allow for persistence in vivo [45], highlighting the link between metabolic 

state and immune evasion. While little is known about switches in T. cruzi amastigote 

metabolism during chronic infection, localized alterations to the host metabolome and 

microbiome have potential implications for pathogenesis [12].

Implications of metabolic heterogeneity and flexibility for drug 

development.

Benznidazole remains the standard for the treatment of T. cruzi infection. Treatment during 

the acute phase appears more efficacious than in the chronic phase, where baseline cardiac 

function and age may influence clinical benefit [46]. However, following treatment, a 

proportion of patients continue to harbor parasites, suggesting that parasites can withstand 

treatment or that benznidazole does not reach a proportion of tissue-resident parasites 

[47,48]. In response to non-lethal amounts of benznidazole in vitro, the amastigote cell 

cycle shifts towards a higher proportion of G1 parasites in a dose-dependent manner. This 

response is consistent with a DNA damage-based mechanism [49] of action followed by 

re-entry into the cell cycle at a rate inversely proportional to drug concentration [27]. By a 

similar mechanism, amastigotes tolerate inhibition of cytochrome b through a dramatically 

slowed cell cycle and have a rapid resumption of growth following the release of inhibition 

[27]. Combined, these observations suggest that the inherent ability of intracellular T. 
cruzi amastigotes to sense and respond through cell cycle plasticity should be taken into 

consideration when evaluating the effects of drug treatment.

Drug screening traditionally employs nutritionally rich grow media and evaluates compound 

efficacies based on a failure of pathogen growth. While the metabolic state and growth 

rate of microorganisms is challenging to uncouple, in bacteria, the metabolic state has 

been shown to impact antibiotic efficacy [50]. Similarly, clinically relevant mutations in E. 
coli central metabolic genes, as opposed to mutations in the targeted pathway, can alter 

basal respiration and modulate drug activity [51]. The diversity of in vivo environmental 

niches coupled with metabolic and growth flexibility of parasitic organisms can complicate 

the utility of pharmacotherapies. For instance, Inhibitors of endogenous ergostane-type 

sterol biosynthesis (i.e., azoles) showed promising preclinical activity, but in contrast to 

benznidazole, a rapid rebound of parasitemia followed the cessation of therapy [47]. In 
vitro, the metabolic environment, particularly the amount of available glutamine (Figure 

2), determines azole efficacy against T. cruzi amastigotes [52]. Interestingly, in the in 
vivo mouse model of chronic infection and under azole treatment, amastigotes persist in 

the large intestine, a site of reduced glutamine availability [53]. These data suggest that 

amastigote metabolic flexibility and the diversity of host environments can potentially result 

in infections that are recalcitrant to specific treatments due to variations in metabolic state.
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Conclusions:

Trypanosoma cruzi is a generalist parasite both in the host range and within-host 

distribution. While such flexibility is likely accomplished through the ability of these 

parasites to sense and respond to environmental perturbations via direct or indirect 

mechanisms, little is known about this capability. One crucial consequence of adaptability 

is that anti-parasitic drugs that induce metabolic changes in T. cruzi amastigotes can be 

contextually efficacious due to the parasite's capacity to exist in various metabolic states 

with the potential to confound new compound screening efforts. Future research will focus 

on understanding how amastigote metabolism allows for growth in diverse environments 

and unravel the processes by which amastigotes sense and respond to their environment. 

Understanding the link between amastigote metabolism and the resident host cell/tissue 

will aid the evaluation of candidate pharmacotherapies with the ultimate goal of disrupting 

processes integral to parasite persistence independent of their environment.
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Highlights

• T. cruzi amastigotes can dynamically respond to changes in their environment

• Growth and metabolic flexibility allow for T. cruzi growth in diverse 

environments

• Mechanisms of T. cruzi growth plasticity have implications for drug 

development
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Figure 1. 
(A) Trypanosoma cruzi infection cycle in mammalian host cells. Motile T. cruzi 
trypomastigotes actively invade nucleated mammalian cells to establish intracellular 

infection. Host cell entry triggers a developmental program [15], resulting in the formation 

of intracellular amastigotes that coincides with the localization of the parasite in the host 

cell cytoplasm. The timing of this process varies with parasite strain and host cell type. 

Replication competent amastigotes are typically formed by 16–20 hours post-infection (hpi) 

and begin to proliferate at ~24 hpi [27]. After several rounds of replication and cell division, 

intracellular amastigotes cease division and differentiate to trypomastigotes that eventually 

egress from the host cell where they can invade other cells. (B) Interaction of intracellular 
T. cruzi amastigotes with host nutrient sources. Generalized model depicting the transport 

of nutrients for which amastigotes have strict dependence on the host cell (auxotrophy) and 

those that can be acquired and synthesized by the parasite (flexibility). Transporters are 

drawn on the plasma membrane for simplicity but can be distributed within the flagellar 

pocket (FP) and cytostome/cytopharynx (C), and other endocytic organelles.
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Figure 2. Schematic illustrating the impact of environmental heterogeneity on the susceptibility 
of intracellular T. cruzi amastigotes to azole inhibitors of parasite sterol biosynthesis.
In cell culture models, a single change in the composition of the medium (the presence 

or absence of supplemental glutamine) alters the outcome of T. cruzi infection following 

exposure to lethal concentrations of azoles [52]. In the presence of supplemental glutamine, 

amastigotes succumb to azoles, whereas glutamine restriction is associated with parasite 

protection at the population level.
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