Skip to main content
. 2021 Sep 21;18(18):9912. doi: 10.3390/ijerph18189912

Table 3.

Overall ML models performance.

Multilabel Classifier Model Accuracy Recall Precision F1-Score Hamming Loss
Binary
Relevance
NB 0.147 0.761 0.701 0.730 0.315
SVM 0.211 0.763 0.745 0.754 0.278
LR 0.193 0.775 0.732 0.753 0.285
Label
Powerset
NB 0.130 0.896 0.633 0.741 0.349
SVM 0.166 0.799 0.679 0.734 0.323
LR 0.158 0.825 0.669 0.739 0.326
Chain
Classifier
NB 0.149 0.756 0.705 0.730 0.313
SVM 0.215 0.761 0.753 0.757 0.273
LR 0.191 0.770 0.727 0.748 0.290
RAkEL NB 0.157 0.749 0.699 0.722 0.322
SVM 0.186 0.764 0.724 0.743 0.295
LR 0.180 0.765 0.726 0.745 0.293
MLkNN N/A 0.140 0.737 0.697 0.715 0.327
BRkNN N/A 0.157 0.648 0.732 0.687 0.330

NB = Naïve Bayes, SVM = Support Vector Machine, LR = Logistic Regression.