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Abstract

We propose a data-driven space-filling curve method for 2D and 3D visualization. Our flexible 

curve traverses the data elements in the spatial domain in a way that the resulting linearization 

better preserves features in space compared to existing methods. We achieve such data coherency 

by calculating a Hamiltonian path that approximately minimizes an objective function that 

describes the similarity of data values and location coherency in a neighborhood. Our extended 

variant even supports multiscale data via quadtrees and octrees. Our method is useful in many 

areas of visualization, including multivariate or comparative visualization, ensemble visualization 

of 2D and 3D data on regular grids, or multiscale visual analysis of particle simulations. The 

effectiveness of our method is evaluated with numerical comparisons to existing techniques and 

through examples of ensemble and multivariate datasets.
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1 Introduction

Space-filling curves (SFCs) linearize an n-D image through a one-to-one mapping into one 

dimension. Such linearization is useful in visualization as a tool for dimensionality reduction 

for 2D and 3D datasets. In this paper, we propose a data-driven space-filling curve method 

for data on regular or multiscale grids. Our main goal is to preserve spatial coherency (i.e., 

locality) and data coherency (i.e., data features) at the same time. We construct a faithful 

representation of the original 3D or 2D data after linearization. The method is intended 

for easy feature identification in the 1D visualization of space-filling curves—as line-plots

—and facilitates subsequent user interactions, e.g., brushing-and-linking in comparative 

visualizations.

An important factor for choosing an appropriate space-filling curve is how well the locality 

of a dataset is preserved. Among typical space-filling curves, the Peano curve (also known 

as the Morton curve) [19] does not well preserve the locality, whereas the Peano-Hilbert 
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curve [10] is considered to have better locality. Therefore, the Peano-Hilbert curve is popular 

in visualization. However, these space-filling curves ignore the content of a dataset.

This issue is illustrated in Fig. 1. It shows the visualization of an ensemble of a nucleon 

volumetric dataset generated by sampling from Gaussian distributions with varying extents 

of uncertainty: the volume rendering generated with a blue-white-red color map is shown in 

Fig. 1 (left). Boxplots along the Peano-Hilbert curve are shown in Fig. 1 (central bottom), 

where the feature coherency in 3D is not preserved—the small torus structure of high 

intensity cannot be identified. In fact, the torus is split into distant pieces in the 1D space 

and multiple brushes are required to select the feature (yellow areas in the “Peano-Hilbert 

curve” of Fig. 1). In contrast, with our method (Fig. 1 (central top)), the torus can be 

identified as a feature spanning a much smaller range in 1D, and can be selected with a 

single brush (as seen in the yellow region) thanks to better preservation of features in the 

spatial domain. With brushing-and-linking, the same regions are highlighted in yellow in 3D 

(Fig. 1 (right)) using linearizations with our method and the Peano-Hilbert curve. The better 

feature preservation of our method is also demonstrated with the purple brushes.

Our main contribution is a data-driven space-filling curve approach that comprises two 

variants of techniques: one for 2D and 3D regular grids, and another for 2D and 3D 

multiscale data. For regular grids, our method generates Hamiltonian cycles by replacing 

a minimum spanning tree using an objective function that combines locality and position 

terms; for multiscale data—quadtrees and octrees—our method finds adaptive Hamiltonian 

paths across data scales in a greedy fashion. To enable the calculation of Hamiltonian 

paths for multiscale data, we make a second contribution: a simple and efficient technique 

that finds a Hamiltonian path given only the entry and exit edges (2D) and faces (3D) of 

bounding rectangles/boxes of (all vertices of) grid graphs (e.g., north, east, south, west of 

the bounding rectangle of a 2D grid graph). We evaluate our method for each data type by 

comparing it to the Peano-Hilbert curve and scanline ordering on synthetic and real-world 

datasets. The effectiveness of our overall method is demonstrated through typical examples 

of 2D and 3D multivariate and ensemble data on regular grids and multiscale. The source 

code of our method is available online1.

2 Related Work

Space-filling curves [24], discovered by Peano [19], are traditional topics in mathematics 

but now have various applications across different areas in computer science. Well-known 

space-filling curves include the Peano curve [19], the Gray code ordering [8], and the 

Peano-Hilbert curve [10]. These methods consider only spatial discretization on regular 

grids. Adaptively refined space-filling curves are available for multiscale data structures, 

specifically, quadtrees and octrees, for dynamic load balancing for high-performance 

computing [4]. However, these methods use static configurations that are independent of 

the content of the data and relate only to the size of the data.

1 https://github.com/zhou-l/DataDrivenSpaceFillCurve.git 
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The context-based space-filling curve [5] is one of the few examples of a data-dependent 

curve. It targets to improve autocorrelation in 2D image and video encoding. There, a “dual 

graph” (we use this redefinition by Dafner et al. [5] throughout our paper) is generated from 

the input image and then a minimum spanning tree of the graph is found, where weights 

are determined by an objective function. Finally, the space-filling curve is constructed by 

replacing the minimum spanning tree with a Hamiltonian path from a Hamiltonian cycle. 

However, this method is limited to 2D data and does not support multiscale data, making 

it unsuitable for many visualization applications. Unlike this method, our data-driven space­

filling curves support 3D volume data and multiscale data of 2D and 3D, which are not 

possible with the context-based space-filling curves [5]. In addition, our method introduces 

a new objective function that achieves both feature and locality coherency, making it more 

flexible than the context-based method. Another example is an approximation method of 

the space-filling curve with a data-driven metric [26]. However, only simple 2D examples 

with distributed points are demonstrated and it is unclear how the method could be 

extended to more complex data such as images and volumes. A random space-filling curve 

method [13] based on the “cover and merge” strategy is not data-driven but inspires the 

computational framework of the context-based space-filling curve [5] as well as our regular 

grid techniques.

Space-filling curves are useful for many visualization purposes. They facilitate comparative 

visualizations due to locality preservation, i.e., points that are close on the space-filling 

curve are close in the original 2D/3D space (not necessarily the other way around). 

Space-filling curves are used in ensemble visualization of 3D volumetric data [6, 28]. Peano­

Hilbert curves are calculated for 3D ensemble data of multiple levels-of-details, and the 

linearized results are visualized as interactive enhanced line charts [6] making comparisons 

of 3D members possible. Similarly, a nonlinear compression method is available for the 

linearized 3D ensemble calculated using Peano-Hilbert curves [28]. Hilbert attention maps 

[16] use Peano-Hilbert curves to visualize time-varying eye-tracking data sampled on 2D 

regular grids as a static image, allowing features of interest that span a small neighborhood 

to be traced easily in the attention maps. For all methods above, brushing-and-linking is 

used as the major exploration approach that relates the 1D linearization and the original data. 

Since our technique improves space-filling curves implementations for visualization, all of 

these visualization applications could potentially benefit from our method.

Hamiltonian paths and cycles form the computational basis of our method. A Hamiltonian 

path/cycle is a path/cycle that visits each node in a graph exactly once, and a Hamiltonian 

cycle can be easily converted to a Hamiltonian path by a single cut on the cycle. The 

computation of the general Hamiltonian path problem is NP-hard [1]. For restricted 

scenarios, however, more efficient solutions are possible. The existence/nonexistence of a 

Hamiltonian path is proven for 2D grid graphs [11]; for 3D graphs of even-numbered nodes 

along each dimension, a Hamiltonian path can be generated from a Hamiltonian cycle [2]. 

However, these methods require specified entry and exit nodes, which is infeasible for 

data-driven space-filling curves for multiscale data. This is because if a path leaves a block 

of finer nodes and enters to a block of coarser nodes, we only know the exiting face of 

the block of finer nodes and the entering face of the block of coarser nodes. We propose a 

more flexible Hamiltonian path generation method—for both 2D and 3D regular grids, given 
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only edges/faces of entry and exit of a bounding rectangle/box—as a building block for our 

method.

Ensemble visualization, an active and challenging visualization topic [18], is one of the 

target applications of our technique. Besides the aforementioned methods using space-filling 

curves [6, 28], there are alternative techniques that use depth-based statistics [9, 14, 21, 

29], scatterplots and parallel coordinates [23], trend graphs and parallel coordinates [17], 

and a flexible linked-view system with a configurable collection of statistical representations 

[20]. Depth-based statistics is a fundamental building block for ensemble visualization. The 

computation and visualization of depth-based statistics is available for 1D functions [27], 2D 

surfaces [9], 2D contours [29], 3D contours [21], and 2D and 3D curves [14]. In our paper, 

we employ a 3D extension of the surface boxplot [9] together with our data-driven curves to 

visualize ensemble datasets.

3 Problem Formulation

To support regular grids data and multiscale data with a unified representation, we model the 

input data in 2D and 3D as a graph:

G = V , E, L ,

where vertices V are nodes/vertices of the grid, edges E connect neighboring vertices 

(typically 4-neighbor and 6-neighbor for 2D and 3D data, respectively), and L is the level of 

the scale of the vertex. Our formulation facilitates a flexible multiscale representation with 

the per-vertex scale L, as shown in Fig. 2.

Regular grids are a special case of G where the level is constant (L = 1) for all vertices and 

the graph becomes a grid graph (Fig. 3).

Typical space-filling curves [10, 19, 24] focus on the geometry of the curves, i.e., the 

geometry of V and E, which concerns only the preservation of locality but not data features 

as the curves are ignorant of the underlying data s(V). Our goal is to generate space-filling 

curves that preserve both locality and data features. This requires the scan order to be 

updated according to the data. We focus on data-driven space-filling curves that traverse 

through connected nodes within the graph G. Counterexamples (curves that jump between 

unconnected nodes) are known to have poor locality coherency, e.g., the scanline and 

the Peano (Morton) curve. In our case, the space-filling curve problem is equivalent to a 

Hamiltonian path problem [11] with coherency preservation, which allows us to formulate 

the generation of data-driven space-filling curves as an optimization problem of Hamiltonian 

paths with an objective function that takes measures of both locality preservation and 

data-feature preservation into account. Finding the minimum total weight of all possible 

Hamiltonian paths is hard on regular grids [5] and also on multiscale grids.

We denote a Hamiltonian path P through all vertices V as a sequence:

P = v1, v2, …, vn ,
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where vi ∈ V is adjacent to vi+1 for 1 ≤ i < n. We aim to find a path Pmin that minimizes an 

objective function f (P):

Pmin = arg min
P

f(P) .

The objective function is formulated to be the sum of weights W that is comprised of 

a feature preservation term N that concerns data values s(v) of vertex v, and a locality 

preservation term R:

f(P) = ∑
i = 1

n − 1
W vi, vi + 1 ,

W vi, vi + 1 = (1 − α)N s vi , s vi + 1 + αR vi, vi + 1 ,
(1)

where α ∈ [0, 1] is a user-set blend factor. Our locality preservation term is a simplified, 

first-order locality measure. The true locality measure of space-filling curves is multiscale, 

and, therefore, much more complicated. However, our simplified model still yields better 

positional coherency compared to the scanline and the context-based method, as shown in 

Section 6.

Solving the minimization problem is infeasible except for extremely small datasets, and, 

therefore, we find an approximate optimum of the objective function. For regular grids, 

the optimum of f (P) is approximated by adopting the strategy used by the context-based 

method [5] but with our new objective function and an extension to 3D. Steps involved in the 

framework of regular grids are illustrated in Fig. 4.

In Section 4, we briefly review the setup of the framework of the regular grid and elaborate 

on our new objective function and its impact. The rationale and details of this framework 

can be found elsewhere [5]. For multiscale data, we propose approximately minimizing the 

objective function f (P) using a top-down and recursive greedy algorithm, which is explained 

in Section 5.

4 Space-Filling Curve Generation for Regular Grids

The steps for computing data-driven space-filling curves on regular grids are described in 

Algorithm 1. Our new contributions are a new objective function as explained in Section 4.1 

and the extension to 3D detailed in Section 4.2.

We briefly review the computational framework [5] using a 2D example as illustrated in Fig. 

4. For a regular grid G with an even number of vertices in each dimension, we first convert 

it to a graph Gc of small circuits C (Fig. 3), and then compute the dual graph Gc′ (refer to the 

redefinition in the context-based method [5]) of Gc (Fig. 4 (a)). With the dual graph of small 

circuits, we are able to find Pmin by constructing the minimum spanning tree of Gc′. The 

width and height of Gc′ are wd and hd respectively; each node of Gc′ corresponds to a circuit 

Ck for k ∈ {1, …, wd × hd} of 2×2 vertices. The task of evaluating the weight between any 

vertex vj adjacent to vertex vi in P is now transformed to evaluating the weight on circuits 
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W(Ci, Cj), where Ci and Cj are adjacent, and the dual of Ci is already in the minimum 

spanning tree (Fig. 3 (right)). A minimum spanning tree is the tree that minimizes the sum of 

weights among all possible trees [25], i.e., it guarantees to find W(Ci, Ci+1) as the minimum 

among all W(Ci, Cj) in each step. The minimum spanning tree is built by joining edges of 

Gc′ using Prim’s algorithm (Fig. 4 (b)). Next, the minimum spanning tree is converted to a 

Hamiltonian cycle by merging the circuits according to the minimum spanning tree with the 

cover-and-merge strategy [13] (Fig. 4 (c)). Finally, a Hamiltonian path Pmin is created by 

making a single cut anywhere in the Hamiltonian cycle [5] (Fig. 4 (d)).

4.1 Objective Function

In our new objective function, the definition of weights of circuits on regular grids by adding 

the circuit Cj to the minimum spanning tree reads:

W Ci, Cj = (1 − α)N Ci, Cj + αR Ci, Cj , α ∈ [0, 1], (2)

where Ci and Cj are adjacent circuits, and the dual of Ci is already in the minimum spanning 

tree.

For value coherency, we reuse the definition of value weights of circuits of the context-based 

method [5]. The value weight that grows the minimum spanning tree with Cj reads:

N Ci, Cj = u1 + u2 + w1 + w2 + c − b − a , (3)

where u1, u2, w1, and w2 belong to edges along the growing direction of the minimum 

spanning tree, whereas a, b, and c belong to faces across the growing direction. All values 

above are differences of data values s(v) of vertices along corresponding edges in the grid 

graph as defined in Fig. 3 (right).

To measure the positional coherency, we first partition the dual graph into blocks with width 

wb and height hb, and denote the block center of circuit Ck as SCk, as shown in Fig. 5. Then, 

we derive our positional coherency term that measures the distance of the 2D position of the 

circuit to the block center. The positional term is defined as follows:

R Ci, Cj = Rpos Cj = Cj . x, Cj . y − SCj . x, SCj . y , (4)

where Rpos(Cj) measures the positional difference as the spatial distance between Cj and the 

center of the block SCj. Since an edge weight is required for finding the minimum spanning 

Zhou et al. Page 6

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2021 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tree, we assign Rpos(Cj) to the edge Ci−Cj in the dual graph to facilitate a unified weight 

definition with the value term.

A comparison of our data-driven curve for 2D regular grids and other linearization 

techniques is shown in Fig. 6. It can be seen that our method (Fig. 6 (Ours)) yields 

coherent results and correctly reveals the two peaks as coherent and neighboring features. 

The context-based space-filling curve (Fig. 6 (Context-based)) also reveals such structures 

but its spatial layout is not localized (Fig. 6 (b, Context-based)), which is confirmed by a 

similar autocorrelation of value (Fig. 6(d)) and a inferior autocorrelation of radial distance 

(Fig. 6(e)) compared to our new method). This indicates that our new method yields more 

coherent results than the context-based method. The scanline order (Fig. 6 (Scanline)) 

generates a cluttered line chart that goes up and down and it is not possible to see the data 

content; the Peano-Hilbert curve (Fig. 6 (Peano-Hilbert)) fails to show the two bright regions 

as neighboring features, and the concentrated overall structure is shown along the whole 

span of the line chart.

In our method, the blend factor α allows the user to flexibly change the importance of value 

coherency and positional coherency, which is not possible in the context-based space-filling 

curve [5]. Fig. 7 shows the effect of α on the traversal order of an image. The impact of α on 

value coherency and positional coherency is data-dependent and nonlinear. We empirically 

used an α value of 0.1 (except for Fig. 16, where α = 0) as tests on datasets for evaluation 

(Section 6) show that such a value yields a good balance between the positional coherency 

and data-value coherency. We recommended using α = 0.1 as a default and a fine-tuning of 

trial-and-error may be required for a specific dataset to achieve desired properties.

4.2 3D Volumes

Because a data-driven or context-based space-filling curve technique for 3D data on regular 

grids is useful for visualization applications [6, 28], we extend our data-driven space-filling 

curve to 3D regular grids. Fig. 8 shows a comparison of linearizations of a synthetic volume 

data—a sphere with increasing data value from exterior to interior (Fig. 8 (d))—using our 

data-driven method, the Peano-Hilbert curve, and scanline ordering. It can be seen that 

our method (Fig. 8 (a)) best preserves the value signature of the sphere as a concentrated 

continuous single peak with least noise, which is not possible with the Peano-Hilbert curve 

(Fig. 8 (b)) or the scanline (Fig. 8 (c)), the sphere is split into many pieces make the feature 

unidentifiable.

We extend the computational framework of the aforementioned 2D method (Algorithm 1) 

to 3D. Here, Gc—the equivalent to the circuit graph in 2D—is now comprised of small unit 

cubes—of 2×2×2 voxels—instead of circuits. The weights in the objective function have the 

same form as of Equation 2, but the two coherency terms are modified accordingly for 3D:

N Ci, Cj = ∑
r = 1

4
ur + wr + cr − br − ar ,

R Ci, Cj = Rpos Cj ,
Rpos Cj = Cj . x, Cj . y, Cj . z − SCj . x, SCj . y, SCj . z .

(5)
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As an analogy to the 2D case, ur and wr are edges along the growing direction, while ar, 

br, and cr are faces across the growing direction. The value weights of cubes on 3D regular 

grids are illustrated in Fig. 9 (a). Instead of four neighbors (top, down, left, right) in the 2D 

case, six neighbors (with front and back as additional neighbors) are used in the 3D case 

when building the minimum spanning tree.

The fact that a 3D unit cube is no longer directly a cycle as in the 2D case makes the 

conversion from the minimum spanning tree to a Hamiltonian cycle more complicated. 

There exist six possible cycle configurations in a unit cube as shown in Fig. 9 (b).

After building the minimum spanning tree, we grow the Hamiltonian cycle by traversing the 

tree and associating unit cycles with a random configuration (from the six configurations) 

with association rules [2]. Two association rules for two neighboring unit cycles are adopted 

(Fig. 9 (c)): if parallel neighboring edges exist, we break the parallel edges and associate the 

four endpoints; if parallel edges do not exist, we need to break the neighboring edges and 

associate all eight endpoints.

Our data-driven technique could be extended for n data attributes, where multidimensional 

data values live in regular grids in a 2D or 3D spatial domain. The vertices in the graph 

now have vector-based data values, and the weights of the objective function can be defined 

as certain metrics of the vectors, e.g., L2-norm. Our current visualization is based on the 

linearization of one data attribute for multidimensional data, and one member (typically, the 

median) for ensemble datasets.

5 Multiscale Data-Driven Space-Filling Curves

Our data-driven curve for a multiscale data is equivalent to finding a minimum Hamiltonian 

path that traverses every leaf node in a quadtree or octree T. However, the aforementioned 

regular grid strategy is not applicable to build a dual graph for multiscale graphs because 

they often do not contain even-numbered vertices along each dimension (Fig. 10 (a)), and, 

therefore, a Hamiltonian cycle does not exist. As a result, we resort to an approximation 

strategy to the minimum Hamiltonian path on multiscale grids with top-down adaptive 

refinement.

The process of our mutliscale data-driven space-filling curve method is summarized in 

Algorithm 2. Given a multiscale dataset on a quadtree (Fig. 10 (a)) or octree whose nodes 
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are of levels 1 ≤ L ≤ Lc, where 1 is for the finest level and Lc is for the coarsest level, we 

prepare an image/volume pyramid of Lc levels I1, I2, ⋯, ILc  for subsequent computations. 

First, the top-level space-filling curve Ptop of the coarsest level ILc is found (Fig. 10 

(b)). Based on the number of nodes in the coarsest pyramid level, the path is calculated 

using either the regular-grid-based data-driven curve method as described in Section 4 or 

the general Hamiltonian path method as discussed in Section 5.1. Then, we adaptively 

refine each element of the top-level curve Ptop (i.e., a multiscale node in the corresponding 

quadtree/octree)—at each level, a minimum Hamiltonian path is found with our flexible 

Hamiltonian path method that improves the Hamiltonian path method on grid graphs [11, 

15] (Fig. 10 (c)). Finally, the linearization is achieved: both the data value and the scale of 

the vertex are recorded (Fig. 10 (d)).

The objective function is approximately minimized during the process. The data value 

coherency term is minimized approximately with the flexible Hamiltonian path generation 

for each level in a block, and by finding the best entry node during adaptive refinement; the 

locality term is implicitly minimized by the hierarchical block-by-block advancing of the 

curve similar to the Peano-Hilbert curve.

In the rest of this section, we explain the flexible Hamiltonian path generation method, 

and then, the adaptive refinement process; finally, we discuss scenarios when the multiscale 

technique or the regular grids technique should be used.

5.1 Flexible Hamiltonian Path for 2D and 3D Grid Graphs

Typical Hamiltonian path methods solve the problem, i.e., (G, vs, vt), on a regular grid 

G with distinct, explicitly given entry and exit vertices vs and vt. However, this is not 

appropriate for our method as the adjacent vertices are of different scales. For example, as 

shown in Fig. 10, the exit vertex of the top-level block 3 (Fig. 10 (b)) cannot be known 

beforehand, but only the exit face of the block is known given the top-level space-filling 

curve. Therefore, in our formulation, we rewrite the Hamiltonian path problem as

G, vs, Ft , (6)

where Ft is the exit side/face of the bounding rectangle/box of G. The task is then to 

calculate the minimum path from vs to a valid vertex on Ft.

We have to compute the minimum path among all possible paths from entry point vs to all 

valid vertices on Ft. Here, the objective function f (P) is simplified to describe only the data 

value coherency of the sequence, and it is defined as the sum of gradient magnitude of data 

values s(V) along the path:

f(P) = ∑
i = 1

n − 1
s vi + 1 − s vi . (7)

Therefore, a smoothly changing path is encouraged and a path that fluctuates significantly is 

punished.
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We can find (or show the nonexistence of) a Hamiltonian path through given entry and 

exit vertices for small grids directly by using exhaustive search. A larger graph has to be 

partitioned into smaller ones: in practice, the largest graph that can be solved directly is 8×4 

for 2D or 4×4×2 for 3D on our test machines. The limitation of the partitioning is that it 

may break coherent features in space, e.g., in Fig. 12, single disks/spheres are occasionally 

broken into different blocks and become less coherent compared to being in the same block. 

Therefore, we suggest as few partitions as possible if it is supported by the hardware and 

computational time allows. The partition is based on the relationship between the entry face 

and exit face of the bounding box/rectangle of the graph.

Examples of our flexible Hamiltonian path technique are shown in Fig. 11: a horizontal 

partitioning and a vertical partitioning of 2D graphs are shown in Fig. 11 (a) and (b), 

respectively; exit faces Ft on the left and top for 3D graphs are shown in (c) and (d). Since 

the flexible Hamiltonian path method is the building block of our multiscale space-filling 

curve techniques, exhaustive search is implemented in an non-recursive fashion using stacks 

to improve efficiency.

5.2 Adaptive Refinement

The refinement method refine—as described in Algorithm 3—is the core of the space-filling 

curve for multiscale data. If any of the nodes within the block is not a leaf node, it has 

to be refined all the way down to the finest level in a data-driven fashion. The key is to 

determine the suitable entry node for blocks at different levels (the findBestEntry function 

in Algorithm 3): we keep track of the last vertex vlast in the Hamiltonian path and utilize it 

to find the matching entry node in the next block, i.e., the node within the adjacent block to 

vlast that has the minimum difference to its data value. The combination of this process and 

the Hamiltonian path generation function linearizeHamPath (Section 5.1) approximates the 

minimization.
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Fig. 12 (Quadtree) shows the linearization with our data-driven technique for quadtree on 

a synthetic image (Fig. 12 (Quadtree, first column)). The resulting multiscale linearizations 

and their reconstructed linearizations are shown in the second column of Fig. 12 (row 1). 

Here, “reconstructed” refers to generating the linearization back to the regular grid using the 

visit order of the coordinates of multiscale nodes and their scale information. It can be seen 

that our technique preserves the value signatures of five disks—each as a peak—which is 

more prominent in the reconstructed space-filling curve. Fig. 12 (row 1, third column) shows 

the geometry of the space-filling curve over the quadtree color mapped by the traversal 

order (from blue to yellow). An octree data of five spheres is shown in Fig. 12 (Octree): the 

linearization using our technique Fig. 12 (Octree, second column, top) preserves the value 

pattern of five spheres, more evident in the reconstructed version Fig. 12 (Octree, second 

column, bottom). The spatial configuration of the space-filling curve is shown in Fig. 12 

(Octree, third column), with the color map showing the scan order.

6 Evaluation

Our method is evaluated by numerical comparison of autocorrelations of our techniques 

(α = 0.1 for regular grid techniques) to existing linearization methods. Autocorrelation is 

the correlation of a signal and a shifted copy of the signal; the measurement indicates the 

coherency of a signal, and is suitable for measuring the effectiveness of space-filling curves 

[5]. In our evaluation, autocorrelations of two measures are calculated: 1) autocorrelation 

of linearized data values u(i) that measure the data coherency of space-filling curves; 

2) autocorrelation of radial Euclidean distances of elements in the linearization t(i) that 

measures the spatial coherency, i.e., locality, of the curves. The definitions of the two 

measures are shown as follows:

u(i) = s(P(i)), t(i) = ∥ [P(i) . x, P(i) . y, P(i) . z] − [0, 0, 0] ∥ .

Note that the distance measure t(i) is applicable only to regular grids and P(i).z = 0 for 2D 

cases.

We use benchmark datasets commonly employed in scientific visualization and average 

the autocorrelations of each dataset for each linearization technique. Specifically, 11 datasets

—typically, slices of volume data (one slice each of downsampled volume datasets of 

aneurysm, beetle, bonsai, MRI brain, engine, foot, fuel, hurricane Isabel, neghip, and 

nucleon—all from a public volume data library2; and an image of 5 randomly placed 

disks)—are used in the evaluation of 2D methods, and 5 volumetric datasets (fuel, neghip, 

nucleon, heart ischemia, and a procedural volume generated with a tangle function; all 

downsampled to 323) are used for 3D. Autocorrelations are shown in Fig. 13, where the 

horizontal axis is the lag (shift) of the signal, and the vertical axis is the value of normalized 

autocorrelation.

Averaged autocorrelations of data values in 2D (Fig. 13 (a)) indicate that our regular grid 

method (green) has almost the same feature coherency as the context-based curve (purple) 

2 http://schorsch.efi.fh-nuernberg.de/data/volume/ 
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as they are overlapping, and both perform much better than the Peno-Hilbert curve (blue) 

and the scanline (red); our data-driven method for quadtree (black) performs better than the 

Peano-Hilbert curve and scanline. In terms of averaged autocorrelations of radial distance 

(Fig. 13 (b)), the Peano-Hilbert curve (blue) performs best and is followed by our data­

driven method (green), and then the context-based method (purple); the scanline method 

(red) has much worse performances than other techniques.

For 3D data, the evaluation compares our regular grid-based data-driven technique, our 

multiscale technique for octree, the Peano-Hilbert curve, and the scanline. As shown in Fig. 

13 (c), our regular-grid method (green) tops other techniques for averaged autocorrelation 

of data value, and our octree technique (black) follows, and then, the Peano-Hilbert curve 

(blue), and the scanline (red). For autocorrelations of radial distance (Fig. 13 (d)), our 

regular grid method is better than the scanline but out-performed by the Peano-Hilbert curve.

The evaluation confirms that our data-driven technique balances the data value coherency 

and locality coherency, and is more flexible than existing techniques. The comparisons also 

suggest that our regular grid techniques have better data value coherency performance than 

our multiscale techniques—the former is preferred when high-quality linearization is needed 

for volumetric data and computational time is not a limiting factor.

Our multiscale techniques are most suitable for multiscale data by nature, e.g., multiscale 

simulation of particles. An octree can be built to have a few (even just one) particles in 

the finest level node so that accurate data values of almost all particles could be preserved. 

However, for regular grids, this is more difficult if not impossible. Either more particles 

are averaged out or a very fine grid has to be built. In addition, multiscale techniques are 

faster than regular grid techniques as fewer nodes have to be visited in multiscale structures 

compared to regular grids for the same input data.

In contrast, our regular grid techniques yield more coherent linearization results than our 

multiscale curves. This is due to that the multiscale curve uses the top-down approach 

to ensure a Hamiltonian path exists, but it breaks coherent features in space on certain 

occasions as demonstrated in Fig. 12 (Octree). The aforementioned numerical comparison of 

coherency confirms that the regular grid techniques have higher coherency than multiscale 

techniques.

Therefore, we recommend using the multiscale technique for intrinsically multiscale data, 

especially, point datasets, and for reducing computation time. The regular grids techniques 

are recommended for higher linearization quality for images and volumetric data on 

uniform grids. Furthermore, preprocessing the input data with a segmentation could improve 

the coherency, and, potentially, the efficiency of our method (for regular grids, fewer 

comparisons are needed when neighbors are homogeneous).

7 Visualization, User Interaction, and Implementation

Our method facilitates visualizations that use the horizontal axis for any spatial 

configuration along the space-filling curve, freeing the vertical space to visualize values 

aligned within the spatial configuration. For multivariate data, each variable can be 
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visualized as a line plot (Fig. 14), whereas for ensemble data, functional boxplots are used 

(Fig. 1, 15, 16). Here, we employ the surface boxplot [9] for 2D ensemble datasets; an 

extension of the method [9] to 3D is applied to 3D ensemble datasets. The conventional 

color scheme used for boxplots is adopted.

We have built an interactive visualization tool to support the exploration of space-filling 

curve-based visualization of datasets. The tool comprises three linked views: a line plot 

view that shows the linearized data; a 3D renderer that renders volumetric data with direct 

volume rendering, and particle datasets with polygon-based rendering; a 2D renderer that 

shows the data slice. The line plot view is linked with 2D and 3D renderers using the scan 

order of the space-filling curve that records the pixel ID of the line plot and its associated 

pixels/voxels in the original data. Brushing-and-linking allows us to brush regions in the line 

plot view, highlighting them in the 2D and 3D renderings. Interactive zooming and panning 

are supported in the line plot view so that both the overall structure and details of the line 

visualizations can be examined.

Our space-filling curve techniques were implemented using Matlab. The visualization tool 

is built using C++, Qt, and OpenGL, and is accelerated by the GPU. The QCustomPlot 

library [7] was used to aid the implementation of the line plot view. Our method was tested 

on a 2019 13-inch Macbook Pro with 2.3 GHz Intel i5 CPU, 8 GB main memory, and an 

Intel Iris 655 integrated GPU. The data-driven space-filling curve only needs to be computed 

once for a given dataset, and the computation time depends on the number of vertices in the 

graph representation of the dataset. Timings of generating data-driven space-filling curves 

for examples of the paper are summarized in Table 1. Full interactivity was achieved for the 

exploration of all examples.

8 Examples

We demonstrate the usefulness of our method with examples of multiscale multivariate 

particle data, ensemble of medical images on 2D regular grids, and volumetric ensemble 

datasets on regular grids. Visualizations of ensemble datasets are based on linearizations of 

the median members. The smooth particle hydrodynamics (SPH) dataset shown in Fig. 14 is 

a timestep in a dam break simulation [22]; the dataset contains particles with six attributes: 

density, pressure, speed, and velocity in X, Y, and Z directions, respectively. The data is 

decomposed into an octree and linearized using our octree-based data-driven curves. Data 

values of all attributes are linearized with the spatial layout of the space-filling curve of 

the pressure attribute. We highlight regions that are distinct from their neighborhood in the 

linearizations: low values of density, high values of pressure, and high values of speed and 

velocity. Here, the most prominent feature is the highest pressure region (brushed in purple) 

with values over 50,000 as shown in the zoom-in. The particles within the brushed regions 

can be seen in the 3D rendering (Fig. 14 (a)). Our method yields a new visual debugging 

method that shows clear, non-occluded quantities of each attribute embedded in a spatial 

context. It could complement non-spatial multivariate plots [22] for a more comprehensive 

visual debugging system.
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Fig. 15 shows the visualization of a series of open-access MRI slices [12]. The boxplot 

linearized with our method (Fig. 15 (b, center)) exhibits a more coherent feature that is more 

concentrated than in the Peano-Hilbert curve linearization (Fig. 15 (b, bottom)). As shown 

in the zoom-in of Fig. 15 (b, top), the outlier (the red curve) has wider low-value regions 

(inside the gray boxes) than the band as shown in the zoom-in. With brushing-and-linking, 

it is confirmed that the outlier image (Fig. 15 (a, top)) has larger lateral ventricle area than 

the median image (Fig. 15 (a, bottom)) with the brush on the boxplot linearized with our 

data-driven space-filling curve.

The myocardial ischemia dataset was generated by image-based, experimentally derived 

cardiac electrical potential simulation [3]. We use a subset of ensemble runs of the 

simulation and sample the data on regular grids for our experiment. Here, we are interested 

in the acute ischemic regions associated with mean potentials greater or equal to 3 eV. As 

shown in Fig. 16 (b, top), the linearized 3D boxplot using data-driven technique yields more 

concentrated global features than the linearization with the Peano-Hilbert curve (Fig. 16 (b, 

bottom)). The region of interest (high potential regions) is bounded in a small neighborhood 

with our method that could be selected with one brush (Fig. 16 (b, top)), whereas the Peano­

Hilbert curve yields a more scattered result—a large number of brushes are required (Fig. 16 

(b, bottom)). The volume rendering (Fig. 16(a)) of the median ensemble member shows that 

the region of interest is spatially continuous (white in the rendering); the highlighted regions 

in space (Fig. 16 (c)) verify that our method gives good coherency of the feature.

9 Conclusion and Future Work

We have introduced data-driven space-filling curves for 2D and 3D visualization. We have 

designed our methods to preserve coherency of both data value and locality after the 

mapping from the spatial domain to 1D. The methods are applicable for data on regular 

grids and in multiscale. We have modeled the problem as finding a Hamiltonian path that 

approximates the minimum of an objective function that blends a data value term and a 

locality term. Two variants of techniques are available for regular grids and multiscale data 

(quadtrees and octrees). The effectiveness of our method has been evaluated by comparing 

to existing methods on various datasets with qualitative visual comparison and quantitative 

comparisons of autocorrelations. We have confirmed that existing methods cannot preserve 

both data features and locality after linearization. Through multivariate and ensemble 

visualization examples with a wide range of real-world datasets, we have demonstrated 

the usefulness of our data-driven space-filling curves.

In the future, we would like to extend our method for time-varying data to understand 

the coherency in time. The positional term for regular grids requires uniform blocks of a 

user-defined size, which should be improved to be data-driven. The method could be used 

for multi-field visualization such that different field data, e.g., scalar, vector, and tensor, 

could be visualized in a linear layout for non-occluded comparisons and investigation of 

correlations. Finally, we would also like to accelerate our method with parallel computing to 

support larger datasets.
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Fig. 1. 
Visualizations of an ensemble of volumetric data. The key idea is to employ a mapping from 

3D space (as in the volume renderings) to 1D space via space-filling curves, which then 

allow us to show boxplots of the data distributions. The ensemble is generated by sampling 

from Gaussian distributions of data values in the nucleon data with varying extents of 

uncertainty. The boxplots of the ensemble linearized with the Peano-Hilbert curve (bottom) 

do not preserve the coherency of 3D features—the small torus structure of high intensity 

cannot be readily identified. In contrast, our data-driven space-filling curve method (top) 

preserves features from 3D even in the 1D linearized representation as high intensities 

are more concentrated. This observation is confirmed by brushing-and-linking—the torus 

could be covered by one brush and its surroundings with two brushes with our method 

(see the volume rendering on the right and the yellow and purple regions in “Data-driven 

space-filling curve”), whereas multiple brushes are required by the Peano-Hilbert curve 

(yellow and purple regions in “Peano-Hilbert curve”).
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Fig. 2. 
A 2D multiscale graph G = (V, E, L) on a quadtree with a Hamiltonian path Pmin.
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Fig. 3. 
(Left) A 2D graph on a regular grid G = (V, E, 1) with corresponding data values (black = 0, 

red = 1), and its associated circuit graph Gc (right) of circuits C. Adjacent circuits of Ci are 

drawn in light blue. The edge weights of data values between circuits Ci and Cj are shown 

on the right.
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Fig. 4. 
Intermediate steps of the framework of [5] on 2D regular grids. The dual graph Gc′. (a) 

of circuits graph Gc is a directed graph with our new weights (labeled on edges). Then, 

the minimum spanning tree (b) is found on the dual graph. Next, the Hamiltonian cycle 

is generated by merging circuits using the minimum spanning tree (c). Finally, (d) the 

Hamiltonian cycle is converted into a Hamiltonian path by making a cut anywhere on the 

cycle (shown as X).
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Fig. 5. 
Gc′ is partitioned (the blue dash-dot line) into blocks denoted by their centers (e.g., SCi and 

SCj) to accommodate the new positional term of the objective function.
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Fig. 6. 
Comparison of linearization methods applied to a slice of the nucleon dataset (a). Our 

new data-driven space-filling curve is compared to previous methods: the context-based 

space-filling curve, the Peano-Hilbert curve, and scanline ordering. The spatial layout of 

the respective curves is shown in (b), and the linearization of the data values in (c). The 

spatial layout (b) is colored by the traversal order of curves (the horizontal axis of (c)) with 

the parula colormap (right of (b) Ours). Autocorrelations of value (d) and radial distance 

(e) quantify data coherency and locality preservation, respectively. The plots show that our 

approach provides the best compromise between the two conflicting goals. Note that the 

autocorrelations of data values of our method and the context-based method are largely 

overlapping.
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Fig. 7. 
The effect of different α (left–right: 0, 0.01, 0.03, 0.1, 0.3, and 1.0) on the scan order of our 

space-filling curves for the nucleon slice data (left). The order is color-coded using the same 

color map as in Fig. 6.
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Fig. 8. 
Linearizations (top) of a synthetic volume data of a sphere (left) with our data-driven curve, 

the Peano-Hilbert curve, and scanline ordering. The scan orders of curves are shown in the 

bottom row.
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Fig. 9. 
The value weights of cubes on 3D regular grids (a). The cubes need to be converted into 

cycles during merging. There exist (b) six cycle configurations of a unit cube, and the cycles 

are merged with (c) two association rules.
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Fig. 10. 
Steps to compute a data-driven space-filling curve for multiscale data.
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Fig. 11. 
Flexible Hamiltonian paths for 2D and 3D grid graphs. Exit sides are on the (a) right and (b) 

left for these examples of 2D graphs. The example 3D graph has exit faces on the (c) left and 

at the (d) top.
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Fig. 12. 
Data-driven space-filling curves for quadtree and octree. The input data are shown in the 

first column, the linearizations in the second column, and the spatial configurations of the 

space-filling curves in the third column.
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Fig. 13. 
Autocorrelations of data value (first column) and radial distance (second column) for our 2D 

techniques (first row) and our 3D techniques (second row). Note that larger autocorrelation 

means better coherency.
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Fig. 14. 
Visualization of an SPH simulation of dam break: (a) rendering of particles with brushed 

regions, (b) multivariate line charts generated using our octree-based data-driven space­

filling curve.
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Fig. 15. 
Visualization of a brain atlas with our data-driven space-filling curve and a Peano-Hilbert 

curve (with images padded to size of 256 × 256 with zeros). The median image (bottom) 

and an outlier image (top) are shown in (a) with brushing-and-linking (purple box) on the 

space-filling curves (b, center). The 1D layout with the space-filling curve allows for easy 

interaction, including brushing and zooming on spatial details, and it supports rendering 

boxplots that separate the brain from its surrounding and show that the outlier has wider 

low-value regions than the band at the lateral ventricle (red curves in the gray boxes in the 

zoom-in).
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Fig. 16. 
Ensemble visualizations of a heart ischemia simulation. The median member is volume­

rendered in (a)—with 1D functional boxplots linearized with (b) our data-driven space­

filling curve (top) and a Peano-Hilbert curve (bottom). The ischemic region that has 

potential value greater than 3 eV is selected in the boxplots and highlighted in (c).
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Table 1.

Computation time of data driven space-filling curves on example datasets.

Dataset Size Time

Nucleon slice 64×64 pixels 12s

Nucleon 32×32×32 voxels 24s

Brain atlas 176×208 pixels 3m39s

SPH 4000 particles/11796 octree nodes 43s

Myocardial ischemia 128×128×128 voxels 4h31m
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