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Abstract

Complex diseases such as hypertension, cancer, and diabetes cause nearly 70% of the deaths in 

the U.S. and involve multiple genes and their interactions with environmental factors. Therefore, 

identification of genetic factors to understand and decrease the morbidity and mortality from 

complex diseases is an important and challenging task. With the generation of an unprecedented 

amount of multi-omics datasets, network-based methods have become popular to represent the 

multilayered complex molecular interactions. Particularly node embeddings, the low-dimensional 

representations of nodes in a network are utilized for gene function prediction. Integrated network 

analysis of multi-omics data alleviates the issues related to missing data and lack of context­

specific datasets. Most of the node embedding methods, however, are unable to integrate multiple 

types of datasets from genes and phenotypes. To address this limitation, we developed a node 

embedding algorithm called Node Embeddings of Complex networks (NECo) that can utilize 

multilayered heterogeneous networks of genes and phenotypes. We evaluated the performance 

of NECo using genotypic and phenotypic datasets from rat (Rattus norvegicus) disease models 

to classify hypertension disease-related genes. Our method significantly outperformed the state-of­

the-art node embedding methods, with AUC of 94.97% compared 85.98% in the second-best 

performer, and predicted genes not previously implicated in hypertension.

Keywords

Network integration; random walk with restart; multiplex heterogeneous networks; network 
propagation; graph representation; node embedding; feature learning; multi-omics data 
integration; genotype to phenotype mapping; disease gene prediction; hypertension; complex 
disease; rat

†Corresponding author. cdursun@mcw.edu, serdar.bozdag@unt.edu. 

Availability and implementation: The source code is available on GitHub at https://github.com/bozdaglab/NECo.

Supplementary information: Supplementary data are available at https://doi.org/10.1101/2020.06.15.149559.

HHS Public Access
Author manuscript
Proceedings (IEEE Int Conf Bioinformatics Biomed). Author manuscript; available in PMC 
2022 January 13.

Published in final edited form as:
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2020 December ; 2020: 146–149. doi:10.1109/
bibm49941.2020.9313595.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/bozdaglab/NECo


I. Introduction

Almost two-thirds of the deaths in the U.S. are caused by complex diseases such as 

cardiovascular disease, hypertension, cancer and diabetes [7]. Complex diseases involve 

interactions of multiple genes with each other and with environmental factors [14]. 

Identification of complex disease genes to understand disease pathways and mechanisms, 

and to reduce death rates, is therefore a vital yet difficult endeavor. Comprehensive 

understanding of the mechanisms of complex diseases and traits often involve generating 

large datasets that characterize the effects on phenotypes by, for instance, the genome, 

transcriptome, epigenome or proteome. The available datasets may not be specific for the 

particular complex trait in question, such as protein-protein interactions (PPI) [19]. To 

facilitate better understanding of the complexity of multilayered molecular interactions and 

elucidate the genotype-phenotype relationships, integrative network analysis methods have 

been employed [3, 10, 20].

To utilize such networks for downstream supervised and unsupervised analyses such as link 

prediction, community detection and node classification, latent representation of networks 

(i.e., node embeddings) are computed [8, 15]. Many of the recent studies utilize simple 

networks for latent representation, and recently several tools have emerged to learn the 

latent representation of more complex networks [1, 4]. Some of the recent node embedding 

methods rely on random walks-based approaches to learn the neighborhood of the nodes in 

the network. In a random walk, an imaginary walker starts at an initial node and iteratively 

visits one of its neighbors in the network. Random walk with restart (RWR) is a variation 

of random walk where in the first step, an imaginary walker starting from an initial node 

moves to one of its immediate neighbors in the network and then either walks to another 

neighbor or jumps back to the initial node iteratively. As random walks use the topological 

structure of networks, they are effective to capture the proximity of nodes to each other. 

After learning the node neighborhoods, node embeddings are computed by the Skip-gram 

algorithm. The Skip-gram algorithm predicts surrounding nodes of a given node based on 

the assumption that the nodes appearing more frequently in the same context are similar 

to each other [15]. DeepWalk, Node2vec and Metapath2vec are random walk-based node 

embedding algorithms [4, 8, 15]. DeepWalk and Node2vec utilize homogeneous networks; 

Node2vec employs a biased random walk algorithm to capture both structural similarities 

of nodes as well as homophily [9]. Metapath2vec was developed to address the need for 

heterogeneous (having multiple node types) networks [4]. However, these methods lack the 

ability to utilize multiplex heterogeneous networks using steady state ranking of RWR, and 

they cannot efficiently utilize the proximity of heterogeneous nodes.

In this study, we present a new node embedding algorithm, called Node Embeddings 

of Complex networks (NECo), that can utilize multiplex heterogeneous networks. NECo 

utilizes multiplex gene and phenotype networks to learn the latent features of genes and 

phenotypes for downstream analysis such as gene function classification and drug-gene 

interactions (Fig. 1). First, NECo creates a complex network structure using multiple 

gene/phenotype layers and a bipartite network of genes and phenotypes. NECo uses a 

RWR strategy to generate the top N node neighborhoods for each node in the network. 
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Unlike Metapath2vec NECo handles heterogeneous nodes by generating four types of 

neighborhoods: i) gene-gene: gene rankings starting from each gene node, ii) gene­

phenotype: phenotype rankings starting from each gene node, iii) phenotype-gene: gene 

rankings starting from each phenotype node, iv) phenotype-phenotype: phenotype rankings 

starting from each phenotype node. Then, it learns the embeddings of genes and phenotypes 

based on top N nodes of each of these neighborhoods utilizing the Skip-gram algorithm. For 

gene embeddings, gene-gene, gene-phenotype and phenotype-gene neighborhoods are used. 

For phenotype embeddings, phenotype-phenotype, phenotype-gene and gene-phenotype 

neighborhoods are used. Finally, those different node embeddings are concatenated and 

utilized by supervised/unsupervised learning algorithms for various downstream analyses.

We compared NECo’s performance with other approaches on predicting known 

hypertension disease-related genes using multidimensional rat datasets. NECo outperformed 

the other approaches by about a 9% margin. Furthermore, the top 20 novel hypertension­

related gene predictions by NECo had supporting evidence in the literature of their role in 

hypertension.

II. MATERIALS AND METHODS

A. Random Walk on Multiplex Heterogeneous Network

NECo utilizes RWR algorithm on undirected multiplex heterogeneous networks to compute 

a node neighborhood starting from each node in the network and applies the Skip-gram 

algorithm to learn the latent features of nodes in the network based on their RWR rankings 

(Fig. 1). NECo creates a multiplex heterogeneous network of genes and phenotypes in a 

similar way PhenoGeneRanker creates with default parameters [6]. Specifically, NECo can 

utilize multiple layered undirected networks which have two different type of nodes. Unlike 

several node embedding algorithms [4, 8, 15] that rely on truncated random walks, NECo 

utilizes the steady state distribution of RWR to generate the neighborhood of the nodes in 

the network ((Eq. 1)),

pt + 1 = 1 − r W pt + rp0 (1)

where r is the restart probability (i.e., RWR moves backs to the starting nodes), pt represents 

the probability distribution vector of nodes at time t and W is the transition matrix of 

the network, which is computed by column normalization of the adjacency matrix of the 

network.

After a number of steps, Eq. (1) reaches a steady state for undirected networks [3]. The 

magnitude of r affects the convergence rate of the RWR algorithm, where a large r leads to 

fast convergence to steady state [12] and limits the diffusion of the random walk. The steady 

state distribution (ps) can be used as a proximity vector for the nodes in the network starting 

from an initial node. NECo sets r = 0.7 by default as in other RWR algorithms [6, 11, 13, 

18].
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B. Node Embedding

NECo utilizes top N nodes of different RWR neighbourhood spaces as a proximity measure 

of the nodes (Fig. 1). NECo generates mixed node rankings that include genes and 

phenotypes starting from either a gene or phenotype node via RWR. To generate Gene-Gene 

and Gene-Phenotype neighborhoods, NECo separates the node rankings by node type where 

the initial node for RWR is a gene node, and it generates Phenotype-Gene and Phenotype­

Phenotype neighborhoods similarly where the initial node is a phenotype node. Then, NECo 

utilizes the Skip-gram algorithm to learn the node embeddings based on the neighborhoods 

of each gene or phenotype. The goal of the Skip-gram algorithm is to learn the node features 

of a given node which are predictive of nodes in its proximity. The objective function of the 

Skip-gram algorithm becomes the maximization of the log likelihood in Eq. (2);

∑
v ∈ V

logP N v |zv (2)

where V is the set of nodes in the network, v is a node in the network, and N(v) is the set of 

neighbor nodes of node v, and zv is the embedding of node v.

C. Disease Gene Classification Using Gene Embeddings

To evaluate the performance of NECo, we applied it to a multidimensional rat dataset 

to generate a multiplex heterogeneous network, with the goal of predicting hypertension 

disease-related rat genes [5]. We created a three-layer gene interaction network composed 

of gene transcript co-expression, protein-protein interaction and pathway layers. Using 

rat strain information, we created a three-layer rat strain similarity network composed of 

mammalian phenotype ontology (MPO) term-based similarity, disease ontology (DO) term­

based similarity and quantitative phenotype (QP) measurements-based similarity layers. 

All strain layers were created based on their similarity to each other in the context of 

hypertension. MPO and DO layers were generated based on semantic similarity of rat 

strains’ annotations to hypertension-related ontology terms (Supplementary Table 1 and 2), 

and QP layer was generated based on systolic blood pressure, heart rate and heart weight 

measurements of rat strains. Ontology term-based semantic similarity measures the degree 

of relatedness between two entities by the similarity in meaning of their annotations over a 

set of ontology terms by utilizing the graph representation of the terms [16]. We connected 

the multiplex gene network to the multiplex strain network by calculating the semantic 

similarity of genes to strains based on their MPO annotations.

We ran NECo on different network configurations. We employed the Generalized Linear 

Model (GLM) to classify hypertension-related genes using the gene embeddings computed 

by NECo. The feature set of each gene was composed of concatenation of gene embeddings 

based on Gene-Gene and Gene-Phenotype neighborhood spaces. We used the rat gene 

disease annotations in Rat Genome Database (RGD) to determine the set of “ground 

truth” hypertension disease-related rat genes. We selected the experimental annotations 

but excluded the genes having only gene expression-based experimental evidence codes 

(Supplementary Table 3). The number of unique genes in the whole network where all gene 
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layers were used was 18,275 and the number of genes in the “ground truth” set was 167. We 

employed 10-fold 10-repeat stratified cross validation for performance measurement.

III. Results

In this study, we developed a node embedding algorithm, NECo that uses multiplex gene 

and phenotype networks to learn node embeddings. Using a multidimensional rat dataset, a 

multiplex gene network was generated using differential transcript co-expression, PPI and 

pathway layers. A multiplex phenotype network was generated using MPO, DO and QP 

strain layers.

We present our findings on comparing NECo to other state-of-the-art node embedding 

algorithms, show literature review results for the novel predictions by NECo and the effects 

of different embedding spaces.

A. NECo Outperforms Other Node Embedding Algorithms

We compared NECo with three state-of-the-art node embedding algorithms, namely 

Node2vec, DeepWalk and Metapath2vec by applying a grid search for all the algorithms [5]. 

We built a complex network based on rat datasets and computed embeddings for each gene 

using the node embedding algorithms. Then we evaluated the performance of hypertension 

disease-related gene prediction.

Table 1 shows mean area under the receiver operating characteristic curve (AUC), F1 micro 

and macro scores of classification using the gene embedding of each algorithm. GLM 

classification based on the embeddings computed by NECo achieved an AUC of 94.97%, 

whereas the second-best performer classification was 85.98%. Classifications using NECo 

embeddings had higher F1 micro and macro scores than other methods as well.

B. NECo Predicts Novel Hypertension-Related Genes

To further examine top novel predictions by NECo, we performed a literature-based search 

of these predictions. To identify the top-ranked predicted genes, we picked the top-scored 

seven configurations based on AUC scores, as their AUC scores were nearly identical to 

each other (Supplementary Table 4). For each network configuration, we generated node 

embeddings 10 times and ranked the genes by their prediction probability based on the 

10-fold 10-repeat stratified cross validation. We then calculated the final rank based on 

the median ranks of each gene across these 70 results. We chose median ranks instead of 

mean ranks to avoid any outlier ranks. We filtered the known hypertension genes based 

on our ground truth set of hypertension disease-related genes. We investigated the top 20 

novel predictions for genes that at the time had not been annotated for hypertension-related 

disease at RGD (Table 2). Literature curation of these genes determined that 18 of NECo’s 

top predictions have published evidence, in most cases not merely expression-based, that 

the genes are involved in hypertension (Table 2). For the remaining two genes Pla2g10 
and Ckmt2, we could not find specific hypertension-related annotations. However there is 

supporting literature that Pla2g10 is involved in a signaling axis regulating blood pressure 

homeostasis [2] and Ckmt2 is involved in cardiovascular disease [17].
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C. Gene-Gene and Gene-Phenotype Embedding Spaces Achieved Higher Gene 
Classification Performance Than Phenotype-Gene Embedding Spaces

Since we utilized multiple gene and phenotype datasets, we analyzed the contribution of 

single embedding spaces to the classification results across different network combinations 

(Fig. 2). We observed that the Gene-Gene embeddings performed better than the Gene­

Phenotype embeddings when the gene network was multiplex. When the gene network 

was aggregated, the Gene-Phenotype embeddings performed significantly better than the 

Gene-Gene embeddings, whereas when the phenotype network was aggregated, Gene-Gene 

embeddings performed significantly better than the Gene-Phenotype embeddings. On the 

other hand, there was no significant difference between their performances when both gene 

and phenotype networks were aggregated. Moreover, the results clearly showed that the 

Gene-Gene and Gene-Phenotype embedding spaces performed significantly higher than the 

Phenotype-Gene embeddings for all network combinations.

IV. Discussion

In this study, we developed a node embedding tool called NECo that can utilize multiplex 

heterogeneous networks of genes and phenotypes. NECo uses stationary node ranks of RWR 

as a proximity measure of nodes, divides the node ranks into different neighborhood spaces, 

and then applies the Skip-gram algorithm to generate the node embeddings.

NECo’s power of using multiplex networks could be utilized more efficiently if the two 

types of node embeddings were used in the downstream analysis. We did not generate 

phenotype embeddings for the current experimental study, but it is straightforward to 

generate phenotype embeddings for a different problem setting. A higher contribution of 

gene multiplex networks to the gene embeddings in the gene classification task compared 

to the contribution of multiplex phenotype networks suggests that if the embeddings of both 

node types are used in the downstream analysis, the power of multiplex network usage for 

both node types would be efficiently utilized in the downstream analysis such as drug-gene 

interaction studies or gene/cell line classification.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overview of the NECo framework. NECo first generates the complex multiplex 

heterogeneous undirected weighted network. Then, it obtains the neighborhood of Gene­

Gene, Gene-Phenotype, Phenotype-Gene and Phenotype-Phenotype by random walk with 

restart. Thirdly, NECo takes the top N of those neighborhoods and learns the latent 

representation of nodes using the Skip-gram algorithm. The learned node embeddings of 

different spaces then are concatenated and used for classification using a statistical learning 

algorithm.
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Fig. 2. 
Contribution of gene-gene, gene-phenotype and phenotype-gene embedding spaces across 

different network combinations which utilize all three multiplex (Mx.) or aggregated (Agg.) 

gene and phenotype networks. Groups are shown in Gene-Phenotype network format. ***: p 
≤ 0.001
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Table 1.

Mean area under receiver operating characteristic curve (AUC), F1 Micro and F1 Macro values with standard 

deviations are given for 10 runs for each embedding algorithm. For the GLM classification 10-fold cross­

validation was repeated 10 times. Values are in percentage.

Method Mean AUC Mean F1 Micro Mean F1 Macro

NECo 94.97 ±0.24 90.98 ±0.15 55.06 ±0.13

Node2vec 85.98 ± 0.54 87.92 ±0.28 51.48 ±0.20

DeepWalk 85.21 ± 0.85 88.24 ±0.27 51.88 ± 0.28

Metapath2vec 82.33 ±0.05 51.12 ±2.08 36.19 ±1.01
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Table 2.

Novel NECo gene predictions sorted by prediction probability with supporting publications. references for 

publications listed in supplementary Table 5.

Gene Symbol # of Supporting Publications

Pdc 3

Rcn2 1

Gna11 1

Kcnk6 2

Fkbp1b 3

Pla2g5 3

F2rl1 2

Ptger1 3

Adora3 2

Gnaq 2

Wnk3 2

Lyz2 4

Agxt2 2

Fga 4

Mybph 1

Nox1 5

Ptger2 3

Asl 2
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