Table 3.
Multilabel Classifier | Model | Accuracy | Recall | Precision | F1-Score | Hamming Loss |
---|---|---|---|---|---|---|
Binary Relevance |
NB | 0.147 | 0.761 | 0.701 | 0.730 | 0.315 |
SVM | 0.211 | 0.763 | 0.745 | 0.754 | 0.278 | |
LR | 0.193 | 0.775 | 0.732 | 0.753 | 0.285 | |
Label Powerset |
NB | 0.130 | 0.896 | 0.633 | 0.741 | 0.349 |
SVM | 0.166 | 0.799 | 0.679 | 0.734 | 0.323 | |
LR | 0.158 | 0.825 | 0.669 | 0.739 | 0.326 | |
Chain Classifier |
NB | 0.149 | 0.756 | 0.705 | 0.730 | 0.313 |
SVM | 0.215 | 0.761 | 0.753 | 0.757 | 0.273 | |
LR | 0.191 | 0.770 | 0.727 | 0.748 | 0.290 | |
RAkEL | NB | 0.157 | 0.749 | 0.699 | 0.722 | 0.322 |
SVM | 0.186 | 0.764 | 0.724 | 0.743 | 0.295 | |
LR | 0.180 | 0.765 | 0.726 | 0.745 | 0.293 | |
MLkNN | N/A | 0.140 | 0.737 | 0.697 | 0.715 | 0.327 |
BRkNN | N/A | 0.157 | 0.648 | 0.732 | 0.687 | 0.330 |
NB = Naïve Bayes, SVM = Support Vector Machine, LR = Logistic Regression.