Table 2.
Cutpoint Properties | Calculated Likelihood Ratios |
|||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Author, Year of Publication |
Purpose | AUC | Cutpoint | SEN | SPE | PPV | NPV | OA | p-Value * | LR+ | LR− | |
Crohn’s Disease | Bou Jaoude, 2018 | Differentiate CD from non-CD | 0.522 | >1.98 | 0.684 | 0.431 | >0.05 | 1.202 | 0.733 | |||
Chen, 2018 | 0.828 | 2.85 | 0.692 | 0.762 | 2.908 | 0.404 | ||||||
Gao, 2015 | 0.850 | 2.13 | 0.827 | 0.769 | 3.580 | 0.225 | ||||||
Feng, 2017 | 0.740 | 2.72 | 0.683 | 0.759 | 0.701 | 2.834 | 0.418 | |||||
Acarturk, 2015 | Differentiate active CD and remission (clinical) | 0.830 | 3.20 | 0.810 | 0.590 | 0.930 | 0.740 | <0.001 | 1.976 | 0.322 | ||
Ben Jeddi, 2019 | -- | 1.57 | -- | -- | ||||||||
Chen, 2020 | 0.764 | 3.32 | 0.659 | 0.759 | 2.734 | 0.449 | ||||||
Eraldemir, 2016 | 0.703 | 2.58 | 0.696 | 0.760 | 0.727 | 0.731 | 2.900 | 0.400 | ||||
Xu, 2019 | 0.631 | NR | NS | NS | NS | NS | NS | -- | -- | |||
Zhang, 2017 | 0.812 | 1.95 | 0.955 | 0.571 | 0.778 | 0.889 | 0.806 | 2.226 | 0.079 | |||
Zhang, 2017 | Differentiate severe and mild-to-moderate CD (clinical) | 0.880 | 5.35 | 0.75 | 0.929 | 0.857 | 0.867 | 0.864 | 0.02 | 10.563 | 0.269 | |
Khoury, 2019 | Part of a new clinical score to predict intra-abdominal masses | 0.747 | 11.75 5.60 |
0.530 0.850 |
0.850 0.480 |
3.533 1.635 |
0.283 0.612 |
|||||
Crispino, 2021 | Predict endoscopic remission from biologic therapy at baseline | 0.640 | 1.55 | 0.400 | 0.860 | 0.640 | 0.707 | 0.003 | 2.857 | 0.698 | ||
Ben Mustapha, 2015 | Predict sustained response to IFX therapy at baseline | -- | <4.00 | 0.800 | 0.800 | <0.05 | 4.000 | 0.250 | ||||
Wlodarczyk, 2015 | 0.850 | 4.07 | 0.800 | 0.870 | 0.860 | 0.810 | 6.154 | 0.230 | ||||
Ben Mustapha, 2015 | Predict sustained response to IFX therapy at week 14 | -- | <3.50 | 0.720 | 0.700 | <0.05 | 2.400 | 0.400 | ||||
Wlodarczyk, 2015 | 0.760 | 3.670 | 0.670 | 0.800 | 0.770 | 0.710 | 3.350 | 0.413 | ||||
Gao, 2020 | Predict loss of response to IFX therapy at week 14 | 0.903 | 2.75 | 0.933 | 0.846 | <0.00 | 6.058 | 0.079 | ||||
Kang, 2017 | Predict postoperative complications | 0.675 | 4.10 | 0.700 | 0.564 | 1.606 | 0.532 | |||||
Cherfane, 2013 | Differentiate UC from non-UC | 0.735 | 2.60 | 0.700 | 0.630 | 1.892 | 0.476 | |||||
Dong, 2019 | 0.731 | 4.70 * | 0.613 | 0.857 | 4.287 | 0.452 | ||||||
Ulcerative Colitis | Jeong, 2021 | 0.774 | 2.26 | 0.542 | 0.906 | 0.578 | 5.766 | 0.506 | ||||
Zhang, 2021 | 0.858 | 2.66 | 0.750 | 0.826 | <0.001 | 4.310 | 0.303 | |||||
Acarturk, 2015 | Differentiate active UC and remission (clinical) | 0.740 | 3.10 | 0.780 | 0.690 | 0.840 | 0.640 | <0.001 | 2.516 | 0.319 | ||
Celikbilek, 2013 | -- | 2.47 | 0.539 | 0.632 | 0.667 | 0.500 | 0.578 | 1.465 | 0.729 | |||
Chen, 2020 | 0.828 | 2.85 | 0.762 | 0.845 | 4.916 | 0.282 | ||||||
Demir, 2015 | 0.640 | 2.39 | 0.486 | 0.775 | 0.680 | 0.604 | 2.160 | 0.663 | ||||
Fidan, 2017 | 0.722 | 2.20 | 0.620 | 0.700 | <0.05 | 2.067 | 0.543 | |||||
Hanafy, 2018 | 0.810 | 2.35 | 0.740 | 0.860 | 5.286 | 0.302 | ||||||
Okba, 2019 | -- | 1.91 | 0.900 | 0.900 | 9.000 | 0.111 | ||||||
Posul, 2015 | 0.650 | 2.30 | 0.612 | 0.667 | 1.838 | 0.582 | ||||||
Torun, 2012 | 0.850 | 2.16 | 0.818 | 0.805 | 0.868 | 0.738 | 4.195 | 0.226 | ||||
Xu, 2019 | 0.625 | NR | NS | NS | NS | NS | NS | -- | -- | |||
Yamamoto-Furosho, 2020 | -- | 2.00 | 0.750 | 0.635 | 2.055 | 0.394 | ||||||
Zhang, 2017 | 0.726 | 3.29 | 0.474 | 0.939 | 0.900 | 0.583 | 0.676 | 7.770 | 0.560 | |||
Jeong, 2021 | Differentiate severe and mild-to-moderate UC (clinical) | 0.714 | 3.44 | 0.636 | 0.811 | 3.365 | 0.449 | |||||
Zhang, 2017 | 0.560 | 3.92 | 0.375 | 1.000 | 1.000 | 0.231 | 0.474 | 0.517 | 0.625 | |||
Akpinar, 2018 | Differentiate active UC and remission (endoscopic) | 0.718 | 2.42 | 0.760 | 0.702 | 0.003 | 2.550 | 0.342 | ||||
Zhou, 2021 | 0.680 | 4.45 | 0.839 | 0.469 | 0.522 | 0.809 | 0.62 | < 0.001 | 1.580 | 0.343 | ||
Yamamoto-Furosho, 2020 | -- | 2.09 | 0.639 | 0.588 | 1.551 | 0.614 | ||||||
Cherfane, 2013 | Differentiate active UC from C. difficile infection | 0.693 | 3.10 | 0.700 | 0.650 | 2.000 | 0.462 | |||||
El-Sadek, 2021 | Predict UC flare during pregnancy | 0.915 | 2.85 | 0.900 | 0.882 | 0.001 | -- | -- | ||||
Nishida, 2021 | Predict development of pouchitis after ileal pouch-anal anastomosis | 0.680 | 2.15 | 0.722 | 0.677 | -- | -- | |||||
Bertani, 2019 | Predict clinical remission with anti-TNF medications at baseline | 0.889 | 2.33 | 0.900 | 0.650 | 2.571 | 0.154 | |||||
Bertani, 2019 | Predict mucosal healing with anti-TNF medications at baseline | 0.853 | 2.33 | 0.800 | 0.6700 | 2.424 | 0.299 | |||||
Bertani, 2020 | -- | 2.06 | 0.600 | 0.792 | 2.885 | 0.505 | ||||||
Nishida, 2017 | Predict response to IFX therapy at baseline | 0.702 | 4.49 | 0.786 | 0.783 | 3.622 | 0.273 | |||||
Nishida, 2019 | Predict risk of relapse with tacrolimus therapy at baseline | -- | 5.84 | 0.625 | 0.667 | 1.877 | 0.562 | |||||
IBD | Jeong, 2018 | Differentiate IBD from non-IBD | 0.802 | 1.80 | 0.707 | 0.733 | 2.648 | 0.400 | ||||
Chalmers, 2017 | Differentiate PIBD from non-IBD | 0.810 | 2.37 | 0.67 | 0.85 | 4.467 | 0.388 |
NLR: Neutrophil–lymphocyte ratio; CD: Crohn’s disease; IFX: infliximab; UC: ulcerative colitis; TNF: tumor necrosis factor (alpha); IBD: inflammatory bowel disease; PIBD: pediatric inflammatory bowel disease; NR: not reported due to lack of statistical significance; NS: non-significant; AUC: area under the curve; SEN: sensitivity; SPE: specificity; PPV: positive predictive value; NPV: negative predictive value; OA: overall accuracy; LR+: likelihood ratio positive; LR−: likelihood ratio negative. * p-values for discrimination between groups using the cutpoint for NLR using receiver operative curve analysis; ** Note: the original manuscript reported an NLR cutpoint value of 0.470 which we assume to be a typographical error related to decimal placement. We have unsuccessfully reached out to the authors to confirm.