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Abstract: In this work, we firstly presented a simple encapsulation method to prepare thiamine
hydrochloride (vitamin B1)-loaded asolectin-based liposomes with average hydrodynamic diameter
of ca. 225 and 245 nm under physiological and acidic conditions, respectively. In addition to the
optimization of the sonication and magnetic stirring times used for size regulation, the effect of
the concentrations of both asolectin carrier and initial vitamin B1 on the entrapment efficiency
(EE %) was also investigated. Thermoanalytical measurements clearly demonstrated that after the
successful encapsulation, only weak interactions were discovered between the carriers and the drug
molecules. Moreover, the dissolution profiles under physiological (pH = 7.40) and gastric conditions
(pH = 1.50) were also registered and the release profiles of our liposomal B1 system were compared
with the dissolution profile of the pure drug solution and a manufactured tablet containing thiamin
hydrochloride as active ingredient. The release curves were evaluated by nonlinear fitting of six
different kinetic models. The best goodness of fit, where the correlation coefficients in the case of
all three systems were larger than 0.98, was reached by application of the well-known second-order
kinetic model. Based on the evaluation, it was estimated that our liposomal nanocarrier system
shows 4.5-fold and 1.5-fold larger drug retention compared to the unpackaged vitamin B1 under
physiological conditions and in artificial gastric juice, respectively.

Keywords: asolectin; liposome; vitamin B1; nanocarrier; encapsulation; pH-controlled release

1. Introduction

In the last decades, one of the major challenges of medicine has been the development
of novel, more effective drug carrier systems with biocompatible features [1]. The advan-
tages of colloidal carriers in contrast to traditional formulations lie in their cellular effect,
at which nearly 100% of the active ingredients can enter the cell and thus their bioavail-
ability can be significantly increased. Besides the surface modification and selective func-
tionalization of the colloidal particle, the targeted delivery of the chosen drugs can also be
ensured. Thanks to these benefits, the side effects of the drug molecules can be reduced,
and the dose can be increased at the same time. Although many publications can be found
which discuss the benefits of the inorganic-based drug delivery systems [2–4], these carriers
are difficult to remove from the human body [5]. Recently, the development of organic-
based nanocarriers has been the focus of extensive research thanks to their outstanding
biocompatible and biodegradable properties [1]. Besides biocompatible polymers [6–10],
serum albumins [11–13] can be also used to synthesize several biocompatible drug de-
livery systems applying the layer-by-layer (LbL) preparation technique. The liposomes
(LIPs) are also potential carriers due to the amphiphilic properties of the phospholipid
building blocks [14]. They have a similar chemical structure to the cell membrane, which
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is conducive for the easier endocytosis of the drugs. These spherical hollow particles
are composed of various phospholipid bilayers, where the hydrophilic part is orientated
towards the aqueous medium, while the hydrophobic part is located in the interior of the
double layer. With the compact structure, LIPs are also suitable for encapsulating water-
soluble and non-water-soluble molecules into the internal aqueous core or into the double
lipid layer, respectively. In addition to being used prominently in cancer therapy [15–18],
it should be also noted that it is one of the defining nanostructures of our decade due
to its major role in the defense against the COVID-19 pandemic as nanocarriers for the
vaccination and sensor measurements [19].

At present, perhaps in addition to vitamin C, there are relatively few commercially
available liposomal-based vitamin-containing medicinal products in which the active in-
gredient is exclusively in a liposome-stored form. In the presented work, vitamin B1 was
selected for the development of a liposomal-based colloidal drug carrier. Vitamin B1 is one
of the most important vitamins for the human body; its absence can lead to beriberi disease
caused by impaired glucose oxidation and lack of pyruvate oxidation [20]. This essential
compound also acts as a coenzyme of the enzyme that decarboxylates red tartaric acid.
The accumulation of red tartaric acid and lactic acid can cause nervousness, anorexia,
circulatory failure, and heart failure [21,22]. Considering these, it can produce feelings of
weakness and fatigue, depression, and intestinal problems in some cases. These symp-
toms can be detected in those people who have deficient or poor nutrition or alcoholic
addiction [23,24].

The aim of this work is the optimization of the encapsulation protocols of thiamine
hydrochloride in different media. To the best of our knowledge, S. J. Fathima et al. have
attempted to make liposomal thiamine dietary supplements [25] using lecithin and
L-α-phosphatidylcholine so far. The multilayered LIPs were characterized by light scatter-
ing, calorimetry, and atomic force microscopy. Nevertheless, the exact measurement of the
drug release, as well as the kinetic evaluation of the dissolution profiles, were neglected,
which are outstandingly important key questions for future applications. In contrast,
the development of a liposomal-based colloidal carrier was carried out in this work by
a selection of more cost-effective asolectin, which is a natural phospholipid and fatty
acid mixture from soybeans. The effects of several parameters (such as sonication time,
the concentration of the lipid, and drug content) on the entrapment efficiency (EE %)
were investigated. Furthermore, the analyses of the in vitro drug dissolution profiles under
physiological conditions (phosphate buffer, pH = 7.4 and 0.15 M NaCl) and in artificial
gastric juice (pH = 1.5 and 0.2 M KCl) were also highlighted. The results of the presented
work can help to develop LIP-based oral and intravenous products for delivery of the
selected essential vitamin B1 drug molecule. As can be seen in the following, both the
optimization protocols were worked out, and both the release profiles were registered and
analyzed under physiological and acidic conditions for this purpose.

2. Results and Discussion
2.1. Optimization of the Drug Encapsulation in Different Media

To facilitate the development of a possible production method for a liposomal-based
thiamine (vitamin B1)-containing delivery system, two pH conditions were selected for
preparation. For future intravenous application, a physiological condition was applied
firstly, which was imitated by phosphate buffer solution (PBS, pH = 7.4 with 0.15 M NaCl).
Based on the different colloid stability of the drug-free asolectin-based LIPs (Figure S1),
the acidic condition (pH = 3.0) was ensured by 0.001 M HCl solution containing 0.2 M KCl,
which served as a good model for an oral liposome formulation of the selected vitamin.
It is well known that the encapsulation protocols, as well as the size-controlling process,
have a great effect on the EE %. For the preparation, a simple one-pot in situ method was
chosen to fill the LIPs with vitamin B1, where the uniform lipid film was rehydrated in the
aqueous solution of thiamine hydrochloride using 1 mM concentration of this vitamin. This
can be defined as an in situ encapsulation protocol which easily entraps a large amount
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of drug molecule into the LIPs. The final lipid concentration was 1 mg/mL. To adjust the
smallest sizes associated with an appropriate EE %, the widely used ultrasound treatment
was applied.

To find the optimal sonication time after the 10 min magnetic stirring of the compo-
nents, the hydrodynamic diameters (dH) of the LIPs were registered using dynamic light
scattering (DLS) and the vitamin B1 content was identified by spectrophotometry at the
same time under both physiological and acidic conditions. As can be seen in Figure 1,
the optimal sonication time is ca. 50 min in PBS solution (Figure 1a), resulting in the
average diameter of dH = 224.2 ± 5.1 nm with EE % = 61.5 ± 2.3%. In contrast, at acidic
condition (pH = 3.00), 60 min sonication provides 242.6 ± 17.8 nm average size for the
formed LIPs, while the EE % is 62.0 ± 1.31%.
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To further optimize the preparation protocol of these vitamin B1-containing LIPs,
the effects of the amount of the lipid carrier and the vitamin B1 were also investigated. Dur-
ing these measurements, the amount of the initial asolectin varied between 0.5–10 mg/mL,
while the vitamin B1 concentration was constant at 1 mM. As Figure 2 shows, the EE %
decreased with the increase of carrier concentration in both cases (Figure 2a,b). The best
EE % (63.5 ± 1.8% and 65.8 ± 2.1% in PBS and at acidic medium) was reached by using
0.50 mg/mL carrier content. Next, the maximum amount of the trappable B1 was obtained,
while the lipid concentration was unchanged at 0.5 mg/mL. During these measurements,
individual samples were prepared, where the initial concentration of vitamin B1 varied
between 0.1–15 mM. Figure 2d clearly shows that the most vitamin B1 amount can be encap-
sulated by applying 10 mM initial vitamin concentration (EE % = 74.6 ± 2.4%) at pH = 3.00.
However, at physiological conditions, the increase in the vitamin B1 amount results in the
decrease in the EE % from ca. 80% to 62.1 ± 1.9% (Figure 2c); the highest vitamin content is
achieved in the case of 10 mM vitamin B1. As a result, the final encapsulated extent is ca.
6.21 mM and 7.46 mM under physiological and acidic conditions, respectively.

After the optimization of the encapsulation protocols, the structure of the drug-
containing carrier systems was characterized. For this purpose, thermoanalytical measure-
ments were carried out, where the formation of the assembling of lipids into LIPs and the
relationship between the carrier and drug molecule were identified.

Based on the calorimetric and thermogravimetric measurements, the characteristics
of the vitamin B1-loaded liposomal systems are presented in Figure 3 and Figure S2.
The first endothermic peaks on the DSC curves can be related to the evaporation of
physically bound water. For vitamin B1-containing LIPs, the endothermic peak of the
vitamin B1 degradation clearly appears, which, depending on the medium, significantly
shifts from the Tmax = 253 ◦C initial value (Figure 3c) to Tmax = 211 ◦C (pH = 7.40; Figure 3a)
and Tmax = 243 ◦C (pH = 3.00; Figure 3b). The appearance of this peak is clear evidence
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that vitamin B1 is presented in the liposomal system in both cases after purification steps.
Taking the heat flow values into account, it can be stated that the higher EE % can be
achieved for acidic medium, which is also confirmed by TG measurements (Figure S2).
These findings are in good agreement with the previous EE % data. No other heat effect
is observed in the DSC curves, thus there is no strong interaction between the carrier and
vitamin B1, that would significantly affect the drug release.
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2.2. Analysis of the pH-Dependent Vitamin Release from LIPs

As was mentioned previously, the dissolution of the vitamin B1 molecules from the
colloidal carriers was studied at two relevant pH conditions (pH = 7.40 and pH = 1.50). Be-
sides our sample, the pure vitamin penetration across the membrane was also investigated
as a control and the release profile of a thiamine-hydrochloride-containing tablet which is
commercially available in Hungary was also registered.

First, to investigate the possible application as an intravenous drug carrier, the B1
release profiles of all three systems were measured in PBS. In all cases, quite a similar
starting vitamin content was adjusted (c = 6.0 mM). The registered curves under physio-
logical conditions can be seen in Figure 4a, which clearly shows that 96–97% of the active
molecules penetrate through the dialysis membrane after 100 min for pure vitamin solution
and ca. 100% is reached at 360 min. It is also observed that ~88–90% of the drug content
from the manufactured tablet is released after 1 h. The difference between the pure vitamin
solution and the pharmacy formulation has been perhaps influenced by the presence of
different excipients. In the case of our sample, it can be estimated that the LIP-based
delivery system has the greatest retention for the selected drug: after 60 min., ca. 79% of the
total ingredient is dissolved, but at the end of the test time, this value reaches only ca. 84%.
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Figure 4. The dissolution profiles of vitamin B1 in (a) PBS and (b) artificial gastric juice.

To mimic the gastric condition, an artificial gastric juice was applied, which contains
0.2 M KCl at pH = 1.5. The presence of pepsin was omitted for easier spectrophotometric
measurement of samples. For better comparison as well as to avoid the high pH gradient
(from pH = 7.4 to pH = 1.5), the manufactured tablets were dissolved in acidic 0.2 M KCl
(pH = 3.0) solution. As can be seen in Figure 4b, ~92% of the control non-formulated vitamin
molecules diffuse after 100 min and this amount is constant until the end of the examined
time frame (360 min). In this acidic medium, the behavior of the tableted and liposomal
B1 is similar: the overpassed drug content is not changed after 100 min. While the tablet
released ca. 91% of the active ingredient, the LIPs left only ~86% vitamin B1. Any significant
difference between the dissolution curves was not observed. However, considerable drug
retention was observed in favor of LIPs in the first 20 min of the release measurements.

To analyze the primer release data, the dissolution profiles were fitted by a non-
linear technique using seven different kinetic models applying a self-developed and freely
available routine [26], which was published previously by our research group. First- and
second-order [27,28], Higuchi [29], Weibull [30], Korsmeyer–Peppas [31], Hopfenberg [32]
and Hixon-Crowell [20,33] models were tested, where models take different physicochemi-
cal parameters into account. The goodness of fit is represented by the correlation coefficients
(R2), which can be seen in Figure 5, in the case of the PBS (Figure 5a) and acidic (Figure 5b)
medium, respectively.
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Figure 5. The correlation coefficients (R2) for the release curves fitted with various kinetic models under (a) physiological
and (b) acidic conditions.

The best fit was obtained by using the Weibull model in both cases, but the utilization
of the second-order kinetic model provided almost the same tendency. While the Weibull
model provides only fitting parameters [30], the half-life (t1/2) of the dissolved drug can
be determined from the second-order rate equation. The td value, which is the time after
release of 63.2% of drug from the formulation [34], can be determined based on the Weibull
model, but it is an empirical model having some deficiencies. On the one hand, there is
no kinetic fundament; on the other hand, it has limited use for evaluation in the case of
in vivo or in vitro studies. Therefore, the t1/2 values are more appropriate for comparison
of different formulations. With this in mind, we used the second-order rate equation to
evaluate the dissolution curves. As can be seen in Figure 6, the second-order model can
provide a narrow confidence interval with good R2 in both pHs.
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Figure 6. The in vitro dissolution profiles (empty red circles) of liposomal B1 with the calculated non-linear second-order
kinetic model-based release curves (continuous lines) in (a) PBS and (b) artificial gastric juice.

The dotted blue lines represent the confidence intervals, while the gray continuous
lines show the predicted dissolution profiles based on the integral second-order kinetic
model. This kinetic model provides the rate constant (k) of the dissolution process and
the t1/2 can be calculated from its values. Based on this parameter, the drug retention of
formulated forms can be quantitatively compared with the dissolution feature of the pure

active component (drug retention =
t 1

2
of formulated form

t 1
2

of non−formulated form ). These calculated parameters

are summarized in Table 1. According to the t1/2 values, the drug retention of the different
formulations of B1 can be estimated. Based on the assessment of the formulation techniques,
it can be stated that the LIP-created encapsulation has the largest half-life times under both
physiological and acidic conditions. Thus, the longest vitamin retention can be reached
by applying a liposomal drug carrier. Namely, the LIP/B1 systems have nearly 4.5-fold



Int. J. Mol. Sci. 2021, 22, 9851 7 of 10

and 1.5-fold slower drug release compared to the free active ingredient in PBS and artificial
gastric juice, respectively.

Table 1. The half-life (t1/2) and the drug retention values determined by second-order kinetic models
for different systems.

PBS (pH = 7.4, 0.15 M NaCl)

t1/2 (min) td (min) Drug retention

pure vitamin B1 1.96 2.62 0.00
manufactured B1 tablet 2.57 3.49 1.31

liposomal carrier 8.71 10.94 4.44

Artificial gastric juice (pH = 1.5, 0.2 M KCl)

pure vitamin B1 2.96 3.11 0.00
manufactured B1 tablet 3.93 4.55 1.33

liposomal carrier 4.56 5.91 1.54

3. Materials and Methods
3.1. Materials

For the synthesis of drug-loaded LIPs, asolectin from soybean (25% phosphatidyl-
choline, Sigma), chloroform (CHCl3, 99.9%, Molar), methanol (CH3OH, MetOH, 99.9%,
Molar), and thiamine hydrochloride (vitamin B1, C12H17ClN4OS · HCl, ≥99%, Sigma)
were purchased. To adjust the pH, sodium phosphate monobasic monohydrate (NaH2PO4
× H2O; 99%; Sigma), sodium phosphate dibasic dodecahydrate (Na2HPO4 × 12 H2O;
98.5%; Sigma), sodium hydroxide (NaOH, 99.8%, Molar), hydrochloric acid (HCl, 37%,
Molar), sodium chloride (NaCl, 99.9%, Molar), and potassium chloride (KCl, 99%, Molar)
were applied. Sephadex dextran beads (G50 Medium, Sigma) and Ultrafree® Centrifugal
Filter Units (pore size: 0.45 µm, Sigma) were used for the gel filtration to remove the drug
excess, while the release profiles were registered by using standard cellulose membrane
tubes (cut-off: 12–14 kDa, Sigma). All chemicals were analytical grade and were applied
without further purification. The stock solutions were freshly prepared using MQ (Mil-
lipore, Milli-Q Integral3) ultrapure water (18.2 MΩ·cm at 25 ◦C). To compare the release
profile of the developed liposome-based nanocarrier to a manufactured system, vitamin
B1 Zentiva 10 mg (10 mg vitamin B1/pill, Zentiva Group, Prague, Czech Republic), as a
commercially available dietary supplement, was used.

3.2. Methods
3.2.1. Preparation of the B1-Loaded Vesicles

Based on the optimized protocol, 100 mg asolectin were dissolved in a 10 mL CHCl3:
MetOH/9:1 mixture. On the flask wall, the uniform lipid film was evolved by evaporation
of the solvent for 15 min at 50 ◦C. To prepare large unilamellar vesicles, the lipid film was
hydrated by magnetic stirring at 900 rpm for 10 min in 200 mL 10 mM vitamin B1 solution
in PBS or in HCl solution (0.2 M KCl, pH = 3.0) solution depending on further use. The size
of the LUVs was controlled by sonication with 37 kHz for 50 min in PBS medium, while
the sonication time was 60 min at acidic conditions. The amount of the non-capsulated
vitamin B1 was removed by centrifuge-assisted gel filtration for 7 min at 7000 rpm.

3.2.2. Characterization Methods

To determine the pH-dependent optical feature of the vitamin B1, as well as the drug
content and the dissolution profiles, a JASCO V-770 UV-Vis double beam spectrophotometer
was applied using a 1 cm quartz cuvette in the range of 200–350 nm. The characteristic
absorbance band of vitamin B1 was identified at λabs = 233 nm and λabs = 246 nm under
physiological conditions (PBS buffer, pH = 7.4, 0.15 M NaCl) and artificial gastric juice,
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respectively. The amount of the encapsulated vitamin B1 was determined based on the
calibration curves. The encapsulation efficiency (EE %) was calculated by Equation (1):

EE % =
encapsulated mass of vitamin B1

total mass of vitamin B1 in synthesis
× 100 (1)

The measurements of the hydrodynamic diameters (dH) and the ζ-potentials were
performed on a Malvern Zetasizer NanoZS 4003 apparatus with a He-Ne laser (λ = 633 nm)
at 25 ± 0.1 ◦C and 0.1 M ionic strength. The detection angle was 173◦. For the analyses of
the stability and the degradation of the drug-loaded and empty LUVs, differential scanning
calorimetry (DSC) and thermogravimetry (TG) were applied on a Mettler–Toledo TG/SDTA
851e instrument. The DSC curves were recorded between 25–500 ◦C with 5 ◦C/min heating
speed and N2 gas flow (flow rate: 50 mL/min). During the TG measurements, the observed
temperature range was 25–1000 ◦C, using a 5 ◦C/min heating rate. The data were analyzed
using STARe 12.10 software.

3.2.3. In Vitro Drug Release Measurements

For the in vitro drug release studies, a Hanson Vertical Diffusion Cell (VDC) was used.
The VDC has a 61 × 9 mm diameter cylindrical sample holder and a 4 mL sample volume.
The drug-loaded LIPs were separated from the release medium by a semipermeable
cellulose membrane (cut-off: 12–14 kDa), which was continuously stirred at 800 rpm.
The separated buffer flowed through a sample loop with a peristaltic pump, which was
connected to a flow-through cuvette of the spectrophotometer. Thus, the absorbance of the
dissolved vitamin B1 can be registered in a nearly real-time way in PBS and artificial gastric
juice [35–37]. During the measurements, a thermostatic water bath circulation of VDC was
applied at 37 ◦C and the temperature of the laboratory was fixed at 25 ◦C. The concentration
of the released drug at a specified time can be calculated based on the calibration process
(the error of the calculated concentrations was less than ±2%).

3.2.4. Nonlinear Fitting of the Dissolution Profiles

To analyze the registered drug release profiles, the relative concentrations (ct/c0)
of the released vitamin B1 as a function of time were calculated. For the mathematical
description of the in vitro dissolution, seven different kinetic models were chosen, which
are the first- [27] and second-order [28], Higuchi [29], Weibull [30], Korsmeyer–Peppas [31],
Hopfenberg [32] and Hixon–Crowell [33,38] models. The calculation was executed based
on a previously published open access spreadsheet method [26] by nonlinear fitting.
The goodness of the fits was determined by the value of R2. Some of the fitted data
are presented in Supplementary Materials (Figure S3).

4. Conclusions

In this manuscript, vitamin B1 molecules were successfully encapsulated into asolectin-
based liposomal carrier systems at pH = 7.4 and at acidic conditions. During the synthesis,
the sonication time after 10 min magnetic stirring was optimized based on the dH and drug
content. The average diameter of the vesicles was ca. 225 and 245 nm in PBS and under
acidic conditions, respectively. Besides finding the ideal asolectin (0.5 mg/mL) and initial
vitamin B1 (10 mM) concentrations, the thiamine-containing LIPs were characterized by
thermoanalytical measurements. The TG and DSC clearly showed that the preparation was
successful and there are no significant interactions between the vitamin molecules and the
carrier lipids. The release curves were evaluated by the non-linear fitting of six different
kinetic models. The best fits were determined by the Weibull and second-order kinetic
models, which were supported by the correlation coefficients. Based on the second-order
kinetics, the t1/2 values were calculated and the information about the drug retention was
also provided. For the measurements, a commercially available manufactured tablet form
of thiamine hydrochloride was chosen. Based on the drug release measurements, it can
be stated that the LIP nanocarriers have the best drug retention, which was 4.5-fold and



Int. J. Mol. Sci. 2021, 22, 9851 9 of 10

1.5-fold higher in PBS and acidic medium, respectively, compared to the free and tableted
vitamin. To consider the presented results, it can be asserted that the liposomal formulation
of the vitamin B molecular family looks promising and is worth considering in the future
to develop vitamin-based nanocarriers.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22189851/s1, Figure S1: The dH (black) and ζ-potential (blue) values of the drug-
free azolectin-based liposomes depending on the pH. Figure S2: The TG curves of the azolectin,
the vitamin B1, the vitamin-free and the vitamin-loaded liposomes prepared in PBS and acidic
medium. Figure S3: The kinetic evaluations of the LIP/B1 systems by non-linear fitting of First-order,
Higuchi and Hopfenberg kinetic models.
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