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Summary:

Estimating population-level effects of a vaccine is challenging because there may be interference, 

i.e., the outcome of one individual may depend on the vaccination status of another individual. 

Partial interference occurs when individuals can be partitioned into groups such that interference 

occurs only within groups. In the absence of interference, inverse probability weighted (IPW) 

estimators are commonly used to draw inference about causal effects of an exposure or treatment. 

Tchetgen Tchetgen and VanderWeele (2012) proposed a modified IPW estimator for causal effects 

in the presence of partial interference. Motivated by a cholera vaccine study in Bangladesh, this 

paper considers an extension of the Tchetgen Tchetgen and VanderWeele IPW estimator to the 

setting where the outcome is subject to right censoring using inverse probability of censoring 

weights (IPCW). Censoring weights are estimated using proportional hazards frailty models. The 

large sample properties of the IPCW estimators are derived, and simulation studies are presented 

demonstrating the estimators’ performance in finite samples. The methods are then used to analyze 

data from the cholera vaccine study.
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1. Introduction

Estimating population-level effects of a vaccine is challenging because there may be 

interference, i.e., the outcome of one individual may depend on the vaccination status of 

another individual. Partial interference is a special case of interference where individuals 

can be partitioned into groups such that interference does not occur between individuals in 

different groups but may occur between individuals in the same group (Sobel 2006). Partial 

interference might be a reasonable assumption if groups of individuals are sufficiently 

separated geographically, socially, and/or temporally. In this paper we consider assessing 

the effects of cholera vaccination based on a study in Matlab, Bangladesh (Ali et al. 2005), 

assuming partial interference based on the spatial location of residences of study participants 

(Perez-Heydrich et al. 2014). Effects due to interference, also known as spillover effects or 

peer effects, are of interest in many areas, including criminology, developmental psychology, 

econometrics, education, political science, social media and network analysis.

Inferential methods about spillover effects have been developed for randomized experiments 

(Rosenbaum, 2007; Hudgens and Halloran, 2008; Baird et al., 2018). However, in 

some settings it may not be feasible or ethical to randomize groups or individuals to 

different treatment or exposure conditions. In the observational setting, Tchetgen Tchetgen 

and VanderWeele (henceforth TV) (2012) proposed inverse probability weighted (IPW) 

estimators for different causal effects when there may be partial interference. Large sample 

properties of these IPW estimators were considered by Perez-Heydrich et al. (2014) and 

Liu et al. (2016). While motivated by observational studies, these estimators may also 

be applied in cluster randomized trials where partial interference is assumed and there 

is non-compliance, i.e., not all individuals receive the treatment assigned to their cluster. 

These estimators are also applicable to settings such as the cholera vaccine study where all 

individuals in the study were randomized but only a subset chose to participate in the trial.

In settings where the outcome of interest is a time to event, the outcome may be subject 

to right censoring due to study completion or participant drop-out. For example, in the 

Bangladesh cholera vaccine trial, some study participants emigrated out of the field trial 

area and hence were lost to follow-up. To date most methods that permit interference do 

not allow for right censored outcomes. One exception is Loh et al. (2020), who allow 

for right censored outcomes and interference, but require treatment to be randomized. 

In the absence of interference, censoring is often accommodated via inverse probability 

of censoring weights along with inverse probability treatment weights (e.g., Robins and 

Finkelstein (2000)).

In this paper, an extension of the TV IPW estimator is considered for observational studies 

where there may be partial interference and the outcome is subject to right censoring using 

inverse probability of censoring weights (IPCW). The proposed methods are developed 

in Section 2. In Section 3 simulation results are presented demonstrating the empirical 

performance of the proposed methods in finite sample settings. In Section 4 the methods 

are used to analyze the Bangladesh cholera vaccine study. Section 5 concludes with a 

discussion.
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2. Methods

2.1 Estimands

Suppose data are observed from m groups of individuals, with ni individuals per group 

for i = 1, … , m. In the cholera vaccine study analysis presented below, participants are 

partitioned into m = 700 groups (neighborhoods) according to the geographical location 

of their household of residence. Let Aij = 1 if individual j in group i receives treatment 

(e.g., vaccine) and Aij = 0 otherwise. Let Ai = (Ai1, Ai2, …, Aini) and Ai,−j (Ai1, Ai2, …, 

Aij−1, Aij+1 …, Aini). Let ai and ai,−j denote possible realizations of Ai and Ai,−j, and let 

A(n) denote the set of all possible 2n treatments for a group size of n = 1, 2, …. Assume 

partial interference and denote the potential time to event for individual j in group i if, 
possibly counter to fact, group i receives treatment ai by Tij(ai). In the motivating vaccine 

study, we are interested in time until incident cholera. The notation Tij(ai) reflects the 

partial interference assumption, i.e., the potential outcome of individual j in group i does 

not depend on the treatment of individuals outside group i. Below the notation Tij(a, ai,−j) 

is sometimes used to make explicit the treatment for individual j and the treatment for all 

other individuals in group i. Let Ti( . ) = {Tij(ai) :ai ∈ A(ni), j = 1, 2, …, ni} denote the set of 

all potential event times for individuals in group i.

Suppose the event times are subject to right censoring, e.g., due to loss to follow-up or study 

completion. Let Cij denote the potential censoring times for individual j in group i. Let Δij 

= 1 if Tij(Ai) ⩽ Cij and Δij = 0 otherwise, and let Xij = min(Tij(Ai), Cij). Define Xi = (Xi1, 

Xi2, … , Xini) and Δi = (Δi1, Δi2, … , Δini). Denote by Lij the vector of baseline covariates 

for subject j in group i and by Li baseline covariates for all subjects in group i, i.e., Li 

= (Li1, Li2, … , Lini). Assume that the m groups are randomly sampled from an infinite 

superpopulation of groups such that the observed data are m i.i.d. copies of Oi = (Li, Ai, Xi, 

Δi).

In the absence of interference, treatment effects are typically defined as contrasts in 

mean potential outcomes for different counterfactual scenarios, e.g., the average treatment 

effect is usually defined as the difference in the mean potential outcome had all 

individuals received treatment versus had no individuals received treatment. Similarly, 

in the setting where there is partial interference, causal effects may be defined as 

contrasts in mean potential outcomes for different counterfactual scenarios. Here we 

consider counterfactual scenarios where the marginal probability that an individual receives 

treatment, Prα(Aij = 1), equals α for different values of α ∈ (0, 1). The notation Prα(·) 

indicates that the probability corresponds to the distribution under the counterfactual 

scenario. Specifically, the Bernoulli treatment allocation strategy (or policy) described in 

TV is considered wherein individuals independently select treatment with probability α. 

Let π(ai, α) denote the probability that group i receives treatment ai under Bernoulli 

allocation strategy α. That is, π(ai, α) = Prα(Ai = ai) = ∏k = 1
ni αaik(1 − α)1 − aik. Similarly let 

π(ai, − j, α) = Prα(Ai, − j = ai, − j ∣ Aij = a) = ∏k = 1, k ≠ j
ni αaik(1 − α)1 − aik.
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The causal estimands of interest defined below are contrasts in the risk of having an event by 

time t for different combinations of treatment a and allocation strategies α. To define these 

estimands, let

F̄ ij(t, a, α) = ∑
ai, − j ∈ A(ni − 1)

I{Tij(a, ai, − j) ⩽ t}π(ai, − j, α),

and

F̄ ij(t, α) = ∑
ai ∈ A(ni)

I{Tij(ai) ⩽ t}π(ai, α) .

In words, F̄ ij(t, a, α) is the probability that individual j in group i will have an event by 

time t when receiving treatment a and the group adopts policy α. Likewise, F̄ ij(t, α) is the 

probability that individual j in group i will have an event by time t when the group adopts 

allocation strategy α. Denote the group average risks by F̄ i(t, a, α) = ni−1∑j = 1
ni F̄ ij(t, a, α)

and F̄ i(t, α) = ni−1∑j = 1
ni F̄ ij(t, α). Let μ(t, a, α) = Eα{F̄ i(t, a, α)} and μ(t, α) = Eα{F̄ i(t, α)} where 

Eα{.} denotes the expected value under the counterfactual setting when policy α is adopted 

in the superpopulation of groups. In the cholera vaccine study described in Section 4, μ(t, 
a, α) denotes the average risk of acquiring cholera by time t when an individual receives 

treatment a and other individuals receive vaccine with probability α.

Various effects of treatment can be defined by contrasts in μ(t, a, α) and μ(t, α). The direct 

effect is obtained by comparing the probability of an event when an individual receives 

treatment versus when not receiving treatment for a fixed allocation strategy. In particular, 

the direct effect at time t corresponding to policy α is defined to be DE(t, α) = μ(t, 0, α) – 

μ(t, 1, α). The indirect (or spillover) effect is the difference in the probability of an event by 

time t for two different policies when the individual does not receive treatment. Specifically, 

the indirect effect is given by IE(t, α1, α2) = μ(t, 0, α1) – μ(t, 0, α2) for allocation strategies 

α1 and α2. An indirect effect can analogously be defined when an individual is vaccinated. 

The total effect is the difference between the probability of an event by time t when an 

individual does not receive treatment under policy α1 and when an individual receives 

treatment under policy α2, i.e., TE(t, α1, α2) = μ(t, 0, α1) – μ(t, 1, α2). Finally, the overall 

effect is the difference between the probability of an event by time t for policy α1 versus α2, 

i.e., OE(t, α1, α2) = μ(t, α1) – μ(t, α2).

2.2 Assumptions

Assume the following:

i. Conditional independent treatment: Ai ⫫ Ti(.) ∣ Li

ii. Treatment positivity: Pr(Ai = ai ∣ Li) > 0 for all ai ∈ A(ni)

iii. Conditional independent censoring: Cij ⫫ Tij(Ai) ∣ {Li, Ai}

iv. Non-censoring positivity: Pr(Δij = 1 ∣ Li, Ai) > 0
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Assumption I states that the potential event times for individuals within the same group 

are conditionally independent of the treatment received by the group given covariates; this 

is a group-level generalization of the usual individual-level no unmeasured confounders 

assumption often made in the absence of interference. In the cholera vaccine study, 

Assumption I would be violated if there was an unobserved common cause of one or 

more components of vaccination status and time to cholera. For instance, individuals who 

were more concerned about cholera may have been more likely to participate in the trial 

and also more likely to practice other measures (e.g., hand washing) to prevent cholera. 

Treatment positivity assumes that each group has a non-zero probability of being assigned 

every possible treatment combination given covariates for the group (Perez-Heydrich et al., 

2014). Assumption II is reasonable in the cholera study because all women and children 

in Matlab were invited to participate in the vaccine trial. Assumption III supposes that 

conditional on baseline group covariates and group treatment, an individual’s failure time is 

independent of their censoring time. Assumption III would be violated in the cholera study 

if there was some variable other than Li and Ai which were prognostic of both the censoring 

and time to cholera. For example, this assumption might not hold if individuals living in 

areas of Matlab with a high burden of cholera were more likely to emigrate outside of the 

study area. Note censoring times between individuals within the same cluster need not be 

independent; indeed, the frailty model introduced below allows for such dependency via a 

cluster random effect. Finally Assumption IV indicates that each individual has a non-zero 

probability of not being censored at each observation time (Rotnitzky et al., 2007). In the 

next section IPW estimators are proposed and shown to be consistent (and asymptotically 

normal) for the direct, indirect, total, and overall effects under Assumptions I-IV.

2.3 Proposed Estimator

In the absence of censoring, the IPW estimator proposed by TV can be used to draw 

inference about μ(t, a, α) and μ(t, α), i.e., the mean potential outcomes under the 

counterfactual setting where policy α is adopted. In particular, letting Yij = I(Xij ⩽ t) 
be the indicator variable that the observation time for individual j in group i is less 

than or equal to t, the TV IPW estimators are μTV (t, a, α) = m−1∑i = 1
m F i

TV (t, a, α) and 

μTV (t, α) = m−1∑i = 1
m F i

TV (t, α) where

Fi
TV (t, a, α) = ni−1 ∑

j = 1

ni π(Ai, − j; α)I(Aij = a)Yij
Pr(Ai ∣ Li, β)

, Fi
TV (t, α) = ni−1 ∑

j = 1

ni π(Ai; α)Yij
Pr(Ai ∣ Li, β)

,

and β is an estimator of the vector of parameters for the propensity model Pr(Ai∣Li, β). 

Details of the propensity model are discussed in the next sections.

In the presence of censoring, the following extension of the TV IPW estimators is proposed: 

μ(t, a, α) = m−1∑i = 1
m F i(t, a, α) and μ(t, α) = m−1∑i = 1

m F i(t, α) where
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Fi(t, a, α) = ni−1 ∑
j = 1

ni π(Ai, − j; α)I(Aij = a)I(Δij = 1)I(Xij ⩽ t)
Pr(Ai ∣ Li, β)SC(Xij ∣ Li, Ai, γ)

,

Fi(t, α) = ni−1 ∑
j = 1

ni π(Ai; α)I(Δij = 1)I(Xij ⩽ t)
Pr(Ai ∣ Li, β)SC(Xij ∣ Li, Ai, γ)

,

SC(t ∣ Li, Ai, γ) = Pr(Cij > t ∣ Li, Ai, γ) and γ is an estimator of the vector of 

the parameters for the censoring model. Details of the censoring model are 

discussed in the next sections. Estimates of the direct, indirect, total, and overall 

effects are given by DE(t, α) = μ(t, 0, α) − μ(t, 1, α), IE(t, α1, α2) = μ(t, 0, α1) − μ(t, 0, α2), 
TE(t, α1, α2) = μ(t, 0, α1) − μ(t, 1, α2) and OE(t, α1, α2) = μ(t, α1) − μ(t, α2).

The proposition below shows that if the group level propensity scores and the individual 

censoring probabilities are known, then the proposed IPCW estimators are unbiased. A proof 

of the proposition is given in Web Appendix A.

Proposition. If Pr(Ai∣Li) and SC(Xij∣Li, Ai) are known for j = 1, 2, … , ni and i = 1, … , m, 

then E{μ(t, a, α)} = μ(t, a, α) and E{μ(t, α)} = μ(t, α).

In observational studies, the conditional distribution of treatment given covariates is un-

known. Likewise, in both observational studies as well as randomized trials, the conditional 

distribution of censoring given covariates is typically not known (one exception being 

studies or trials without drop-out such that the only cause of censoring is the end 

of administrative follow-up at some fixed time point). Therefore, we consider finite 

dimensional parametric models to estimate the group propensity scores and conditional 

probability of censoring; these estimates are then plugged into the IPCW estimators defined 

above.

The conditional probability of censoring is estimated using a shared frailty model (Munda et 

al., 2012) where the conditional hazard for Cij is assumed to have the proportional hazards 

form gij(c∣Li, Ai, ei) = g0(c; θh)ei exp (Lijθc) where g0 is the baseline hazard function, 

θh is the q′-dimensional parameter vector of the baseline hazard function, ei is a random 

effect with density fe(ei; θr), Lij is some user specified function of {Li, Ai}, and θc is the 

q-dimensional column vector of coefficients. The row vector Lij could include, for example, 

covariates and treatment for individual j (i.e., Lij and Aij) as well as the proportion of others 

in the group who receive treatment (i.e., ∑k ≠ jAik ∕ (ni − 1)). Below the dependence of g0 on 

θh is suppressed for notational convenience. Let γ = (θc
T, θℎ

T, θr) be the vector of parameters 

for the frailty model. Maximum likelihood theory can be used to draw inference about γ. 

Under assumption III, the contribution of group i to the log-likelihood corresponding to the 

frailty censoring model, denoted by l(Xi, Δi, Li, Ai, γ), equals
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∑
j = 1

ni
(1 − Δij)[log{g0(Xij)} + Lijθc] + log{( − 1)diℒ(di)( ∑

j = 1

ni
G0(Xij) exp(Lijθc))},

where di = ∑j = 1
ni (1 − Δij) is the number of censored observations in group i, 

G0(ω) = ∫0
ωg0(κ)dκ, ℒ(s) = ∫0

∞exp ( − eis)fe(ei; θr)dei and ℒ(k) is the kth-derivative of ℒ

(Munda et al., 2012). Therefore, the maximum likelihood estimator of γ solves the 

following estimating equations

∑
i

ψck(Xi, Δi, Li, Ai, γ) = 0 for k = 1, …, q + q′ + 1,

where ψck = ψck(Xi, Δi, Li, Ai, γ) = ∂l(Xi, Δi, Li, Ai, γ)/∂γk and γk is the k-th element of 

γ. Below, the baseline hazard for the censoring model is assumed to be constant and equal 

to θh, and the frailty term ei is assumed to follow a Gamma distribution with mean 1 and 

variance θr, such that censoring weights for an uncensored individual can be computed via

SC(t, ∣ Li, Ai, γ) = ∫ Pr(Cij > t ∣ Lij, γ, ei)fe(ei; θr)dei

= ∫ exp { − θℎt exp (Lijθc)ei}
ei
1 ∕ θr − 1exp( − ei ∕ θr)

θr
1 ∕ θrΓ(1 ∕ θr)

dei

= θrθℎt exp (Lijθc) + 1 −1 ∕ θr

Following TV (2012), a mixed effects model may be assumed for the treatment allocation, 

i.e., Pr(Aij = 1∣Lij, bi) = logit−1(Lijθx + bi) where bi is a random effect following density 

fb(bi; θs). (In the application below the mixed effects model has a slightly more complicated 

form owing to the study design.) Let β = (θx
T, θs) denote the (p + 1) dimensional vector of 

parameters for the mixed effects model. Again, maximum likelihood theory can be used 

to draw inference about β. The contribution of group i to the log-likelihood for the mixed 

effects model is given by l(Ai, Li, β) = log Pr(Ai∣Li, β) where

Pr(Ai ∣ Li, β) = ∫ ∏
j = 1

ni
ℎij(bi, Li, θx)Aij{1 − ℎij(bi, Li, θx)}(1 − Aij)fb(bi; θs),

and hij (bi, Li, β) = Pr(Aij = 1∣Lij, bi). The maximum likelihood estimator of β is the solution 

to the score equations

∑
i

ψxk(Ai, Li, β) = 0 for k = 1, …, p + 1,

where ψxk = ψxk(Ai, Li, β) = ∂l(Ai, Li, β)/∂βk and βk is the k-th element of β.
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Inference about the causal effects of interest is then based on solving the vector of estimating 

equations

∑
i

ψ(Oi, θ) = 0, (1)

where θ = (γ, β, θ), ψ(Oi, θ) = (ψc, ψx, ψaα)⊺, ψc = (ψc1, ψc2, …, ψcq+q′+1), ψx = (ψx1, 

ψx2, …, ψxp+1),

ψaα = ψaα(Oi, θ) =
g∗(Oi, a, α, γ)
Pr(Ai ∣ Li, β) − θ,

and

g∗(Oi, a, α, γ) = ni−1 ∑
j = 1

n π(Ai, − j; α)I(Aij = a)I Δij = 1 I(Xij ⩽ t)
SC(Xij ∣ Li, Ai, γ) .

Let θ = (γ, β, μ(t, a, α)) denote the solution to (1). Denote the true value of θ by θ0 = (γ0, β0, 

μ(t, a, α)) and note that

∫ ψaα(o, γ0, β0, μ(t, a, α))dFO(o) = E
g∗(Oi, a, α, γ0)
Pr(Ai ∣ Li, β0) − μ(t, a, α) = 0,

where FO denotes the joint distribution of the complete observed random variable O and the 

last equality follows from the Proposition above. Therefore, assuming the parametric models 

above are correctly specified, it follows that ∫ ψ(o, θ0)dFO(o) = 0. By M-estimation theory 

(Stefanski and Boos, 2002), θ p θ0 and m(θ − θ0) converges in distribution to a Normal 

distribution with mean 0 and covariance matrix £ equal to U(θ0)−1V(θ0){U(θ0)−1}T where 

U(θ0) = E{ − ψ. (Oi, θ0)}, V(θ0) = E{ψ(Oi, θ0)ψ(Oi, θ0)T}, and ψ. (Oi, θ) = ∂ψ(Oi, θ) ∕ ∂θT . 

Consistency and asymptotic normality of the direct, indirect and total effect estimators 

follows from the delta method. Similar techniques can be used to show that μ(t, α)
and the overall effect estimator are also consistent and asymptotically Normal. The 

asymptotic variance Σ can be consistently estimated by Σ = U(θ)−1V (θ){U(θ)−1}T  where 

U(θ) = m−1∑i = 1
m { − ψ. (Oi, θ)} and V (θ) = m−1∑i = 1

m {ψ(Oi, θ)ψ(Oi, θ)T}. The empirical 

sandwich variance estimator Σ can be computed using the R package geex (Saul and 

Hudgens, 2020) and can be used to construct Wald confidence intervals (CIs).

3. Simulation Study

A simulation study was conducted to assess the finite sample bias of the IPCW estimator 

and coverage of the corresponding Wald confidence intervals. The data generating model 

used in the simulation study was motivated by aspects of the cholera vaccine study analysis 

presented in the next section. Following Perez-Heydrich et al. (2014), data were simulated 

according to the following steps.

Chakladar et al. Page 8

Biometrics. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



i. First, two baseline covariates L1ij and L2ij were randomly generated. In the 

application presented in Section 4, conditional independence (assumption I) 

is assumed given an individual’s age (in decades) and the distance of their 

residence to the nearest river. Motivated by this example, L1ij (age) and L2ij 
(distance to river) were randomly generated as follows. First, Vij was randomly 

generated from an Exponential distribution with mean 20, and r1i and r2ij 

were independently sampled from Normal(0, 0.1), i.e., a mean-zero Gaussian 

distribution with standard deviation 0.1. Then L1ij was set to min(Vij + r1i + r2ij, 

100)/10 and L2ij randomly generated such that log L2ij ~ Normal(r1i + r2ij, 0.75).

ii. The random effects for the treatment model bi were randomly sampled from a 

Normal distribution with mean 0 and variance 1.0859.

iii. The treatment indicators Aij were randomly sampled from a Bernoulli 

distribution with mean pij = expit(0.2727 – 0.0387L1ij + 0.2179L2ij + bi).

iv. The potential times to event Tij(ai) were randomly sampled from an Exponential 

distribution with mean μij = 200 + 100aij – 0.98L1ij – 0.145L2ij + 50 

∑k ≠ jaik ∕ ni.

v. The random effects for the censoring model ei were randomly generated from a 

Gamma distribution with mean 1 and variance θr = 1.25.

vi. Censoring times Cij were randomly sampled from an Exponential distribution 

with mean 1/λ0 where λ0 = 0.015 exp (0.002L1ij + 0.015L2ij)ei.

vii. Individual censoring indicators were determined, i.e., Δij = 0 if Cij Tij(Ai).

Steps i through vii were used to stochastically generate 1000 data sets, with each data 

set containing 500 groups with 10 individuals per group. For each simulated data set, 

the IPCW estimator of μ(100, a, α) was evaluated for a = 0, 1 and α = 0.1, 0.2, … , 

0.9. Estimated standard errors based on the empirical sandwich variance estimator and 

Wald 95% confidence intervals were also calculated for each simulated data set. Empirical 

standard errors were calculated by taking the standard deviation of the point estimates from 

all simulations.

The true value of the estimand was obtained by simulating counterfactual outcomes for 

m = 106 groups of individuals. Note that, according to the model used to generate the 

data, potential survival times depend only on ∑k ≠ jaik SO, μ(t, a, α) was approximated by 

(Perez-Heydrich et al., 2014)

m−1 ∑
i = 1

m
ni−1 ∑

j = 1

ni
∑

k = 0

ni − 1 ni − 1
k

I{Tij(a, k) ⩽ t}αk(1 − α)ni − k − 1 .

The true value of μ(t, α) was determined in a similar fashion.

Results from the simulation study are presented in Table 1. Bias of the IPCW estimator 

was negligible for all values of a and α. Likewise, the median estimated standard error was 

close to the empirical standard error. Coverage of the 95% Wald CIs generally approximated 
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the nominal level. However, the results in Table 1 and from other simulations described 

below indicate coverage may differ from the nominal level when α is close to 0 or 1. For 

the observed data generating distribution in the simulations, the probability an individual 

received treatment was approximately 0.6. This suggests caution should be used when 

drawing inferences for values of α far from the observed proportion of individuals treated.

Additional simulation studies were conducted to assess the performance of the proposed 

methods for different values of m, the total number of groups, ranging from 10 to 500. The 

number of individuals per group was 10, as in the previous simulations. For each m ∈ {10, 

50, 100, 200, 300, 400, 500}, 1000 data sets were simulated according to steps i through 

vii above. Results are depicted in Figure 1. Bias of the IPCW estimator was small and 

coverage of the Wald CIs was close to the nominal level, especially as the number of groups 

increased. Details regarding these simulation results are provided in Web Tables 1-6.

In cluster randomized trials with small numbers of clusters, Wald CIs are often constructed 

using a t distribution with m – r degrees of freedom, where r is the number of parameters 

being estimated, rather than a Normal distribution; empirical coverage of Wald CIs using 

the t distribution is also shown in Table 1 and Web Tables 1-6, and was similar to coverage 

based on the Normal distribution, except when m = 10 in which case the t-based CI has 

coverage closer to the nominal level.

Additional simulations for m = 500 and ni ∈ {30, 50, 75, 100, 200} are provided in Web 

Tables 7-11. Bias of the IPCW estimator remained negligible in these scenarios, however 

Wald CIs tended to undercover as the size of the groups increased. Simulations were also 

conducted for a range of censoring rates; see Web Tables 12-14. These tables also include 

performance of the TV IPW estimator, which does not account for censoring; as expected 

the estimator is biased and the corresponding CIs fail to cover at the nominal level, with 

performance worsening as censoring increases.

Validity of the IPCW estimator relies on correct specification of the treatment allocation and 

censoring models. Therefore additional simulations were conducted to assess robustness to 

mis-specification of these models. Web Tables 15-22 summarize performance of the IPCW 

estimator to incorrect specification of the random effect distribution in the treatment model. 

For these simulations, the random effect bi was generated from the distributions in Web 

Figure 1 but assumed to be Gaussian when calculating the IPCW estimator. These results 

demonstrate robustness to mild departures from the assumed random effect distribution, 

whereas more severe mis-specification (e.g., for skewed or bimodal distributions) may result 

in bias and CI undercoverage. Web Table 23 demonstrates robustness of the method when 

the censoring model is mis-specified due to covariate omission. Finally Web Table 24 

summarizes performance of the IPCW estimator when censoring depends on treatment; as 

expected, the results are similar to Table 1, demonstrating the estimator performs well in this 

scenario.

In summary, these empirical results suggest the proposed methods: (i) appropriately account 

for right censoring, unlike the TV estimator; (ii) are best suited for applications where there 
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are many groups and the number of individuals per group is not large; and (iii) tend to be 

robust to mild mis-specification of the treatment allocation and censoring models.

4. Application

4.1 Cholera Vaccine Study and Analysis

In this section, the methods described in Section 2 are used to analyze a cholera vaccine 

study in Matlab, Bangladesh (Ali et al., 2005). Eligible study participants were children 

2–15 years of age and women greater than 15 years old. All 121, 975 eligible individuals in 

the population were randomized to one of three vaccination groups: B subunit-killed whole 

cell oral cholera vaccine, killed whole-cell-only cholera vaccine, and E. coli K12 placebo. 

As in Perez-Heydrich et al. (2014), no distinction is made between the two vaccines in the 

analysis presented here. Individuals were considered to have participated in the randomized 

trial component of the study if they received two or more doses of vaccine or placebo. The 

primary endpoint of the trial was incident cholera. Three health centers in the Matlab area 

served as surveillance centers and collected endpoint data on all individuals, regardless of 

whether they participated in the randomized trial. The analysis presented here includes data 

from all individuals, i.e., trial participants as well as those who chose not to participate. Thus 

an approach which accounts for possible confounding, such as the IPW method described in 

Section 2, should be utilized to assess the effects of vaccination.

Previous analyses of this study suggest the presence of interference (Ali et al., 2005; 

Perez-Heydrich et al., 2014). Interference is plausible in this setting because the vaccine 

may (i) prevent an individual from contracting cholera or (ii) decrease the infectiousness 

or contagiousness of an individual who does contract cholera; for either (i) or (ii), the 

vaccine would make it less likely that such an individual would subsequently infect other 

individuals. However, these previous analyses did not formally account for censoring. Here 

individuals are considered right censored if they were not diagnosed with cholera during 

the study. Individuals who emigrated from the study location or died during the follow-up 

period prior to cholera infection were right censored at the time of emigration or death. 

Individuals who did not emigrate or die and who did not develop cholera during the study 

were right censored at the end of the study period.

Related individuals in Matlab live in collections of houses called baris. There were a total 

of 6,415 baris at the time of the vaccine trial. Perez-Heydrich et al. (2014) used a clustering 

algorithm to form groups (neighborhoods) based on the spatial location of the baris, with the 

number of groups pre-specified to be 700. The analysis here is based on the same groups 

as in Perez-Heydrich et al. and assumes that there is no interference between individuals in 

different groups, i.e, vaccination of an individual in one group has no effect on whether an 

individual in another group contracts cholera. When fitting the propensity model Pr(Ai∣Li, 

β) described below, the largest 15 groups had estimated group propensity scores that were 

effectively equal to zero, and therefore these groups were omitted.

Individuals participating in the vaccine trial were not all vaccinated on the same calendar 

day, such that the level of vaccine coverage within a group varied over a relatively brief 

period of calendar time at the study onset. For simplicity and because the methods developed 

Chakladar et al. Page 11

Biometrics. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



above do not accommodate time varying treatment, the start of follow-up for all individuals 

in a particular group was set to the latest date of second vaccination among all individuals in 

that group. Observations were excluded if individuals contracted cholera (60), died (346), or 

emigrated (3671) prior to the start of follow-up for their group. In total, 94,234 individuals 

were included in the analysis. Among these individuals, 55,413 were unvaccinated, either 

because they received placebo or they did not participate, and 38,821 were vaccinated with 

one of the two vaccines. During follow-up, there were 280 incident cases of cholera among 

the unvaccinated individuals and 74 cholera cases among the vaccinated individuals. Most 

(96%) of censoring was due to end of study follow-up (n = 89, 956), 3.5% of censoring was 

due to emigration (n = 3, 340), and < 1% due to death (n = 584).

As in Perez-Heydrich et al., the group propensity score was modeled using a mixed effects 

model. The particular form of the model derives from the fact that for an individual to 

have received a vaccine, they must have (i) chosen to participate in the trial, and (ii) been 

randomized to receive one of the two vaccines. To account for (i), a logistic regression 

model for participation was assumed. Covariates in the participation component of the 

model were age, squared age, distance to nearest river, and squared distance to nearest 

river. Accommodating (ii) in the propensity model is straightforward because, due to 

randomization, individuals who elected to participate in the trial were known to receive 

one of the two vaccines with probability 2/3. Combining these two aspects of the model, the 

propensity score for group i was estimated by

Pr(Ai ∣ Li, β) = ∫ ∏
j = 1

ni
{(2 ∕ 3)ℎij(bi, Lij, θx)}Aij{1 − (2 ∕ 3)ℎij(bi, Lij, θx)}(1 − Aij)fb(bi; θs),

where hij(bi, Li, θx) = Pr(Bij = 1∣bi, Lij, θx) = expit(Lijθx + bi), Bij is the indicator of 

participation, i.e., Bij = 1 if individual j in group i participated in the randomized trial and 

Bij = 0 otherwise, and (θx, θs) is the maximum likelihood estimate of (θx, θs). Censoring 

was modeled using the Gamma frailty model described above, and included only age as a 

covariate as no other variables were associated with censoring. Estimated parameters and 

standard errors for the treatment and censoring models are given in Web Table 25. Over 

70% of individuals belonged to groups where the vaccine coverage was between 0.3 and 0.6. 

Therefore, the analysis was conducted for allocation strategies ranging from 0.3 to 0.6.

4.2 Results

Figure 2 shows the IPCW estimates of the cumulative probability of cholera over time for 

allocation strategies 0.3, 0.45, and 0.6, both when an individual receives a vaccine and when 

an individual is unvaccinated. The IPCW estimates can be viewed as weighted averages, 

with uncensored individuals weighted by wij = π(Ai, − j; α) ∕ {Pr(Ai ∣ Li, β)SC(Xij ∣ Li, γ)} and 

wij = π(Ai; α) ∕ {Pr(Ai ∣ Li, β)SC(Xij ∣ Li, γ)}; histograms of wij and wij for α = 0.30, 0.45, 

0.60 are presented in Web Figures 2-3. Figure 2 shows that the estimated risk of cholera 

when an individual is unvaccinated decreases dramatically as α increases, suggesting the 

presence of interference. This decrease is more modest when an individual is vaccinated, 

indicating a stronger indirect effect when unvaccinated. At all time points the estimated 
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risk of cholera is higher when an individual is unvaccinated, suggesting a beneficial, direct 

effect of vaccination, especially at lower coverage levels. For α = 0.3 and α = 0.45, the 

estimated risk when unvaccinated increases suddenly between 200 and 300 days, and then 

again between 300 and 400 days. These results might be attributable to the known bimodal 

seasonality of cholera in Bangladesh (Longini et al., 2002). Note that, because the study 

start date varied across groups, the time scale in this analysis does not exactly coincide with 

calendar time. Nonetheless, 95% of individuals had a start date within a two calendar month 

range, such that there is a strong correlation between the analysis time scale and calendar 

time, and thus cholera seasonality may explain these periods of marked increase in risk.

Direct, indirect, total and overall effect estimates and 95% CIs (×1000) for different 

allocation strategies at time t = 1 year are shown in Figure 3. The direct effect estimates 

generally decrease as α increases. For example, the direct effect estimate for α = 0.35 is 

3.6 (95% CI 1.1, 6.2) whereas for α = 0.5 the direct effect estimate is 1.5 (95% CI −0.5, 

3.5). The indirect, total, and overall effect estimates in Figure 3 compare the risk of cholera 

over a range of allocation probabilities α1 ∈ [0.3, 0.6] versus α2 = 0.4. Here the indirect 

effect contrasts risk of cholera infection when individuals are unvaccinated. For larger values 

of α1 the 95% CIs for these effects exclude the null value of zero. For example, for α1 = 

0.6 the indirect effect estimate is 2.8 (95% CI 1.1, 4.5), providing statistical evidence of the 

presence of interference. These results indicate that when individuals are unvaccinated, the 

risk of cholera infection is significantly reduced by increasing the level of vaccine coverage 

in their neighborhood. The total effect estimates quantify the combined direct and indirect 

effects of the vaccine. The overall effect estimates may be of greatest interest from a public 

health or policy perspective. For α1 = 0.6, the overall effect estimate is 2.2 (95% CI 0.9, 

3.4); in words, fewer cases of cholera per 1000 individuals per year are expected if 60% of 

individuals are vaccinated compared to if only 40% of individuals receive vaccine.

In previous analyses of these data, Perez-Heydrich et al. also estimated the direct, indirect, 

total and overall effects using a binary outcome indicating whether an individual was 

infected with cholera during the first year of follow-up. The IPCW estimates for t = 1 are 

similar to these previous results, e.g., Perez-Heydrich et al. estimated the direct effect for 

α = 0.32 to be 5.3 (95% CI 2.5, 8.1) whereas the IPCW estimate of this effect at t = 1 is 

4.0 (95% CI 1.6, 6.5). However, the Perez-Heydrich et al. estimates may be biased because 

they did not account for right censoring. That said, the IPCW results should still be viewed 

cautiously and only have valid causal interpretation if Assumptions I - IV hold and the 

treatment and censoring models are correctly specified.

5. Discussion

In this paper, the TV IPW estimator for partial interference was extended to allow for right 

censored outcomes. The proposed estimator was obtained by weighting the original TV 

estimator by censoring weights calculated from a parametric frailty model of the censoring 

times. The estimator was shown to be consistent and asymptotically Normal (under 

identifiability Assumptions I - IV), and a consistent estimator of the asymptotic variance 

was proposed. A simulation study demonstrated that the proposed methods performed well 

in finite samples provided the number of groups is sufficiently large. Analysis of a cholera 
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vaccine study using the proposed methods suggests vaccination had both a direct and 

indirect effect against cholera infection. These results are in accordance with findings by 

Ali et al. (2005) and Perez-Heydrich et al. (2014), but are likely more accurate since these 

previous analyses did not formally account for right censoring.

There are several areas of possible future research related to the methods developed here. 

For example, further research could entail developing estimators which perform well in 

settings where the number of groups (m) is small. The IPCW estimator considered here 

also presents computational challenges when group sizes (ni’s) are large because the 

corresponding estimated group propensity scores can be approximately zero. As a result, 

in the cholera vaccine analysis in Section 4 the largest 15 groups were excluded, inefficiently 

discarding data and limiting the generalizability of the results. Other approaches are needed 

to better accommodate larger groups. Extensions of the IPCW estimator which allow for 

competing risks could also be considered. In the cholera example, such extensions would 

permit death to be considered a competing risk rather than treating such observations 

as censored. Validity of the IPCW estimator requires correct specification of parametric 

models, such that it is important to assess model fit in application of this method. Further 

research could entail developing estimators which are robust to model mis-specification; 

e.g., in the absence of censoring, doubly robust estimators have been developed which allow 

for partial interference and are consistent even if the treatment model is mis-specified (Liu et 

al., 2019).

Extensions of the IPCW estimator could also be considered for the setting where there is 

general interference, i.e., where interference is not restricted to individuals within the same 

group. One such approach might entail extending existing methods for observational studies 

with arbitrary interference (e.g., Sofrygin and van der Laan (2016); Tchetgen Tchetgen et al. 

(2020)) to allow for right censored outcomes, perhaps by incorporating inverse probability 

of censoring weights. In the cholera study, interference may have been present between 

individuals in different groups; for instance, Root et al. (2011) found that the risk of cholera 

among placebo recipients was inversely associated with level of vaccine coverage in their 

social networks, suggesting possible interference between socially connected individuals 

from different groups. Methods for observational studies with general interference and right 

censored outcomes could also be helpful when there is partial interference but the number of 

groups is small.

Methods could also be developed which allow the assumed interference structure to change 

over time. For example, when individuals in the cholera study were censored due to 

emigration out of the study area, it may be considered unlikely that those individuals would 

continue to interfere with others in the study; in which case, the assumed interference 

structure could be updated at the time when the individuals were censored.

Finally, following Tchetgen Tchetgen and VanderWeele (2012) and Perez-Heydrich et al. 

(2014), here we consider causal estimands corresponding to counterfactual scenarios where 

individuals independently select treatment with probability α. In future research alternative 

estimands, as in Papadogeorgou et al. (2019) and Barkley et al. (2020), could be considered 

which target counterfactual estimands that allow for within group treatment selection 
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dependence. For example, if a particular vaccine is made widely available in Matlab, we 

might expect vaccine uptake to be positively correlated between individuals in the same bari. 

Thus such estimands may be more relevant to public health officials determining vaccine 

policy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Absolute bias of the IPCW estimator (left) and corresponding Wald 95% confidence interval 

coverage (right) for different numbers of groups for α = 0.5. The dotted line in the right plot 

corresponds to 95% coverage. This figure appears in color in the electronic version of this 

article.
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Figure 2. 
Estimated cumulative probability of cholera over time when vaccinated or unvaccinated for 

α = 0.3 (left), α = 0.45 (center) and α = 0.6 (right). This figure appears in color in the 

electronic version of this article.
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Figure 3. 
Direct, indirect, total and overall effect estimates (×1000) for different allocation strategies 

at time t = 1 year. Indirect, total, and overall effects are with respect to α2 = 0.4. The shaded 

regions denote pointwise 95% confidence intervals of the estimates.
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Table 1

Results from simulation study described in Section 3, where: α denotes the allocation probability; μa denotes 

the value of the target parameters μ(100, a, α) for a = 0, 1; Bias is the average of μ(100, a, α) − μ(100, a, α) for 
a = 0, 1; ESE is the empirical standard error; MSE is the median of the sandwich variance-based standard 
error estimates; EC denotes the empirical coverage of the 95% Wald confidence intervals based on the Normal 
distribution; and ECt denotes empirical coverage of t-distribution-based Wald confidence intervals.

α μ 0 Bias ESE MSE EC ECt α μ 1 Bias ESE MSE EC ECt

0.1 0.39 −0.02 0.07 0.07 95% 95% 0.1 0.28 −0.01 0.08 0.08 92% 92%

0.2 0.38 −0.01 0.04 0.04 95% 95% 0.2 0.28 0.00 0.04 0.04 95% 95%

0.3 0.38 −0.01 0.03 0.03 95% 95% 0.3 0.27 0.00 0.03 0.03 94% 94%

0.4 0.37 0.00 0.03 0.02 95% 95% 0.4 0.27 0.00 0.02 0.02 94% 94%

0.5 0.37 0.00 0.03 0.02 96% 96% 0.5 0.27 0.00 0.02 0.02 94% 94%

0.6 0.36 0.00 0.02 0.02 94% 95% 0.6 0.27 0.00 0.02 0.02 94% 94%

0.7 0.35 0.01 0.02 0.02 95% 95% 0.7 0.26 0.00 0.01 0.01 96% 96%

0.8 0.35 0.00 0.03 0.03 96% 96% 0.8 0.26 0.00 0.02 0.02 96% 96%

0.9 0.34 0.00 0.05 0.05 95% 95% 0.9 0.26 0.00 0.02 0.02 96% 96%
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