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Understanding the role of nonequilibrium driving in self-
organization is crucial for developing a predictive description of
biological systems, yet it is impeded by their complexity. The
actin cytoskeleton serves as a paradigm for how equilibrium and
nonequilibrium forces combine to give rise to self-organization.
Motivated by recent experiments that show that actin filament
growth rates can tune the morphology of a growing actin bun-
dle cross-linked by two competing types of actin-binding proteins
[S. L. Freedman et al., Proc. Natl. Acad. Sci. U.S.A. 116, 16192–
16197 (2019)], we construct a minimal model for such a system
and show that the dynamics of a growing actin bundle are
subject to a set of thermodynamic constraints that relate its
nonequilibrium driving, morphology, and molecular fluxes. The
thermodynamic constraints reveal the importance of correlations
between these molecular fluxes and offer a route to estimating
microscopic driving forces from microscopy experiments.

fluctuation–response relations | microscopic nonequilibrium driving |
stochastic thermodynamics | actin bundling and growth

Nonequilibrium driving is a crucial prerequisite for the func-
tion of many biological systems. Examples include kinetic

proofreading (1–5), adaptation in molecular motors (6–8), and
the suppression of phase decoherence in biochemical oscilla-
tors (9–14), among others. Given the ubiquitous role played by
nonequilibrium driving in biology, much recent work has focused
on establishing the general tradeoffs between energy consump-
tion and organization (15–20). Here, motivated by recent exper-
imental work (21–23), we consider growth and bundling of
actin filaments and demonstrate that energy–speed–morphology
relations can be obtained for such systems.

The actin cytoskeleton harnesses chemical energy to perform
mechanical work that enables cells to migrate, divide, and exert
forces on their surroundings, among other functions (7, 24–28).
To perform these varied functions, a cell must be able to con-
trol the organization of its many components in both space and
time. A growing body of evidence suggests, surprisingly, that
much of this organization can be kinetically determined (29, 30)
and can arise due to passive competition between actin-binding
proteins (ABPs) (31). At the same time, other processes such
as the formation of a cytokinetic ring require irreversible poly-
merization and motor activity (32, 33). This suggests that cells
can regulate their internal structures and, in turn, their func-
tions by tuning the relative contributions of passive and active
processes. Support for this idea comes from recent in vitro exper-
iments and simulations that demonstrate that the morphology
of a growing actin bundle can be tuned not only by the binding
affinities of the cross-linkers but also by the actin polymerization
rates (22).

These observations, together with recent advances in nonequi-
librium statistical mechanics (5, 9, 17, 34–36), raise the ques-
tion of whether the nonequilibrium driving—here due to
polymerization—can be related to the emergent structure quan-
titatively. Here, we address this question and present a theo-
retical framework that bounds the dynamics of a growing actin

bundle. In particular, we derive constraints on a set of three
matrices characterizing the actin growth and bundling process—
a matrix containing the various nonequilibrium driving forces
(δµ, Eq. 11), a matrix encoding the equilibrium and nonequi-
librium morphologies (D, Eq. 12), and a matrix characterizing
the covariance of the molecular fluxes (L−1). For these three
matrices, we show that

Tr[δµ−D−L−1]≥ 0 , Det[δµ−D−L−1]≥ 0. [1]

Eq. 1 has the flavor of a fluctuation–response relation for the
actin growth and bundling dynamics and can offer a route
to generalize the classical linear irreversible thermodynamics
framework to far-from-equilibrium conditions. Indeed, when
the equality is satisfied, Eq. 1 can be used to obtain a linear-
response–like formula (Eq. 13). This formula and, more gen-
erally, Eq. 1 provide strong thermodynamic constraints on
the nonequilibrium forcing, the bundle morphology, and the
response to fluctuations in molecular fluxes (i.e., the speed of
growth). Notably, D and L−1 are in principle experimentally
accessible, such that Eq. 1 can be used to bound δµ, which is not
straightforward to measure directly. In what follows, we first out-
line a minimal model that captures the salient features of actin
polymerization and bundling and show that it captures the obser-
vations described above. We then proceed to derive our central
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results and show how these thermodynamic uncertainty relations
constrain the dynamics.

Actin Polymerization Drives Sorting of Cross-Linkers
Inspired by the experiments in refs. 21 and 22, we consider a
bundle consisting of two parallel actin filaments and two types
of ABPs, α and β. The growth of a parallel actin bundle involves
continuous actin monomer addition at one end, as well as con-
tinual ABP binding and “zipping” of the bundle at that same
end. Refs. 29 and 30 indicate that the unbinding of ABPs in actin
bundles is slow and occurs on the timescale of hours, and, under
the conditions in ref. 21, bundle morphology is entirely deter-
mined by addition of cross-linkers at the growing end, on which
we thus focus. In the specific case shown in Fig. 1, α and β repre-
sent cross-linking proteinsα-actinin and fascin, respectively, such
that the bundles formed by the α ABPs are substantially more
widely spaced than those formed by the β ABPs. Consequently,
the bending penalty of actin favors addition of the current cross-
linker at the growing end, as it costs energy to switch from one
type to the other. The cost of bending actin favors the forma-
tion of distinct domains of only α or β ABPs. In the case of in
vitro experiments using an equimolar mixture of fluorescently
labeled α-actinin and fascin binding to growing actin bundles,
these domains are on the order of several micrometers (∼100
cross-linkers) long (21). The statistics of the domain lengths may
vary as different labeling strategies are used. Nevertheless, it has
been demonstrated in ref. 22 that regardless of different labeling
strategies, the domain length statistics are modulated by the rate
of actin polymerization.

We construct a minimal model of this system with the follow-
ing simplifications: First, we assume that the ABPs can bind and
unbind only from the sites at the leading edge and not from the
bulk of the bundle, and second, we assume that the two binding
sites of each ABP bind sequentially and do not allow an ABP
to bind to a single filament with both of its sites. As a result,
we need two pairs of forward rates k f ,1

ij and backward rates kb,1
ij

to describe the binding of the first site of each ABP and two
other pairs, k f ,2

ij and kb,2
ij , for their second site (Fig. 1). The

consideration of both ABP binding sites independently is more
sophisticated than the kinetic Monte Carlo (KMC) models con-
sidered in refs. 21 and 22 but is consistent with the experimental
and simulation data therein.

Here, we further decompose the forward rate of k f ,m
ij into an

equilibrium component, k f ,m
ij ,eq , that satisfies a local detailed bal-

ance rule and accounts for all the energetics associated with ABP
binding and filament deformations, and a component dk f ,m

ij that
can model any nonequilibrium contributions to the rate:

k f ,m
ij = k f ,m

ij ,eqdk
f ,m
ij . [2]

We assert that only the forward rates are modified by any
nonequilibrium effects including actin polymerization and we
set all the kb,m

ij to unity. The equilibrium factor k f ,m
ij ,eq accounts

for the binding affinity of an ABP. In cases where an attached
ABP binds to the second actin filament, this equilibrium part also
accounts for the energy penalty associated with bending the actin
filament if the newly bound ABP is different from the previous
ABP at the tip (e.g., rate k f ,2

βα,eq in Fig. 1) and the free energy
associated with zipping the actin bundle (e.g., rates k f ,2

ββ,eq and
k f ,2
βα,eq in Fig. 1).

The nonequilibrium component in our model, dk f ,m
ij , heuris-

tically accounts for any effects due to the finite rate of actin
growth and polymerization, excess concentration or chemical
potential of various ABPs in solution, and their molecular struc-
ture. Given this, we generically decompose the nonequilibrium
components as

dk f ,m
ij = dkj = 1 + fmolecular,j fdensity,j fpol,j , [3]

where i and j are the types of ABPs at the bundle tip, and type j
can be either the same as or different from i . The factor fpol mod-
els the modulation of the rates due to the finite rate of growth of
the actin filaments (kgrow). Specifically, over a time scale τ , the
average increase in the number of binding sites on the filaments
is kgrowτ and k f ,1

ij ,eqτ is the number of binding events per binding
site. Assuming Poisson statistics, the net rate of ABP binding is
hence modulated by the factor,

fpol,j = 1− e−k
f ,1
ij ,eqkgrowτ

2

. [4]

The factor fpol is essentially the probability of binding at least one
ABP within time τ . fpol increases from a value of zero when kgrow

Actin Fascin α-Actinin

35
 n

m

8 nm37 nm

Fig. 1. Schematic of adding one ABP at the tip of a growing actin bundle. Here, α and β represent α-actinin and fascin, which are 35 and 8 nm in size,
respectively. The energetic cost of bending actin disfavors binding a fascin after an α-actinin, or vice versa, resulting in domains of consecutive α or β types
of ABPs. kf ,1

ij and kb,1
ij (kf ,2

ij and kb,2
ij ) are the forward and backward rates for the first (second) site of an ABP binding, where i and j are the types of the last

two ABPs at the tip; kf ,1
αα = kf ,1

βα because both rates represent the binding of the first site of an α ABP (similarly, kf ,1
ββ = kf ,1

αβ ). An analogous schematic can
be drawn for the case that the second-to-last ABP is α, and this case introduces four additional pairs of forward and backward rates with corresponding
constraints.
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is negligible to a value of one for rapid actin polymerization. It
acts as a scaling factor that tunes the rates from their equilibrium
values k f ,m

ij ,eq to their maximum rates.
The rates of ABP binding are also influenced by the ABP

concentrations in solution around the actin filaments. The phe-
nomenological factor fdensity accounts for these effects. Finally,
we introduce the phenomenological factor fmolecular to account
for any remaining kinetic differences between the ABPs. Such
factors could modulate the maximum rates of adding ABPs in
fast-growing bundles, but they do not affect the equilibrium
rates k f ,m

ij ,eq and the corresponding equilibrium structure of the
bundle (22).

KMC simulations of this minimal model (described in Meth-
ods) reproduce a cross-over of domain lengths previously
observed in growing actin bundles with α-actinin and fascin as
the actin polymerization rate was varied (22) (Fig. 2). It thus
captures the essential physics of the system and serves as a
meaningful starting point for the development of a theoreti-
cal framework that shows that the behavior is bounded by an
energy–speed–morphology relation.

Connections between the Growth and Morphology of Actin
Bundles: A Markov State Model
The number of accessible states of the Markov chain for actin
polymerization and bundling, as defined in the previous sec-
tion, grows exponentially as a function of time. Writing down
thermodynamic relations for such growing systems becomes
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Fig. 2. Average domain length of α and β ABPs as a function of poly-
merization rate kgrow. The distance between neighboring ABPs is assumed
to be 0.037 µm in computing domain lengths (21). Blue and red triangles
are average domain lengths Lα and Lβ measured from KMC simulations.
Up and down triangles represent the average domain lengths measured
in simulations with initial configurations composed of either all α or all
β types of ABPs, respectively. Each data point is computed from a sin-
gle KMC simulation of 106 steps. Gray lines (SI Appendix, Eq. S16) are the
domain lengths computed by self-consistently solving the master equation
(Eq. 5). The parameters for both KMC simulations and the master equa-
tion are kf ,1

αα,eq = 6, kf ,1
ββ,eq = 2, fdensity,α = fdensity,β = 100, fmolecular,α = 0.4,

fmolecular,β = 1, Lα,eq = 900 (33.3 µm), Lβ,eq = 300 (11.1 µm), and τ = 1 s.
Inset shows the domain lengths over a wider range of polymerization rates
with the same symbols. The plateaus toward the left of Inset represent the
domain lengths approaching their equilibrium values.

cumbersome. Here, we show that it is in fact possible to
account for the behavior of the growing system using only
a tractable, finite-state, Markov model. Using this model, we
derive thermodynamic bounds for the nonequilibrium sorting
process in Fig. 2.

We begin by introducing a mean-field treatment for the var-
ious configurations that arise at the tip as ABPs associate and
dissociate sequentially (Fig. 3). The forward rates k f ,m

ij are
consistent with those used in the KMC simulations, account-
ing for the energies of binding ABPs and the effect of actin
polymerization. The backward rates in the finite-state model self-
consistently account for the probability of finding the appropriate
ABP in the bulk of the actin bundle. For instance, using Lα
to denote the domain lengths of α-type ABPs and Lβ for its β
counterpart, the probability of finding one α at the bundle tip is
Lα/(Lα +Lβ) and the probability of finding a consecutive pair
αα is (Lα− 1)/(Lα +Lβ). The chance of reaching an αα∗ con-
figuration (where ∗ stands for a half-bound state as in Fig. 3) after
unbinding an α at the bundle tip is essentially the conditional
probability of finding αα in the bundle given that the bundle tip
is an α, which can be computed by dividing the αα probability by
the α probability to obtain (Lα− 1)/Lα.

In computing the unbinding rate kb′,m
ij used in the finite-state

model, we multiply the backward rates kb,m
ij in KMC simu-

lations by these corresponding conditional probabilities. Note
that the effective backward rate for unbinding the first head of
an ABP, kb′,1

ij , is simply equal to the corresponding rate kb,1
ij

used in KMC simulations. We confirm the expressions of these
conditional probabilities by extracting the effective backward
rates and domain length ratios from the full KMC simulations
(SI Appendix, Fig. S1).

Given these expressions for the rates, we can write a master
equation describing the evolution of probabilities of the various
tip configurations, Pij at steady state:

∂P

∂t
=
∑

i,j∈α,β

(k f ,1
ij Pi − kb′,1

ij Pij∗

+ k f ,2
ij Pij∗− kb′,2

ij Pj ) = 0.

[5]

However, this master equation depends on the average domain
lengths Lα and Lβ . To solve the master equation of this system
and get closed-form expressions for Pij at the steady state, we
require a relation that connects the tip configuration probabili-
ties to the domain lengths. Such a connection can be obtained by
noting that the tip configuration merges into the bulk of the bun-
dle as growth continues. The probabilities of tip configurations
at steady state together with their corresponding rates of growth
determine the relative amounts of the two types of ABPs being
incorporated into the bulk. In other words, the fluxes JN−1,i,N ,j ,
defined as k f ,1

ij Pi − kb′,1
ij Pij∗ (or equivalently k f ,2

ij Pij∗− kb′,2
ij Pj

due to current conservation at a node), are proportional to the
probabilities of sampling the corresponding ABPs in the bulk
(SI Appendix, Eq. S14).

Indeed, this reasoning can be put on a firm mathemati-
cal footing by adapting the calculations in ref. 37. Specifi-
cally, as described in SI Appendix, section S1, we derive self-
consistency conditions that relate the currents at which various
tip configurations grow to the domain lengths in the bulk:

JN−1,α,N ,α =
Lα− 1

Ltot
Jtot

JN−1,β,N ,β =
Lβ − 1

Ltot
Jtot

JN−1,α,N ,β = JN−1,β,N ,α =
1

Ltot
Jtot,

[6]
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N-1 NN-1   N

Fig. 3. Schematic of the model. The states between the two pink dashed
lines contribute to the Nth ABP binding. Arrows link states between which
transitions are allowed. kf ,m

ij and kb,m
ij are the forward and backward rates,

where i and j are the types of the last two ABPs at the tip and ∗ represents
a half-bound state. The rates used in the KMC simulations and in the master
equation are compared in SI Appendix, Table S1.

where N − 1, i ,N , j denotes the tip configurations at positions
N − 1 and N , Jtot is the sum of the four currents, and Ltot≡
Lα +Lβ . We measure the currents and domain lengths from
KMC simulations, and SI Appendix, Fig. S2 demonstrates the
validity of the relations between the fluxes and domain lengths
in Eq. 6.

The master equation (Eq. 5) can now be solved with
these additional self-consistency conditions. Expressions for the
nonequilibrium domain lengths Lα and Lβ can also be read-
ily obtained (SI Appendix, Eq. S16). The gray lines in Fig.
2 illustrate that these predictions are in excellent agreement
with the domain lengths in KMC simulations for the full range
of actin polymerization rates. This model also recovers the
trend shown previously by simulations (22) that as the bind-
ing affinity of the short cross-linker (the β ABP in our model)
is weakened, the crossover of domain lengths is deferred to a
faster growth speed (SI Appendix, Fig. S3). Thus, our mean-
field treatment is able to capture the behavior of the model
quantitatively.

Thermodynamic Constraints between the Nonequilibrium
Forcing, Fluctuations, and Morphology
The nonequilibrium thermodynamics of the growing actin bun-
dle can now be probed. Using the master equation (Eq. 5)
and the finite-state Markov model in Fig. 3, we write down
the entropy production rate for our effective Markov model
following ref. 38 as described in SI Appendix, section S2:

σ̇= Jtot(∆µ− εdiss)≥ 0. [7]

The factor ∆µ represents the nonequilibrium forces that drive
polymerization; in SI Appendix, section S2, we show that

∆µ=
2

Ltot

∑
i∈α,β

Li log dki

. [8]

The factor εdiss is a measure of the difference between the
nonequilibrium and equilibrium morphologies as characterized
by the respective average domain lengths Lβ,eq and Lα,eq.
SI Appendix, section S2 demonstrates that

εdiss =− 1

Ltot

∑
i∈α,β

Li log
Li

Li,eq

−
∑
i∈α,β

(Li − 1) log
Li − 1

Li,eq− 1

.
[9]

Eq. 7 is a statement of the second law of thermodynamics.
However, we can improve on this bound substantially by adapt-
ing recent work from refs. 39 and 40. Specifically, we show in
SI Appendix, section S3 that a stronger matrix relation can be
obtained that is valid far from equilibrium. This is our main
result, Eq. 1, which we reproduce here for convenience:

Tr[δµ−D−L−1]≥ 0 , Det[δµ−D−L−1]≥ 0. [10]

We now define the matrices δµ, D, and L−1 precisely. The
matrix δµ depends on the nonequilibrium driving forces δµα/β ≡
log dkα/β in Eq. 3 and the average nonequilibrium domain
lengths Lα/β :

δµ=

(
δµαγ

α
1 + δµβγ

β
2 δµαγ

α
3 + δµβγ

β
3

δµαγ
α
3 + δµβγ

β
3 δµαγ

α
2 + δµβγ

β
1

)
, [11]

where γ
α/β
1 ≡ [(Ltot− 1)2/(Lα/β − 1) + 1]/Ltot, γ

α/β
2 ≡

[1/(Lα/β − 1) + 1]/Ltot, and γ
α/β
3 ≡−Lβ/α/[Ltot(Lα/β − 1)].

The matrix D depends on the nonequilibrium and equilibrium
domain lengths of ABPs and is defined as

D =

(
dpαγ

α
1 + dpβγ

β
2 + εdpαγ

α
3 + dpβγ

β
3 + ε

dpαγ
α
3 + dpβγ

β
3 + εdpαγ

α
2 + dpβγ

β
1 + ε

)
, [12]

where dpα/β ≡ (1/2)(ln[(Lα/β − 1)/Lα/β ]− ln[(Leq
α/β −

1)/Leq
α/β ]) and ε≡ (1/(2Ltot))(ln[(Leq

α − 1)/(Lα− 1)] + ln[(Leq
β −

1)/(Lβ − 1)]). The D matrix depends only on the equilibrium
and nonequilibrium morphologies of the bundle. L−1 is
proportional to the inverse of the covariance matrix of fluxes
and is computed as L−1≡ limt→∞ JtotM−1/t , in which M has
the elements Mij = 〈δJiδJj 〉, δJi = Ji −〈Ji〉, and t is the time of
growth. In Fig. 4, we numerically verify Eq. 1/Eq. 10 for various
parameter combinations.

The equality in Eq. 10 holds only when δµ−D = L−1. In
that case, multiplying Eq. 10 by the column vector J, contain-
ing the average fluxes Jα/β computed using Eq. 6 as Jα/β =
JN−1,α,N ,α/β + JN−1,β,N ,α/β (detailed in SI Appendix, section
S4), we readily obtain

dk−D[p] = L̃−1 · J, [13]

where L̃−1≡L−1/Jtot, dk is a column vector with elements
log dkα/β (Eq. 3), and D[p] is a column vector with elements that
are the relative entropies between the equilibrium and nonequi-
librium domain morphologies of the two cross-linkers in the
bundle (SI Appendix, Eqs. S37 and S38). Eq. 13 relates the fluxes
J and the thermodynamic driving dk−D[p] with a correlation
matrix L̃−1 in a form reminiscent of linear irreversible thermo-
dynamics. Indeed, for weak driving near equilibrium conditions,
we expect the correlation matrix L̃−1 to approach its equilibrium
limit and Eq. 13 reduces to the standard linear irreversible ther-
modynamics identity. Furthermore, the entropy production of
this bundling process can be rewritten in the following way when
the equality in Eq. 10 holds:

σ̇= 2JT (dk−D[p])= 2(dk−D[p])T · L̃ · (dk−D[p]). [14]
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Eqs. 13 and 14 can be viewed as an extension of the classi-
cal linear irreversible thermodynamics framework (41) to our
nonequilibrium bundling and polymerization process. It relates
the various driving forces dk and a relative entropic measure of
the distance between the nonequilibrium and equilibrium struc-
tures, D[p], to the various observed fluxes J through the flux
covariance matrix L̃−1.

Thermodynamic uncertainty relations (TURs) (35, 36, 39, 40,
42) can also be readily derived from Eq. 10. TURs impose
constraints on the fluctuations of currents in nonequilibrium
processes, which present tighter bounds than the second law
(Eq. 7). Specifically, our central result in Eq. 1/Eq. 10 implies
that JT · [δµ−D−L−1] · J≥ 0. From this relation we can readily
derive the following multidimensional thermodynamic uncer-
tainty relation (MTUR) (40) (SI Appendix, section S5) for the
actin bundling and growth process:

Jtot(∆µ− εdiss) = 2Jᵀ · (dk−D[p])> 2Jᵀ · L̃−1J. [15]

This TUR-like bound takes into account the correlation between
individual molecular fluxes.

Our central result provides a connection between the micro-
scopic driving forces represented by δµ or dk, the nonequilib-
rium structure of the bundle as encoded by D or D[p], and the
fluctuations of the various fluxes denoted by L−1 (obtained in the
nonequilibrium steady state). Experimentally, it may be possible
to measure the fluxes of various cross-linkers and the structures
of their bundles. In which case, one could use Eq. 1 to bound the
microscopic driving forces. These microscopic forces generally
cannot be measured directly. Further, in nonequilibrium regimes
where the L−1 matrix exhibits singular or close to singular behav-
ior, our results suggest that the system might be insensitive to

Fig. 4. Numerical verification of Eq. 10. The blue boundary marks the
location of the inequality Tr[A]≥ 2

√
Det[A] for a two dimensional square

matrix A. The red diamonds are results from the nonequilibrium KMC simu-
lations with the parameters used in Fig. 2 and the red line is the theoretical
mean-field prediction for those same parameters. Gray dots are computed
by constructing the matrices δµ, D, and L−1 using the the master equa-
tion results and computing the eigenvalues of (δµ−D− L−1)/Jtot using
Mathematica (47) for randomly selected parameters from Lβ,eq = [1, 90,000],
fdensity,β = [1, 100], and kgrow = [0.001, 100] nm/s, with all other parameters
the same as the red line. Inset shows these two quantities for a wider range,
with both axes on logarithmic scales. We do not consider kgrow < 0.001 nm/s
due to limitations of numerical precision. Eq. 1/Eq. 10 provides strong con-
straints between the nonequilibrium forcing, morphology, and speed of
growth.

Fig. 5. Comparison of bounds on the nonequilibrium driving force ∆µ. The
black line (Eq. 8) is the actual driving force predicted by the master equation.
The blue line (Eq. 7) is the driving force required for morphology change.
The brown (Eq. 16) and red (Eq. 15) lines are the TUR and MTUR bounds
computed from KMC simulations. Each of the brown and red data points
is generated with 500 independent KMC simulations, each of 107 steps. All
parameters of the KMC simulations are the same as in Fig. 2.

perturbations that tune the various microscopic driving forces,
dk. SI Appendix, Fig. S7 shows that the covariance of the molec-
ular fluxes in our system does not have any singular behavior,
suggesting that the nonequilibrium bundle morphology can be
effectively tuned in the parameter regimes considered in this
work.

Finally, Eq. 1/Eq. 10 can also be used to assess the rela-
tive importance of accounting for the statistics of the individual
fluxes. To do so, we use the TURs (35, 36, 39, 40, 42) to derive
a bound for the rate of entropy production in terms of the total
flux, Jtot:

∆µ> εdiss +
2 〈Jtot〉
t 〈δJ 2

tot〉
. [16]

Here, t is the growth time of the bundle, 〈Jtot〉 is the average
total flux of adding ABPs to the bundle, and

〈
δJ 2

tot

〉
is its vari-

ance. In Fig. 5, we compare the performance of Eq. 16 (brown)
with that of Eq. 7 (blue). We see that the TUR bound is closer
to the real driving ∆µ compared with the second-law bound.
Nevertheless, it still fails significantly at kgrow≈ 1 nm/s, where
it recovers only about 6% of the actual driving. This implies that
controlling the overall kinetics is not enough for facilitating the
sorting of ABPs.

In Fig. 5, we also plot the MTUR bound (Eq. 15)
using cumulants of fluctuations in the individual fluxes from
KMC simulations. Although not perfect, this bound recovers at
least 46% of the actual driving ∆µ for the full range of polymer-
ization rates. The gap between the MTUR bound and the actual
driving is consistent with previous observations (36) that TUR
bounds become weaker at stronger driving.

The MTUR bound in Eq. 15 can also be obtained by replac-
ing Jtot in Eq. 16 with a scalar observable Jφ = cosφJα + sinφJβ
and then maximizing 2 〈Jφ〉2 /(tJtot

〈
δJ 2
φ

〉
) by varying φ (SI

Appendix, section S5). When tanφ= 1, the scalar observable
Jφ = Jtot and the MTUR bound in SI Appendix, Eq. S40 reduces
to the TUR bound in Eq. 16. Compared with this TUR bound,
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we find that the MTUR bound is mostly improved where the
optimized tanφ values deviate significantly from 1 (SI Appendix,
Fig. S5), and the fluxes are strongly correlated. Hence it is cru-
cial to take into consideration the statistics of the individual
fluxes. Indeed, the analytical expression of tanφ (SI Appendix,
Eq. S44) and the empirical results in SI Appendix, Figs. S6
and S7 show that tanφ is mainly governed by the ratio of the
domain lengths, Lα/Lβ . In the regime kgrow≈ 0.1 to 10 nm/s,
the domain lengths of the two ABPs differ significantly and
so tanφ deviates significantly from 1 in this regime. Conse-
quently, the MTUR bound (Eq. 15) is significantly tighter than
the simple TUR bound (Eq. 16) for kgrow≈ 0.1 to 10 nm/s. We
conclude that thermodynamic costs can be underestimated in
regimes where the two ABPs display remarkably different sort-
ing behavior if only the total flux, rather than individual ones, is
considered.

Conclusions
We have derived a strong thermodynamic constraint relating
the microscopic driving of a growing bundle (denoted by δµ
in Eq. 1), the morphology of the bundle in its nonequilib-
rium steady state as described by the matrix D, and the statis-
tics of the rates of incorporation of cross-linkers as described
by the matrix L−1. Our central results, which are validated
in the context of growing actin bundles, can be viewed as
extensions of the linear irreversible thermodynamics framework
(41). They also have practical applications. As an example,
with proper extension, they potentially provide a route to esti-
mate microscopic driving forces (contained in the δµ matrix)
from experiments in which the various fluxes and morpholo-
gies are measured using microscopy and quantitative image
analysis.

While this current work is focused exclusively on the growth
dynamics of bundled actin networks, we anticipate that the
approach presented here can be used in other contexts, such

as the interplay between structure, speed, and nonequilibrium
forcing in the growth dynamics of branched actin networks (43–
45); the self-organization of other ABPs to distinct actin network
architectures (e.g., networks initiated by formin or the Arp2/3
complex) (31); and the sorting of ABPs to distinct networks
under confinement (23).

Methods
We simulate the growth of an actin bundle with two types of ABPs using
KMC simulations. Two initial configurations are selected for each simulation:
an actin bundle composed of 100 α-type ABPs or a bundle composed of
100 β-type ABPs. We exclude the first 100 ABPs when measuring the final
structure and find that domain lengths in the bundle are independent of its
initial configuration in the parameter range that we explore. For each step
in the KMC simulations, we identify the state of the bundle tip and all the
possible forward and backward moves that can be initiated from this state.
The KMC simulations are performed using the Gillespie algorithm (46). We
summarize the rates used in the KMC simulations in SI Appendix, Table S1. To
compute domain lengths in Fig. 2, we run one simulation of S = 106 steps at
each kgrow and measure domain lengths Lα and Lβ from the full bundle by
counting the number of consecutive ABPs of the same type and averaging
their lengths. To generate the KMC data points in Figs. 4 and 5, we run
500 simulations of S = 106 steps at each actin polymerization rate kgrow >

0.01 nm/s; at kgrow = 0.01 nm/s, we run 5,000 simulations of S = 2× 108 steps
to ensure the convergence of the covariance of the fluxes.

Data Availability. All study data are included in this article and/or
SI Appendix.
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