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Abstract: Gaining insight into the mechanisms of signal transduction networks (STNs) by using
critical features from patient-specific mathematical models can improve patient stratification and help
to identify potential drug targets. To achieve this, these models should focus on the critical STNs for
each cancer, include prognostic genes and proteins, and correctly predict patient-specific differences
in STN activity. Focussing on colorectal cancer and the WNT STN, we used mechanism-based
machine learning models to identify genes and proteins with significant associations to event-free
patient survival and predictive power for explaining patient-specific differences of STN activity. First,
we identified the WNT pathway as the most significant pathway associated with event-free survival.
Second, we built linear-regression models that incorporated both genes and proteins from established
mechanistic models in the literature and novel genes with significant associations to event-free patient
survival. Data from The Cancer Genome Atlas and Clinical Proteomic Tumour Analysis Consortium
were used, and patient-specific STN activity scores were computed using PROGENy. Three linear
regression models were built, based on; (1) the gene-set of a state-of-the-art mechanistic model in the
literature, (2) novel genes identified, and (3) novel proteins identified. The novel genes and proteins
were genes and proteins of the extant WNT pathway whose expression was significantly associated
with event-free survival. The results show that the predictive power of a model that incorporated
novel event-free associated genes is better compared to a model focussing on the genes of a current
state-of-the-art mechanistic model. Several significant genes that should be integrated into future
mechanistic models of the WNT pathway are DVL3, FZD5, RAC1, ROCK2, GSK3B, CTB2, CBT1,
and PRKCA. Thus, the study demonstrates that using mechanistic information in combination with
machine learning can identify novel features (genes and proteins) that are important for explaining
the STN heterogeneity between patients and their association to clinical outcomes.

Keywords: cancer; colorectal cancer; signal transduction networks; pathways; event-free survival;
biomarkers; WNT pathway; targeted therapy

1. Introduction

Colorectal cancer (CRC) is the second leading cause of cancer-related death world-
wide [1–3]. From the four global consensus molecular subtypes (CMS) of CRC, CMS1–4,
no specific drugs have been identified that target a specific CMS [4]. However, there
are multiple studies showing that some CMS subtypes benefit from specific therapeutic
regimens [5–7]. For CMS2 and 3, both of which are poorly immunogenic in comparison to
CMS1 and 4, the only associated treatment is toxic chemotherapy, which results in poor
patient prognosis [2,8]. Biomarkers are foundations of clinical and personalised medicine;
despite being vital tools in the area of clinical diagnostics, many are based on single time-
point measurements and lack the dynamic information that is needed to follow diseases
and therapy [9]. Therefore, we hypothesised that by integrating tumour profiling data
with dynamic information about signal transduction networks (STNs), mechanism-based
machine learning models could aid in the prediction of patient survival and response to
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therapy, and overall provide insight into the disease and drug-response mechanisms and
reveal potential drug targets and novel biomarkers.

STNs are extremely adjustable and dynamic [10]. To better understand these STNs
in the context of CRC, knowledge about how active these STNs are and how this activity
varies between patients and relates to patient outcomes is desired. To date, numerous
CRC STNs have been identified, including TGF-β (transforming growth factor beta),
PI3K/Akt (phosphatidylinositol 3-kinase/protein kinase B), TP53 (tumour protein P53),
MAPK (microtubule-associated protein kinase), Apoptosis, Cell Cycle (cell-division cycle),
mTOR (mammalian target of rapamycin), Notch, and WNT (Wingless-related integration
site) [3,11]. Table 1 portrays these critical CRC STNs and their associated functions. This
study analyses only five of these critical pathways, including TGF-β, PI3K/Akt, TP53,
MAPK, and WNT, because PROGENy (pathway responsive genes for activity inference) is
not available for Notch, Apoptosis, mTOR, and Cell Cycle.

Table 1. Critical CRC STNs and the associated key functions. Nine major CRC STNs, WNT, Apoptosis, PI3K-Akt, TP53,
MAPK, TGF-Beta, Cell Cycle, mTOR, and Notch are located in the first column. The “features” column represents the
number of features within each STN, i.e., the number of genes in each pathway. The correlated key functions of each
pathway in CRC are briefly explained in the third column [12–23].

CRC Signalling
Pathways Features Key Functions in Colorectal Cancer

WNT 119

Function: Normal activation leads to tumour growth in advanced CRC. This function depends
on the amount of B-catenin in the cytoplasm
Cellular Activities: Cell fate specification, proliferation, migration, and asymmetric cell division
Activated: WNT signal or APC mutation

PI3K/Akt 340

Function: Oncogenic role in the initiation and progression of CRC
Inhibition: Reduction in CRC cell growth and increase in apoptosis
Cellular Activities: Cell growth, proliferation, differentiation, and migration
Activated: EGFR (epidermal growth factor receptor) Signalling

• Akt is a downstream effector of PI3K, mediating effects on tumour growth and progression

MAPK 252 Function: Oncogenic role in CRC associated with tumour growth and disease progression
Cellular Activities: Cell growth, differentiation, and survival

TGFß 135

Function: Reduces colon epithelial cells proliferation and induces apoptosis and differentiation
Cellular Activities: Cell proliferation, differentiation, migration, apoptosis, and adhesion.
Activated: Binding of TGF-β ligands to type II TGF-β receptors

• Tumour suppressor in the normal epithelium
• Tumour promotor in the last stage of CRC

TP53 38 Function: Regulation of the cell cycle, DNA replication and apoptosis

Apoptosis 87
Function: Apoptotic cell death induction by two main pathways, intrinsic and extrinsic
signalling
Resulting in the formation of a death-inducing signalling complex and an apoptosome

Cell Cycle 122 Function: Controls cell division

mTOR 51 Function: Regulation of cell growth and division
Cellular Activities: Cell growth, proliferation, and survival

Notch 48
Function: Promotes CRC through regulating the cell cycle and cell apoptosis by regulation of
p21 and PUMA (p53 upregulated modulator of apoptosis) genes
Cellular Activities: Normal cell development, differentiation, proliferation, and apoptosis

STNs can be mapped to their most frequent mutations. Interestingly, APC (adeno-
matous polyposis coli) negatively regulates WNT activity since it is an integral part of the
destruction complex, which targets ß-catenin for degradation. Mutations in APC thus lead
to hyperactive WNT signalling [18]. Across all CRC STNs, the role of WNT signalling in
carcinogenesis has most notably been described for CRC [24]. Roughly all CRCs present
hyperactivation of the WNT pathway, which in many cases is believed to be the initiating
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and driving event [3,25,26]. Despite this, most mechanistic models of the canonical WNT
signalling pathway (β-catenin-dependent) are based on solely the intracellular steps, ne-
glecting the extracellular steps [27–32]. Classically, the term “canonical” for this pathway
refers to the pathway components, which lead to the stabilisation of β-catenin in response
to WNT ligands. Consequently, the analysis for this study was restricted to this specific
WNT sub-pathway, i.e., canonical. In contrast to most studies, Kogan et al. developed
a flexible framework for identifying potential drug targets in the WNT STN. This mech-
anistic model was based on the initial steps of the activation solely and analysed the
effects of two extracellular inhibitors, DKK (Dickkopf) and sFRP (secreted frizzled-related
protein) [27]. This validated mathematical model, which predicts effective combinational
therapy by sFRP and DKK, is the most recent WNT STN model to date and, interestingly
has never been validated in human cell lines. Overall, it is not instinctively apparent
which components of the WNT STN are best to target for therapeutic intervention or how
such interventions should be designed in order to achieve the best clinical outcomes [27].
However, it has emerged that in recent years, using patient-specific mathematical models
can improve patient-stratification and help to identify potential drug targets and largely
improve patient response to therapy [9,10,33]. Additionally, combining mechanism-based
machine learning models of disease dynamics has been proven to enhance the development
of novel disease interventions [34]. Concretely, mechanism-based machine learning models
are firmly based upon the behaviour and critical features of mechanistic signal transduction
networks of interest, whilst formed by classic linear regression. Adapting this, a schematic
of the approach is shown in Figure 1.

Figure 1. Cascade of events in the WNT Signalling Pathway. Our approach is to combine critical
features (genes forming the model) from the most recent mathematical model of the WNT STN, by
Kogan et al., with adjustable machine learning models [27]. The schematic represents the initial
steps of activation of the WNT pathway. WNT binds to FZD (frizzled), and the co-receptor LRP5/6
(low-density lipoprotein receptor-related protein 5/6), which is recruited in the vicinity of FZD
receptors upon WNT binding. This binding prevents the formation of the whole destruction complex
consisting of AXIN, APC, and GSK3β (Glycogen Synthase Kinase 3 Beta), thereby causing rising
levels of β-catenin, β-catenin translocation into the nucleus, and expression of WNT target genes,
CCND1 (Cyclin D1), MYC, MYCN, AXIN2, and FZD7 [27]. Using machine learning tools, such as
PROGENy, the WNT pathway activity can be calculated for each individual patient by analysing
their gene expression [35,36]. Created with BioRender.com.

BioRender.com
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In the present study, we developed adjustable linear regression machine learning
models of the activation of the canonical WNT signalling pathway and incorporated genes
and proteins that were significantly associated with event-free patient survival in CRC.
The term “adjustable” in such models represents the capability to vary (include/remove)
features with ease to determine which features are most important. The results revealed
that the machine learning models can not only help to understand the behaviour of the
initial steps of this complex network by identifying novel features not yet included in
mechanistic models but also interpret its behaviour by relating pathway activity to clinical
outcomes on the level of individual patients.

2. Results
2.1. Determining Significant Genes and Proteins in CRC: A Kaplan–Meier Survival Analysis

In line with the literature, five signalling pathways critical in CRC were selected to
analyse, from several network databases, including WikiPathways, Gene Set Enrichment
Analysis (GSEA), and KEGG [14,21,22,37,38]. These five signalling pathways comprise
WNT, PI3K-Akt, TP53, MAPK, and TGF-Beta. As mentioned above, the motivation behind
choosing these five pathways is due to the limited data available to perform a PROGENy
analysis. The five STNs analysed are the only CRC STNs available on PROGENy. To
determine which genes and proteins are significant in CRC, components of each pathway
were used to integrate data from the listed resources. In total, 1156 features were analysed
across all pathways. The correlation between patient event-free survival and the expression
of proteins and genes from a Kaplan–Meier and log-rank test resulted in 464 significant
features. In total, 389 genes and 75 proteins were found to be significant across the eight
major CRC signalling pathways. A concrete list of all significant genes and proteins is
available in the supplemental data. The associated hazard ratios and p-values of each
significant feature are denoted below in Tables 2 and 3. All significant genes were obtained
from the transcriptomic TCGA (The Cancer Genome Atlas), Firehose legacy dataset, with
a cohort of 329/636 patients. The 329/636 TCGA patients selected were solely from the
transcriptomic, mRNA (messenger ribonucleic acid) expression dataset; all patients had the
necessary clinical data available. Similarly, all significant proteins were obtained from the
proteomics TCGA Firehose legacy dataset, a cohort of 73 patients [39,40]. The associated
clinical information can be found in the supplemental data.

2.1.1. Significant Genes from RNA Sequencing

The total number of genes whose RNA expression correlated with event-free patient
survival in this cohort was 389 of 872 genes across all CRC signalling pathways considered.
For most pathways, including the WNT pathway, approximately half of the genes were
significant using a fold change and p-value cut-off of 0.5 and 0.05, respectively.

Next, we wanted to obtain a more comprehensive picture of the significant genes
within a pathway. Using the WNT pathway as an exemplar, the volcano plot in Figure 2
shows the p-values of the significant genes in the y-axis against their log2 fold change
on the x-axis. Genes above the dashed threshold line, to the right, DVL3 (dishevelled
segment polarity protein 3), VANGL2 (vang-like protein 2), CER1 (cerberus 1), and TCF7L1
(transcription factor 7-like 1), etc., are found to be significant, with the lowest p-values and
greatest positive hazard-ratio fold-changes. These genes were associated with increased
risk. Conversely, genes to the left above the threshold line, including MAPK8, have a
negative hazard-ratio fold change and were thus associated with decreased risk. Overall,
15 genes were found to be significant negative markers, and the remaining 39 genes were
significant positive markers determined for the WNT signalling pathway.
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Table 2. The top two significant genes across five CRC relevant signalling pathways from the TCGA Legacy dataset. A
Kaplan–Meier estimate and log-rank test were used to compute the association between patient event-free survival and
gene expressions. The associated hazard ratio, 95% confidence interval, p-value, mafdr (estimate positive false discovery
rate for multiple hypothesis testing), and standard error are apparent. “Patient” indicates the number of patients for which
data were available. The last column, “significant”, indicates the number of significant genes out of the total number of
genes for this pathway. The fold change and p-value cut-off used were 0.5 and 0.05, respectively.

Genes Hazard
Ratio

95% Confidence
Interval p-Value mafdr Standard

Error Patient Significant

(1) WNT 53/119

DVL3 2.8158 (1.6159–4.9066) 2.58 × 10−4 1.37 × 10−2 0.2833 329
VANGL2 2.7692 (1.5039–5.0992) 1.08 × 10−3 1.40 × 10−2 0.3115 329

(2) PI3K-Akt 159/340

EFNA1 3.2860 (1.8496–5.8377) 4.96 × 10−5 9.92 × 10−5 0.2932 329
KRAS 0.2853 (0.1502–0.5418) 1.27 × 10−4 1.26 × 10−4 0.3272 329

(3) TP53 11/38

BCL2 0.4610 (0.2960–0.7179) 6.12 × 10−4 0.0012 0.2260 329
CDKN2A 1.8156 (1.1931–2.7629) 5.36 × 10−3 0.0054 0.2142 329

(4) MAPK 113/252

KRAS 0.2853 (0.1502–0.5418) 1.27 × 10−4 2.09 × 10−4 0.3272 329
CACNA1I 2.7685 (1.6159–4.7432) 2.10 × 10−4 2.09 × 10−4 0.2747 313

(5) TGF-Beta 53/135

TERT 2.8734 (1.6639–4.96201) 1.53 × 10−4 3.05 × 10−4 0.2787 328
TGFB1I1 2.2381 (1.3807–3.6281) 1.08 × 10−3 0.0011 0.2465 329

Table 3. The top two significant proteins across five CRC relevant signalling pathways from the TCGA Legacy dataset. A
Kaplan–Meier estimate and log-rank test were used to compute the Pearson correlation between patient event-free survival
and protein expressions. The associated hazard ratio, 95% confidence interval, p-value, mafdr (estimate positive false
discovery rate for multiple hypothesis testing), and standard error are apparent. “Patient” indicates the number of patients
the corresponding protein was determined in. The last column, “significant”, in the format X/Y/Z lists the number of
significant proteins in each STN (X), the number of genes within the pathway with available protein information (Y), and
the total number of genes in the pathway (Z).

Genes Hazard
Ratio

95% Confidence
Intervals p-Value mafdr Standard

Error Patient Significant

(1) WNT 6/27/119

PRKCA 0.1557 (0.0490–0.4947) 1.61 × 10−3 0.0036 0.5898 63
ROCK2 5.7810 (1.9229–17.3789) 1.78 × 10−3 0.0036 0.5616 71

(2) PI3K-Akt 29/100/340

PPP2R1B 6.8050 (2.2113–20.9407) 8.26 × 10−4 8.32 × 10−4 0.5735 73
EIF4E 7.6285 (2.3168–25.1176) 8.32 × 10−4 8.32 × 10−4 0.6080 73

(3) TP53 2/5/38

BAX 10.8648 (3.3684–35.0445) 6.54 × 10−5 1.30 × 10−4 0.5975 71
BID 0.2650 (0.0814–0.8616) 2.73 × 10−2 0.0273 0.6016 67

(4) MAPK 20/80/252

STK3 8.6543 (2.4297–30.8245) 8.69 × 10−4 0.0092 0.6481 65
PRKCA 0.1557 (0.0490–0.4947) 1.61 × 10−3 0.0092 0.5898 63

(5) TGF-Beta 15/71/135

SMAD2 10.4343 (2.7196–40.0330) 6.30 × 10−4 0.0013 0.6860 67
SPTBN1 5.8318 (1.9510–17.4318) 1.60 × 10−3 0.0016 0.5587 73
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Figure 2. Significant genes in the WNT signalling pathway. Distribution of the p-value (− log10P)
over the hazard ratio (Log2 fold change) from the genes analysed from the RNA Sequencing TCGA
legacy dataset. Features were divided in two; significant and not significant, represented by the blue
and yellow dots, respectively. Labels represent the gene names of some significant features. p-value
cut-off used = 0.05. Log2 fold change cut-off used = 0.5. Total number of features in WNT signalling
pathway = 119. Total number of significant genes determined = 53.

Plotting the event-free survival Kaplan–Meier curve for DVL3, the most significant
gene in the WNT signalling pathway, resulted in a log2 hazard ratio of 1.49 and a 95%
confidence interval between 0.69 and 2.29 (Figure 3). Kaplan–Meier scanning to determine
the optimal cut-off divided the patients into high (n = 26) and low (n = 303) groups by
scanning the group size from 10–90 to 90–10 percent splits, where 10–90 means that 10%
of the patients were in the low group and 90% of the patients in the high group and
calculating the p-value for the overall event-free survival difference between the groups
using a log-rank test with Yates’ correction. A high expression of DVL3 resulted in poor
patient survival, where a 2-year event-free survival equals 38% in the high group (n = 26).
The Kaplan–Meier curves for the most significant gene found for each CRC STN is shown
in Figure 3.



Int. J. Mol. Sci. 2021, 22, 9970 7 of 26

Figure 3. Kaplan–Meier curve of event-free survival for the most significant gene of each CRC STN.
The most significant gene in each signalling pathway from the RNA Sequencing TCGA legacy dataset
was (A) DVL3 for WNT STN, (B) EFNA1 for PI3K-Akt STN, (C) BCL2 for TP53 STN, (D) KRAS for
MAPK STN, and (E) TERT for TGF-Beta STN. The patients were stratified into two groups according
to the expression level of each feature. The optimal cut-off was determined using Kaplan–Meier
scanning (see Methods). The groups are represented as high (orange line), and low (blue line),
where n indicates the total number of patients in each group. For each group, the Kaplan–Meier
curve of event-free survival was tested for statistically significant differences using a log-rank test.
Log2HR = log base 2 of the hazard ratio. CI95% = 95% Confidence Interval. P-val = p-value.

2.1.2. Significant Proteins from Proteomics

Across all of the CRC signalling pathways considered, 75 of 284 proteins exhibited
expressions that correlated with event-free patient survival. For each pathway, about 4–10%
of the pathway proteins exhibited an association with event-free survival. The top two
significant proteins across each CRC signalling pathway are shown in Table 3. PRKCA
(protein kinase c alpha) and ROCK2 (rho associated coiled-coil containing protein kinase 2)
were found to be the most correlated to the patient’s survival in the WNT signalling
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pathway. PRKCA was found to be the most significant protein with an associated hazard
ratio of 0.1557 and a p-value of 1.61 × 10−3. The signalling pathway PI3K-Akt has the
greatest number of significant proteins associated, 29 proteins in total.

Six significant proteins within the WNT signalling pathway were found from the
proteomics dataset, including PRKCA, ROCK2, CSNK2A1 (casein kinase 2 alpha 1), LRP1
(low-density lipoprotein receptor-related protein 1), CSNK1A1 (casein kinase 1 alpha 1),
and GPC4 (glypican 4). This is represented by the volcano plot in Figure 4. In total, 92
proteins in this pathway could not be analysed because of missing values. Significant
proteins, ROCK2 and CSNK2A1, have a positive hazard ratio with a log2 fold change above
1.5. All other significant proteins have a low-risk association with hazard ratios below −1.5.
In summary, six proteins were found to be significant, two with an increased risk and four
with decreased risk.
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dataset. Features were divided into two; significant and not significant, represented by the blue
and yellow dots, respectively. Labels represent the gene names of some significant features. p-value
cut-off used = 0.05. Log2 fold change cut-off used = 1. Total number of features in WNT signalling
pathway = 119. Total number of significant proteomics determined = 6.

Plotting the event-free survival Kaplan–Meier curve for PRKCA, the most significant
protein in the WNT signalling pathway, resulted in a log2 hazard ratio of −2.68, a confi-
dence interval between −4.35 and −1.02, and a p-value of 1.61 × 10−3. From Kaplan–Meier
scanning, 55 patients were in the high expression group, and 8 were in the low expression
group. High expression of PRKCA resulted in improved patient survival, with 2-year
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event-free survival of about 90% in the high group (n = 55). The Kaplan–Meier curves for
the most significant proteins found for each CRC STN are shown in Figure 5.

Figure 5. Kaplan–Meier curve of event-free survival for the most significant protein, of each CRC
STN. The most significant protein in each signalling pathway from the proteomics TCGA Firehose
legacy dataset was (A) PRKCA for WNT STN, (B) PPP2R1B for PI3K-Akt STN, (C) BAX for TP53
STN, (D) STK3 for MAPK STN, and (E) SMAD2 for TGF-Beta STN. The patients were stratified into
two groups according to the expression level of each feature. The optimal cut-off was determined
using Kaplan–Meier scanning (see Methods). The groups are represented as high (orange line),
and low (blue line), where n indicates the total number of patients in each group. For each group,
the Kaplan–Meier curve of event-free survival was tested for statistically significant differences
using a log-rank test. Log2HR = log base 2 of the hazard ratio. CI95% = 95% Confidence Interval.
P-val = p-value.
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2.1.3. Summary of the Event-Free Survival Analysis Results

Across five critical CRC signalling pathways, the results from the WNT signalling
pathway introduced several significant genes and proteins that have not yet been accounted
for in current WNT mechanistic models. Therefore, the results of this section reinforce
the need to propose a strategy to incorporate them into current WNT mechanistic models.
To summarise, Table 4 is composed of all 53 significant genes and 6 significant proteins
found in the WNT signalling pathway. These results were from the TCGA Legacy, the
transcriptomic dataset of 329 CRC patients, and the proteomic from mass spectroscopy
dataset of 73 patients. Interestingly, some significant genes (DVL3, DKK1, SFPR2, WNT3A,
WNT3, SFPR1, and GSK3B) are found in published mechanistic models of the WNT
pathway [27–32]. The remaining 52 significant features found in this study are not found
in these mechanistic models. Thus, we have identified many genes that were associated
with event-free survival and that constitute prime candidates to improve current WNT
mechanistic models. These improved models could then be used for patient stratification
and predicting response to therapy [9,33].

Table 4. Significant genes and proteins in the WNT signalling pathway from TCGA legacy datasets.
(A) List of significant genes and their associated hazard ratio, p-value, and mafdr (estimate positive
false discovery rate for multiple hypothesis testing). Hazard ratios smaller than one (between 0 and
1) indicate a negative association (decreased risk), hazard ratios of >1 indicate a positive association
(increased risk). The last column, proteomics, indicates whether proteomics data for this gene were
available. If yes, a Y is depicted. (B) List of significant proteins and their associated hazard ratio,
p-value, and mafdr. Significant features highlighted in blue were found in published mechanistic
models of the WNT pathway [27–32].

A Genes Hazard Ratio p-Value mafdr Patient Proteomics

1 DVL3 2.8158 2.58 × 10−4 1.37 × 10−2 329

2 VANGL2 2.7693 1.08 × 10−3 1.40 × 10−2 329

3 WNT6 2.3175 1.34 × 10−3 1.40 × 10−2 299

4 TCF7L1 2.0324 1.35 × 10−3 1.40 × 10−2 329

5 CER1 2.8871 1.42 × 10−3 1.40 × 10−2 147

6 SOX17 2.1048 1.59 × 10−3 1.40 × 10−2 329

7 NKD2 2.8598 1.85 × 10−3 1.40 × 10−2 329

8 DKK1 1.9732 2.16 × 10−3 1.43 × 10−2 309

9 SFRP2 1.8539 3.94 × 10−3 2.09 × 10−2 327 Y

10 PLCB1 2.9436 4.32 × 10−3 2.09 × 10−2 329

11 PRICKLE1 1.8229 5.01 × 10−3 2.09 × 10−2 329

12 MAPK8 0.5491 5.19 × 10−3 2.09 × 10−2 329 Y

13 PRICKLE2 1.8104 5.38 × 10−3 2.09 × 10−2 329

14 MYC 0.5535 5.53 × 10−3 2.09 × 10−2 329

15 WIF1 2.4639 6.46 × 10−3 2.20 × 10−2 246

16 CAMK2B 1.9981 6.66 × 10−3 2.20 × 10−2 302

17 WNT3A 2.3137 7.09 × 10−3 2.21 × 10−2 243

18 LEF1 1.9751 8.65 × 10−3 2.52 × 10−2 329

19 RHOA 0.4792 9.47 × 10−3 2.52 × 10−2 329 Y

20 MAPK10 1.7294 9.88 × 10−3 2.52 × 10−2 329
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Table 4. Cont.

A Genes Hazard Ratio p-Value mafdr Patient Proteomics

21 CAMK2D 0.5514 1.05 × 10−2 2.52 × 10−2 329 Y

22 WNT3 1.8141 1.06 × 10−2 2.52 × 10−2 328

23 FZD8 1.8913 1.09 × 10−2 2.52 × 10−2 329

24 SERPINF1 1.7116 1.14 × 10−2 2.52 × 10−2 329 Y

25 FZD1 1.7251 1.24 × 10−2 2.55 × 10−2 329

26 NKD1 1.8480 1.25 × 10−2 2.55 × 10−2 329

27 CXXC4 1.8290 2.62 × 10−2 1.34 × 10−2 318

28 PPP3CA 0.4335 2.62 × 10−2 1.39 × 10−2 329 Y

29 PLCB3 0.5772 2.74 × 10−2 1.50 × 10−2 329

30 CSNK1A1L 0.4710 2.74 × 10−2 1.55 × 10−2 321

31 PLCB2 1.6955 3.46 × 10−2 2.10 × 10−2 329

32 ROR2 1.6511 3.46 × 10−2 2.14 × 10−2 329

33 PRKCB 0.5888 3.46 × 10−2 2.15 × 10−2 329

34 WNT2 0.5479 3.52 × 10−2 2.26 × 10−2 329

35 SFRP1 1.6386 3.53 × 10−2 2.33 × 10−2 322

36 WNT10A 2.1170 3.69 × 10−2 2.56 × 10−2 328

37 GSK3B 1.6397 3.69 × 10−2 2.61 × 10−2 329 Y

38 FRAT1 0.6144 3.69 × 10−2 2.65 × 10−2 329

39 SENP2 2.2535 3.84 × 10−2 2.92 × 10−2 329

40 DKK4 1.7497 3.84 × 10−2 2.96 × 10−2 301

41 CTNNBIP1 1.5838 3.84 × 10−2 2.97 × 10−2 329

42 FZD7 2.0424 4.18 × 10−2 3.40 × 10−2 329

43 WNT1 1.7533 4.18 × 10−2 3.46 × 10−2 244

44 DKK2 1.8152 4.18 × 10−2 3.59 × 10−2 326

45 WNT16 2.0367 4.18 × 10−2 3.62 × 10−2 276

46 WNT2B 0.6417 4.18 × 10−2 3.68 × 10−2 329

47 NFATC4 1.5715 4.18 × 10−2 3.70 × 10−2 329

48 NLK 1.7784 4.23 × 10−2 3.83 × 10−2 329

49 NOTUM 1.5754 4.34 × 10−2 4.08 × 10−2 329

50 CSNK2A3 0.4868 4.34 × 10−2 4.09 × 10−2 329

51 WNT4 0.6060 4.82 × 10−2 4.64 × 10−2 329

52 FZD5 0.6579 4.82 × 10−2 4.81 × 10−2 329

53 DAAM1 1.7076 4.82 × 10−2 4.82 × 10−2 329

B Proteins Hazard Ratio p-Value mafdr Patient

1 PRKCA 0.1557 1.62 × 10−3 3.66 × 10−3 63

2 ROCK2 5.7810 1.78 × 10−3 3.66 × 10−3 71

3 CSNK2A1 5.6824 1.83 × 10−3 3.66 × 10−3 73

4 LRP1 0.2594 2.62 × 10−2 3.93 × 10−2 72

5 CSNK1A1 0.2846 3.71 × 10−2 4.46 × 10−2 72

6 GPC4 0.2512 4.58 × 10−2 4.58 × 10−2 50
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2.2. Predicting Pathway Responsive Genes for Activity Interference from Gene Expression:
A PROGENy Analysis

Having identified the significant genes and proteins within the pathways, we now
sought to obtain activity scores for each pathway. The purpose was two-fold. Firstly, to
identify pathway activities that correlate with event-free patient survival; and secondly,
to relate the genes and proteins expression of a pathway to its activity score. The RStudio
package function PROGENy was used to obtain pathway scores from the RNA sequencing
data of the TCGA legacy dataset. Albeit PROGENy’s composition of 14-cancer relevant
pathways, specifically for this study, only the CRC pathways were analysed in depth. The
only available CRC pathways in PROGENy were PI3K, MAPK, TGF-Beta, WNT, and p53.

The PROGENy activity scores for each CRC signalling pathway are shown in Figure 6.
Although the TGF-Beta and PI3K appear to have an inverse relationship, most pathways
exhibit a cluster of high activity scores in a small subset of patients. However, specific
activity patterns are difficult to discern.

Figure 6. PROGENy pathway activity scores from the RNA Sequencing expression dataset. Heatmap
visualising the z-coefficients matrix for all features in each CRC signalling pathway for all 329 patients
within the RNA sequencing TCGA legacy dataset cohort. The colourmap on the left indicates the
activity score values ranging from 3–−3. The Euclidean distance metric was used to pass the pairwise
distance between observations between both rows and columns. The complete linkage method was
used to create the hierarchical cluster tree. Data were clustered along the columns of data, then along
the rows of row-clustered data.

Kaplan–Meier Survival Analysis on PROGENy Activity Scores

To investigate the correlation between the PROGENy pathway activity scores and
patient event-free survival, a Kaplan–Meier analysis and log-rank test were used. The
activities of the WNT, PI3K, TGF-Beta, and MAPK pathways were all significantly corre-
lated with event-free survival (Table 5). In particular, we found that activity of the WNT
STN exhibited the strongest association with event-free patient survival (hazard ratio and
p-value of 1.9731 and 0.0013, respectively).
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Table 5. The association between PROGENy pathway activity and patient event-free survival.
PROGENy scores were analysed using Kaplan–Meier analysis and the log-rank test to obtain hazard
ratios and p-values.

Pathway Hazard Ratio p-Value

WNT 1.9731 0.0013

PI3K 0.5775 0.0276

TGFβ 1.5792 0.0477

MAPK 1.8058 0.0489

p53 0.5972 0.0687

The event-free survival Kaplan–Meier curves for the CRC STNs MAPK, TGF-Beta,
PI3K, p53, and WNT, associated with patient survival through PROGENy activity scores,
are shown in Figure 7. The STNs MAPK, TGF-Beta, and WNT followed a similar trend,
where a high pathway activation was associated with shorter event-free survival. From
the literature, this is expected considering that both pathways, MAPK and WNT, drive
cell proliferation. Activation of the WNT pathway in CRC increases the levels of β-catenin
within the cytosol, causing it to further travel into the nucleus and express WNT target
genes, including genes that control the cell cycle [41]. For the WNT signalling pathway,
the log2 hazard ratio was 0.98 with a 95% confidence interval between 0.38 and 1.58 and
a p-value of 1.3 × 10−3. The high group characterised by high WNT activity consisted of
108 patients and the low group of 221 patients. Similarly, the results for TGF-Beta are in
line with its immunosuppressive function. Conversely, for the other STNs, p53 and PI3K, a
high pathway activity was associated with longer event-free survival. The p53 result is in
line with its known functions as a tumour-suppressor. The PI3K result is counterintuitive
considering that the PI3K/AKT pathway is a classical survival signalling pathway but
might be a confounding factor explained by “side-effect” activation due to crosstalk.

2.3. Developing Linear Regression Machine Learning Models

Having ascertained the significant genes, proteins, and pathways, we next sought
to determine how well the expression of genes and proteins of a pathway can predict
its activity scores. The results should give valuable insight into which candidate genes
and proteins should be prioritised in follow-up studies focusing on constructing patient-
specific mechanistic models with significant value. The WNT STN was the most significant
pathway (Table 5, Figure 7); thus, we focused solely on it. Because there was a limited
overlap between the mRNA and proteomics data in the TCGA legacy dataset (only five
patients had data for both), we focused the analysis on the CPTAC (Clinical Proteomic
Tumor Analysis Consortium) dataset. Both mRNA and proteomics data were available for
the entire CPTAC cohort of 79 patients.

In total, three machine learning models were developed to predict the PROGENY
pathway scores using different features as inputs. The features were the genes and proteins
of the WNT pathway and their associated gene or protein expression values. To minimise
the risk of overfitting, 10-fold cross-validation was used to build each model. The predictive
power of each model was judged based on the root mean squared error (RMSE), the
correlation coefficient (R), and the p-value. A p-value less than 0.05 was taken as significant
for this field of study. The RMSE is an appropriate measure of predictive power for this
study because model complexity was not an issue, and RMSE measures the differences
between predicted and actual PROGENy values. There is no absolute threshold; however,
lower values indicate a better overall fit of how accurately the model predicts the response.
An acceptable range for the RSME values is difficult to define, but Model 1, consisting of
the genes of the current mechanistic model, can act as a baseline benchmark. Notably, the
predicted values of Model 2 show a much better correlation with the true values and a
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lower RMSE value compared to Model 1. (Figure 8B); thus, demonstrating a much better
fit. We focus our analysis on three models:

• Model 1: Features are eleven genes taken from the most recent WNT mechanistic
model developed by Kogan et al.: APC, AXIN1, CTNNB1, DKK2, DVL3, GSK3B,
LRP6, SFRP1, SFRP2, and WNT3.

• Model 2: Features are the mRNA expression of nine genes: seven features selected
using LASSO and the two most significant genes (DVL3, VANGL2): DKK3, FZD5,
NKD1, NOTUM (notum, palmitoleoyl-protein carboxylesterase), WNT11, PRKCA,
and ROCK2.

• Model 3: Features are the protein expression of seven proteins; five identified using
LASSO and the two most significant proteins (PRKCA, ROCK2): CTBP1 (c-terminal
binding protein 1), CTBP2 (c-terminal binding protein 2), GPC4, PLCB4 (phospholi-
pase c beta 4), and RAC1 (ras-related C3 botulinum toxin substrate 1).

Model 1 was developed based on the mechanistic WNT signalling pathway. The
selected features were the eleven genes of the mechanistic models in the literature [27–32],
using the mRNA expression data from the CPTAC dataset (Table 6). The gene DKK1 is
typically found in the mechanistic WNT pathway; however, it was not available in the
RNA CPTAC dataset; therefore, its paralogue, DKK2, replaced it [42]. Models 2 and 3 were
developed using systematic feature selection based on the entire set of 119 WNT pathway
genes. LASSO regression was used to identify the features based on the mRNA expression
data (Model 2) or protein expression data (Model 3). To complete the model, the two most
significant genes (Model 2) or proteins (Model 3) were also included as features. LASSO
regression on the mRNA data of the 119 WNT network genes selected seven genes as
features. Thus, Model 2 consisted of nine features: seven identified by LASSO plus the
two most significant genes. LASSO regression on the protein data of the 27 proteins of
the WNT network for which data were available selected five proteins as features. Thus,
Model 3 consisted of seven features: five identified by LASSO plus the two most significant
proteins.

How well can the mechanism-based, mRNA-based, and protein-based models predict
the pathway scores? Model 1, based on the genes of the mechanistic models, serves as
a benchmark and achieved a reasonable predictive power with a Spearman correlation
coefficient of 0.5241, a p-value of 7.12 × 10−7, and an RMSE of 1.0167. Model 2, based on
LASSO identified genes from the canonical WNT pathway, resulting in a greater predictive
power, compared to Model 1, with a Spearman correlation coefficient of 0.8367, a p-value
of 7.88 × 10−22, and an RMSE of 0.6416. Despite the smaller number of input features for
Model 2, compared to Model 1, Model 2 evidentially has greater predictive power, shown
by the higher p-value, correlation coefficient, and lower RMSE. Similarly to Model 2, Model
3 used LASSO to identify proteins from the canonical WNT pathway. In total, data for only
27 proteins were available due to missing data and imputation (see materials and methods).
Model 3 is the least predictive model. The associated Spearman correlation coefficient,
RMSE, and p-value were 0.4095, 1.0509, and 1.78 × 10−4, respectively. Most features used
in these machine learning models have nonzero regression coefficients (Figure 8D–F).
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Figure 7. Kaplan–Meier curves of event-free survival associated with CRC PROGENy pathway
activity scores. Kaplan–Meier curves associated with PROGENy pathway activity scores for the
signalling pathways (A) MAPK, (B) TGFß, (C) PI3K, (D) p53, and (E) WNT. The patients were
stratified into two groups according to the expression level of each feature. The groups are represented
as high (orange line) and low (blue line), where n indicates the total number of patients in each group.
For each group, the Kaplan–Meier curve of event-free survival was tested for statistically significant
differences using a log-rank test. Log2HR = log base 2 of the hazard ratio. CI95% = 95% Confidence
Interval. P-val = p-value. RNA Sequencing data is from the TCGA legacy dataset.
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model and significant proteins (y-axis), and the PROGENy scores (x-axis). Each blue dot represents 1 of 79 patients in the 
cohort. The black line indicates perfect predictions. “R” denotes the Pearson correlation coefficient, and “RMSE” is the 
root mean square error. The second row of figures represents the corresponding linear regression correlation coefficients 
for Models 1–3. Presented are the regression coefficients for the (D) Model 1, (E) Model 2, and (F) Model 3. The features 
used for each machine learning model are shown on the vertical axis, with the associated correlation coefficients shown 

Figure 8. Linear regression machine learning models of the mechanistic and canonical WNT signalling pathways. Scatter
plot visualising the correlation between the predicted score from (A) Model 1, using the 11 features of the mechanistic
model (y-axis), and the PROGENy scores (x-axis). (B) Model 2, using the nine features of the canonical WNT model and
significant genes (y-axis), and the PROGENy scores (x-axis). (C) Model 3, using the seven features of the canonical WNT
model and significant proteins (y-axis), and the PROGENy scores (x-axis). Each blue dot represents 1 of 79 patients in the
cohort. The black line indicates perfect predictions. “R” denotes the Pearson correlation coefficient, and “RMSE” is the root
mean square error. The second row of figures represents the corresponding linear regression correlation coefficients for
Models 1–3. Presented are the regression coefficients for the (D) Model 1, (E) Model 2, and (F) Model 3. The features used
for each machine learning model are shown on the vertical axis, with the associated correlation coefficients shown on the
horizontal axis. The blue dot represents the regression correlation coefficient, and the blue line (error bar) is the associated
standard error. The dashed vertical yellow line represents the midline for the linear regression coefficients at 0.
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Table 6. Overview of the significant genes and proteins and the linear regression machine learning
models. (A) List of the top six significant features from RNA sequencing and proteomics from TCGA
Legacy datasets. (B) Model 1: An overview of the features used for the Mechanistic WNT pathway
model. Models 2 and 3: An overview of the features used for the canonical WNT pathway, from
CPTAC RNA and proteomics datasets, respectively. The number of features used and associated
RMSE for each model is listed in the first column. “RMSE” = root mean squared error. Significant
features are highlighted in blue.

(A) Top Six Prognostic Genes and Proteins Features

mRNA Sequencing
TCGA Legacy

DVL3
VANGL2

WNT6
TCF7L1

CER1
SOX17

Proteomics
TCGA Legacy

PRKCA
ROCK2

CSNK2A1
LRP1

CSNK1A1
GPC4

(B) Linear Regression Models Features

APC
AXIN1

CTNNB1
DKK2
DVL2

DVL3
GSK3B
LRP6
SFRP1
SFRP2

Model 1: Mechanistic Model
Model Input: CPTAC RNA

RMSE: 1.0167
11 Features

WNT3

DKK3
FZD5
NKD1

NOTUM
WNT11

DVL3

PRKCA
ROCK2

Model 2: Canonical WNT model with top two prognostic
genes and proteins

Model Input: CPTAC RNA
RMSE: 0.6416

9 Features

VANGL2

CTBP1
CTBP2

GPC4
PLCB4

PRKCA
RAC1

Model 3: Canonical WNT model with top two prognostic
proteins

Model Input: CPTAC proteomics
RMSE: 1.0509

7 Features

ROCK2
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2.4. Summary

By incorporating the results from the event-free survival analysis, the PROGENy anal-
ysis, and the development of the linear regression machine learning models together, it is
apparent that each finding paves the way to a valuable tool for predicting the heterogeneity
of the WNT STN activity on an individual patient level. Concretely, each finding from
each analysis builds sequentially upon another. The event-free survival analysis brings
forth critical and novel features for the WNT pathway that have not yet been accounted
for mechanistically. Interesting, from the PROGENy analysis, we found that the WNT
signalling pathway was the most significant pathway associated with event-free patient
survival. This finding solidifies the idea that there is a relationship between this pathway
and patient survival that should be continued to be researched mechanistically. Finally, the
motivation for using linear regression machine learning was particularly because it is an
appropriate tool to predict WNT pathway activity from specified features (i.e., prognostic
genes and proteins) on an induvial patient level. Precisely, the machine learning models
additionally identified several features that were not only significantly associated with
event-free patient survival, but also important for predicting the patient-specific WNT
pathway activity scores. Thus, by incorporating such features into an updated mechanistic
model of the canonical WNT STN activation, one would expect to better understand the
patient-specific differences in the control of pathway activity, but also to relate pathway
activity to clinical outcomes on the level of individual patients.

3. Discussion

Our experimental workflow employed numerous Kaplan–Meier survival scans, a
PROGENy analysis, and developed three machine learning models based on mechanistic
WNT pathway models and LASSO identified genes and proteins of the extant WNT
network. The models can serve as a platform for improving current mechanistic models
and WNT pathway activity-based patient stratification. Conversely, all models of the
WNT signalling pathway to date have focussed on a few genes and proteins of the core
pathway [27–32]. Building upon this work that describes the initial steps of WNT pathway
activation, our work builds upon this by identifying new features and regression models
that describe the heterogeneity of the WNT pathway activity scores across patients from
two CRC cohorts [27]. We have also shown that the activity scores of the WNT pathway
were the most significant in terms of the association to event-free patient survival compared
to four other key pathways of CRC; the MAPK, PI3K, TGF-Beta, and p53 pathways.

3.1. Event-Free Survival Analysis

This study determined novel genes and proteins significantly associated with event-
free survival in CRC across the major five CRC signalling pathways, WNT, PI3K-Akt, TP53,
MAPK, and TGF-Beta. In total, 389 genes and 75 proteins were found to be significant
across all signalling pathways from a sum of 872 genes and 284 proteins. A total of 59
of these features were significant in the WNT signalling pathway, and interestingly, only
seven of these significant features, DVL3, DKK1, SFPR2, WNT3A, WNT3, SFPR1, and
GSK3B, are found within previous mechanistic WNT models [27–32]. Thus, in order to
build new and improved mechanistic models of the WNT pathway with the potential to
fulfil the promise of precision medicine, future modelling should focus on these significant
genes and proteins.

For the WNT signalling pathway, the number of significant genes determined from
RNA sequencing was 53. The top two significant genes found were DVL3 and VANGL2.
The most significant gene was DVL3, with a corresponding hazard ratio of 2.8158 and a
p-value of 2.58 × 10−4. WNT ligands bind to FZD receptors and the LRP5/6 co-receptor,
which leads to the recruitment of cytosolic DVL3, then relays this signal to downstream
signalling events that result in the translocation of ß-catenin to the nucleus and target gene
expression. Thus, DVL is recruited by the receptor Frizzled and prevents the fundamental
destruction of cytosolic β-catenin [43]. Previous studies demonstrated that a high expres-
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sion of DVL3 in CRC acts as an unfavourable prognostic marker [44]. Additionally, Zhao
et al. suggest that DVL3 is a key regulator in CRC chemoresistance and targeting it may be
a potential strategy for CRC therapy [45]. Our study solidifies this further, as shown in the
Kaplan–Meier curve in Figure 3, in which a high expression of DVL3 was associated with a
lower event-free patient survival. VANGL2, the second most significant gene in the WNT
signalling pathway, has a hazard ratio and p-value of 2.7692 and 1.08 × 10−3, respectively.
Studies show that VANGL2 can be activated by WNT through Frizzled receptors [46].
Furthermore, within the WNT pathway, six proteins were significantly associated with
event-free patient survival. The most significant protein was PRKCA. High PRKCA protein
expression correlated with longer event-free survival (Figure 5). Interestingly, the PRKCA
protein was also important for explaining the WNT pathway activity scores in Model 3,
with a significant negative regression coefficient (Figure 8), which is in line with the known
function of PRKCA, which is to inhibit WNT signalling via several mechanisms, including
the phosphorylation of β-catenin, and enhance CRC cell death, concretely fitting to the
survival data presented in Figure 5 [47]. Together, these results suggest a model in which
PRKCA exerts its positive effects on patient survival via repressing the WNT activity.

Finally, the results for the WNT pathway analysis identified several significant genes
and proteins that were associated with event-free survival but have not yet been accounted
for in current WNT mechanistic models. Most, if not all, models to date are based on a few
intracellular and extracellular components of the core WNT pathway [27–32]. Focusing
on describing the general mechanistic details of WNT pathway activation, these models
were not intended to model patient specific differences and describe the WNT signalling
heterogeneity across patients. In contrast, our analysis and machine learning models aimed
at identifying genes and proteins with significant event-free survival associations and
describing patient-specific differences of WNT pathway activation. In total, the remaining
52 significant features found in this study are not found in these mechanistic models.
Thus, we have identified many genes that were associated with event-free survival and
that constitute prime candidates to improve current WNT mechanistic models. These
improved models could then be used for patient stratification and predicting response to
therapy [9,33].

3.2. A PROGENy Analysis

The second part of this study consisted of a PROGENy pathway activity score analysis.
There were several reasons why PROGENy and not classical GSEA was performed. One
major reason PROGENy does not require predefined groups for comparisons, unlike GSEA,
which determines whether a defined set of genes shows statistically significant, concurring
differences between two groups, for example, normal and tumour tissue [14,48]. PROGENy,
on the other hand, predicts specific pathway activity scores for each individual patient;
thus, allowing us to build models that can explain these scores [35,49].

An advantage of the PROGENy analysis is that it reveals patient-specific differences,
showing that different pathways are active in different patients (Figure 6). Interestingly,
the PROGENy analysis did not reveal a striking hyperactivation of the WNT pathway
(Figure 6); most values were found to be between 0 and 0.5 despite it being the main driving
event in tumorigeneses within most CRC patients. This finding is explained by the fact that
the pathway analysis is a differential analysis. PROGENy results are z-scores quantifying
standardised (mean normalised and scaled) relative differences, yet all patients might have
high WNT activity in absolute terms.

The results correlating the PROGENy pathway activity scores to patient event-free
survival show that the WNT, PI3K, TGF-Beta, and MAPK pathways, when activated, were
significantly associated with event-free patient survival. It is very interesting to note that
the WNT signalling pathway was the most significant pathway associated with event-free
patient survival. These results are in line with the literature, where high WNT pathway
activation was associated with shorter survival [27–32]. The activation of the WNT pathway
in CRC increases the levels of β-catenin within the cytosol, causing it to translocate into
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the nucleus and express WNT target genes that drive cell-proliferation [41]. How can the
patient-specific differences of the WNT pathway activity be explained?

3.3. Development of Linear Regression Models

The final part of this study developed three linear regression machine learning models
with the aim to predict the PROGENy WNT pathway activity scores. Current mechanistic
models describe the pathway components and provide deterministic insights into how the
WNT pathway is activated but neglect patient-specific differences [27–32]. Thus, combining
machine learning that focuses on patient-specific differences with mechanistic models has
great potential for building explainable machine learning models.

Overall, Model 2 was found as the most predictive model. In comparison, the RMSE of
Model 2 was 0.3751 times smaller than Model 1. Five features were identified that were both
prognostic of event-free patient survival and predictive of WNT pathway activity, including
DVL3, PRKCA, VANGL2, GPC4, and ROCK2. Of these, DVL3 was the only feature found
in the mechanistic model, Model 1. The finding also highlights a lack of features in current
mechanistic models that can explain patient-specific differences. Concretely, solidifying the
need to propose such a strategy to incorporate them. In particular, our work identified the
four overlapping features above (PRKCA, VANGL2, GPC4, and ROCK2) that should be
the focus of mechanistic modelling in the future. Machine learning, Model 2, accounting
for such features, outperformed the current mechanistic model and can accurately predict
the WNT pathway activity scores.

Interestingly, the protein PRKCA was found to be both significantly associated with
event-free survival and a significant predictive feature of the WNT pathway activity score
(Table 6). The results in Figure 8 show that most features used in the machine learning
models have nonzero regression coefficients, in particular: DVL3, FZD5, RAC1, ROCK2,
GSK3B, CTB2, CBT1, and PRKCA. These features provide valuable WNT network nodes to
be included in future mechanistic models of the WNT network. The presented machine
learning models incorporate patient specific significant features that describe pathway
activity and can thus be termed “explainable”. Despite this, these prognostic features
have not yet been accounted for in current WNT models. The finding that a LASSO-
based machine learning model (Model 2) identified new features outperforms the current
mechanistic model, and can accurately predict the WNT pathway activity scores, highlights
the need to improve current mechanistic models by incorporating these features.

4. Conclusions

In conclusion, we developed machine learning models of the activity of the canon-
ical WNT signalling pathway and incorporated significant genes and proteins that are
associated with event-free patient survival. This model is a valuable tool for predicting
the heterogeneity of WNT pathway activity on an individual patient level. In this study,
we identified several features (DVL3, FZD5, RAC1, ROCK2, GSK3B, CTB2, CBT1, and
PRKCA) that were not only significantly associated with event-free patient survival but
also important for predicting the patient-specific WNT pathway activity scores. We expect
that integrating these features into mechanistic models of WNT pathway activation in the
future will not only help to better understand the patient-specific differences in the control
of pathway activity but also to relate pathway activity to clinical outcomes on the level of
individual patients.

5. Materials and Methods
5.1. Data Acquisition from the Literature

All data used throughout this study was open-source data. The first datasets were
from the 2016 TCGA Colorectal Adenocarcinoma, GDAC Firehose Legacy study, previously
known as TCGA provisional. The datasets used for this study included Genomic from RNA
sequencing (20,532 genes), proteomic from mass spectrometry (5562 proteins), and the
associated clinical dataset [39,40]. The TCGA legacy datasets, due to the minimum overlap
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between patients, were only used to determine prognostic genes and proteins within such
patients. Pre-processing across the datasets was performed before the survival analyses
were complete. Across all datasets, patients who did not have the associated censoring
status or disease-free survival months available were removed. The second set of data
was from the 2019 prospective CPTAC-COAD colon adenocarcinoma studies, genomic
from RNA sequencing (13,482 genes), proteomic from mass spectrometry (6422 proteins),
and clinical datasets were all downloaded from LinkedOmics [39,40,50,51]. Minor pre-
processing across the CPTAC datasets was performed before the following analyses were
complete. The pre-processing included analysing the datasets, RNA, proteomics, and
clinical to ensure that the same patients were overlapping across all and, if not, removing
these patients. In total, 79 patients remained across all datasets. Additionally, for the
CPTAC proteomics dataset, several NAN values were present. These values were imputed
for the machine learning LASSO regression analysis of the WNT STN. This was achieved
in the application Perseus using a low-shifted distribution of width 0.3 and a downshift
of 1.8 across the total matrix [52]. Furthermore, proteins with data points of 10% or less
were removed. In total, 27/39 proteins in the WNT STN remained after imputation. All
datasets analysed and pre-processed for this study can be found in the supplementary data;
consequently, Table 7 and Figure 9 represent key metrics and pre-processing steps for all
datasets used.

Table 7. Important key metrics of datasets and corresponding analyses performed for each dataset. The two studies used,
TCGA Legacy and CPTAC, are located in the first column [39,40,50,51]. The “datasets” column represents the type of omic
dataset used from the corresponding study in column one, with key metrics identified. The “analyses” column represents
the type of analysis performed on each specified dataset. “RSEM” = RNA-sequencing by expectation-maximisation.
“UQ” = upper quantile normalisation. “TMT” = tandem mass tag.

Study Datasets Analyses

2016 TCGA Colorectal
Adenocarcinoma, GDAC

Firehose Legacy

1. Genomic from RNA Sequencing

20,532 genes
Cohort of 329 patients
2. Proteomic from Mass Spectrometry

5562 proteins
Cohort of 74 patients
3. Corresponding Clinical Dataset

Event Free Survival

1. Kaplan Meier Survival analysis for genes
and proteins in pathways to find
prognostic features

2. PROGENy analysis on the TCGA RNA
sequencing legacy dataset to find a
common core of CRC pathway activities

2019 Prospective
CPTAC-COAD Colon

Adenocarcinoma

1. Genomic from RNA Sequencing

RNA Expression (RSEM-UQ, Log2(Val+1))
13,482 genes
Cohort of 106 patients
2. Proteomic from Mass Spectrometry

Protein Expression (TMT, Log2ratio)
6422 proteins
Cohort of 96 patients
3. Corresponding Clinical Dataset

Cohort of 110 patients
79 patients analysed
Event Free Survival

1. Determine the associations between
PROGENy pathway activity scores and
event free survival

2. Linear Regression Machine Learning
models to predict WNT pathway activity
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Figure 9. Pre-processing flow chart detailing all pre-processing steps completed prior to each analysis. Pre-processing
flowchart for, (A) the 2016 TCGA Colorectal Adenocarcinoma, GDAC Firehose Legacy Study and (B) the 2019 Prospective
CPTAC-COAD Colon Adenocarcinoma Study.

The five critical CRC STNs used in this study stemmed from the literature [3,11,23].
The network databases WikiPathways, KEGG, and GSEA, were used to create a list of
gene-sets for each pathway including WNT, PI3K-Akt, TP53, MAPK, and TGF-Beta [21,
22,37,38,53–62]. Each gene-set consisted of every gene listed for each homo-sapiens STN
pathway on WikiPathways. These gene-sets were then used as input scripts to determine
which genes and proteins are prognostic and correlate to patient event-free survival. All
gene sets are found in the supplementary data.

5.2. Kaplan–Meier Survival Analysis

The Kaplan–Meier survival analysis was simulated three times, the first to find the
prognostic genes from RNA sequencing, the second to find the prognostic proteins from
proteomics, both using the TCGA legacy datasets, and finally to determine the associations
between PROGENy pathway activity scores and event-free survival using the RNA CPTAC
dataset. The optimum cut-off for stratifying the patient populations into low and high
groups was identified by scanning the group sizes from 10–90 to 90–10 percent splits, where
10–90 means that 10% of the patients were in the low group and 90% of the patients were
in the high group and calculating the p-value for the overall event-free survival difference
between the groups using a log-rank test with Yates’ correction. The cut-offs were based on
the TCGA legacy datasets: RNA sequencing (329 patients) and proteomics (73 patients),
and the CPTAC RNA dataset (79 patients). The inputs for the first two simulations were
based on the gene or protein sets for each CRC STN identified above. The output was a
Kaplan–Meier curve for the gene or protein expressed, indicating the number of patients
in the high expression or low expression group with the corresponding statistical values
apparent. The inputs for the final simulation were the PROGENy CRC pathway activity
scores, and the output was 5 Kaplan–Meier curves for each CRC STN. The number of
patients in the high activity or low activity group was identified with the corresponding
statistical values. All statistical computations and Kaplan–Meier analyses were performed
in MATLAB (version R2020b Update 5 (9.9.0. 1592791), The MathWorks, Inc., Natick, MA,
USA) using the statistics toolbox and the log-rank (www.mathworks.com/matlabcentral/
fileexchange/22317-logrank (accessed on 7 April 2021)) and kmplot (www.mathworks.
com/matlabcentral/fileexchange/22293-kmplot (accessed on 7 April 2021)) functions from

www.mathworks.com/matlabcentral/fileexchange/22317-logrank
www.mathworks.com/matlabcentral/fileexchange/22317-logrank
www.mathworks.com/matlabcentral/fileexchange/22293-kmplot
www.mathworks.com/matlabcentral/fileexchange/22293-kmplot
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the MATLAB (version R2020b Update 5 (9.9.0. 1592791), The MathWorks, Inc., Natick, MA,
USA) file exchange [63].

5.3. PROGENy Analysis

PROGENy is a machine learning based tool installed from Bioconductor as an RStudio
package (RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC,
Boston, MA URL http://www.rstudio.com/) [35,49]. A PROGENy analysis was performed
on the TCGA RNA sequencing legacy dataset to find a common core of CRC pathway
activities. Despite PROGENy’s composition of 14-cancer relevant pathways, specifically
for this study, only the CRC pathways were analysed in depth [35,49]. The available CRC
pathways using PROGENy were PI3K, MAPK, TGF-Beta, WNT, and p53. The associated
PROGENy CRC pathway activity scores for the entire TCGA legacy patient cohort is found
in the supplementary data. PROGENy (version 1.12.0) was used in the study [35,49].

5.4. Developing Linear Regression Machine Learning Models

The three linear regression machine learning models developed in the study were
performed in MATLAB using the regression learner app [64]. The three trained models
were a variety of linear, stepwise linear, and robust linear regression models. Each model
consisted of 79 observations, i.e., the entire CPTAC patient cohort. Cross-validation of
10-fold was used for each model. All models were developed solely from the CPTAC
datasets from RNA and proteomics. The selected input features for the models were
obtained through LASSO regression of both datasets. For both LASSO regression analyses,
the lambda value with minimal mean squared error plus one standard deviation was
applied. A threshold (p-value) of 0.05 was used to determine if a feature was significant.
For the proteomics dataset, this resulted in 5/27 features (proteins) found to be significant,
including CTBP1, CTBP2, PLCB4, PRKCA, and RAC1. Similarly, for the RNA sequencing
dataset, 5/89 features (genes) were significant, DKK3, FZD5, NKD1, NOTUM, and WNT11.
All associated datasets are found within the supplementary data.
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