Skip to main content
. 2021 Aug 28;23(9):1123. doi: 10.3390/e23091123

Table A3.

Comparison of selected mathematical models describing the shape of learning curves.

MSE(i) R¯2(i) MSEpredict(i) R¯2predict(i)
Algorithm Quartile Exp Log Pow Exp Log Pow Exp Log Pow Exp Log Pow
Dataset: ada_prior
A 1 0.0056 0.0053 0.0053 0.0685 0.0165 0.0346 0.4736 0.5155 0.5065 −0.241 0.7041 0.3738
A 2 0.0078 0.0088 0.0682 0.0133 0.7629 0.7342 −0.235 0.7605
A 3 0.0094 0.0099 0.0110 0.0129 0.8045 0.7952 0.8005 0.7680
A 4 0.0102 0.0117 0.0116 0.0102 0.0117 0.0116 0.8159 0.7889 0.7894 0.8159 0.7889 0.7894
D 1 0.0012 0.0014 0.0008 0.0065 0.0766 0.0073 0.9085 0.9005 0.9432 0.7412 −2.025 0.7103
D 2 0.0019 0.0033 0.0012 0.0029 0.0241 0.0048 0.9102 0.8461 0.9425 0.8830 0.0473 0.8092
D 3 0.0024 0.0070 0.0022 0.0030 0.0094 0.0026 0.8957 0.6977 0.9024 0.8813 0.6272 0.8954
D 4 0.0029 0.0084 0.0026 0.0029 0.0084 0.0026 0.8837 0.6665 0.8957 0.8837 0.6665 0.8957
Dataset: analcatdata_halloffame
A 1 0.0007 0.0051 −0.098 −0.310
A 2 0.0015 0.0029 0.2211 0.2578
A 3 0.0020 0.0020 0.0020 0.0029 0.0029 0.0029 0.2693 0.2977 0.2718 0.2345 0.2592 0.2407
A 4 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.2414 0.2686 0.2497 0.2414 0.2686 0.2497
Dataset: car
B 1 0.0020 0.0028 0.0028 0.0183 0.1117 0.1047 0.9333 0.9180 0.9099 0.8465 0.0806 0.1209
B 2 0.0028 0.0070 0.0047 0.0209 0.0185 0.0061 0.9556 0.8948 0.9268 0.8249 0.8474 0.9491
B 3 0.0055 0.0087 0.0055 0.0085 0.0124 0.0058 0.9417 0.9112 0.9426 0.9283 0.8980 0.9515
B 4 0.0072 0.0108 0.0058 0.0072 0.0108 0.0058 0.9398 0.9114 0.9516 0.9398 0.9114 0.9516
D 1 0.0005 0.0022 0.0007 0.0191 0.1913 0.0158 0.9734 0.8998 0.9663 0.6635 −2.304 0.7225
D 2 0.0017 0.0111 0.0026 0.0302 0.0141 0.0256 0.9361 0.5910 0.9004 0.4674 0.7559 0.5487
D 3 0.0090 0.0138 0.0081 0.0198 0.0142 0.0143 0.7796 0.6724 0.8013 0.6508 0.7551 0.7479
D 4 0.0163 0.0141 0.0111 0.0163 0.0141 0.0111 0.7121 0.7563 0.8038 0.7121 0.7563 0.8038
Dataset: csb_ch12
D 1 0.0007 0.0007 0.0006 0.0030 0.0209 0.0012 0.7996 0.8040 0.8158 0.6773 −1.162 0.8777
D 2 0.0009 0.0010 0.0007 0.0010 0.0071 0.0018 0.8693 0.8627 0.8945 0.8901 0.2601 0.8051
D 3 0.0010 0.0017 0.0009 0.0010 0.0031 0.0011 0.8877 0.8073 0.9002 0.8903 0.6770 0.8862
D 4 0.0010 0.0025 0.0010 0.0010 0.0025 0.0010 0.8903 0.7413 0.8936 0.8903 0.7413 0.8936
Dataset: eye_movements
C 1 0.0077 0.1000 0.7201 −0.532
C 2 0.0068 0.0099 0.0258 0.0599 0.8394 0.7677 0.6027 0.0818
C 3 0.0151 0.0201 0.0199 0.0287 0.0514 0.0486 0.7616 0.6847 0.6852 0.5589 0.2117 0.2535
C 4 0.0236 0.0378 0.0338 0.0236 0.0378 0.0338 0.6368 0.4212 0.4806 0.6368 0.4212 0.4806
D 1 0.0049 0.0051 0.0037 0.1766 0.0123 0.0695 0.8208 0.8187 0.8644 −0.364 0.9054 0.4635
D 2 0.0122 0.0080 0.0077 0.0455 0.0134 0.0180 0.7874 0.8608 0.8654 0.6490 0.8971 0.8612
D 3 0.0148 0.0104 0.0177 0.0134 0.8623 0.9038 0.8634 0.8969
D 4 0.0157 0.0122 0.0121 0.0157 0.0122 0.0121 0.8786 0.9058 0.9064 0.8786 0.9058 0.9064
Dataset: genresTrain
A 1 0.0200 0.0142 0.0135 0.7900 0.0568 0.0321 0.9144 0.9398 0.9421 0.1544 0.9393 0.9656
A 2 0.0371 0.0194 0.0193 0.0969 0.0639 0.0548 0.9302 0.9638 0.9637 0.8963 0.9318 0.9414
A 3 0.0429 0.0288 0.0254 0.0669 0.0366 0.0280 0.9415 0.9608 0.9654 0.9284 0.9609 0.9700
A 4 0.0549 0.0340 0.0277 0.0549 0.0340 0.0277 0.9412 0.9637 0.9704 0.9412 0.9637 0.9704
C 1 0.0057 0.0060 0.0033 0.0174 0.1846 0.0248 0.6927 0.6792 0.8226 0.1473 −7.504 −0.144
C 2 0.0060 0.0128 0.0048 0.0066 0.0381 0.0107 0.6507 0.3569 0.7556 0.5267 −0.754 0.5068
C 3 0.0060 0.0177 0.0071 0.0060 0.0212 0.0082 0.5954 0.1677 0.6656 0.5692 0.0220 0.6212
C 4 0.0057 0.0198 0.0080 0.0057 0.0198 0.0080 0.5747 0.0896 0.6324 0.5747 0.0896 0.6324
D 1 0.0064 0.0066 0.0017 0.1963 0.1446 0.0124 0.9349 0.9336 0.9828 0.2269 0.4320 0.9512
D 2 0.0141 0.0102 0.0030 0.0393 0.0542 0.0043 0.9178 0.9407 0.9827 0.8451 0.7870 0.9830
D 3 0.0173 0.0161 0.0032 0.0231 0.0263 0.0037 0.9205 0.9265 0.9852 0.9091 0.8967 0.9856
D 4 0.0207 0.0219 0.0036 0.0207 0.0219 0.0036 0.9187 0.9140 0.9859 0.9187 0.9140 0.9859
Dataset: gina_prior
C 1 0.0014 0.0015 0.0015 0.0096 0.0959 0.0879 0.8734 0.8708 0.8655 0.4589 −4.369 −3.971
C 2 0.0024 0.0042 0.0030 0.0036 0.0235 0.0085 0.8480 0.7384 0.8069 0.7954 −0.316 0.5199
C 3 0.0029 0.0071 0.0041 0.0034 0.0110 0.0051 0.8295 0.5947 0.7622 0.8101 0.3850 0.7092
C 4 0.0033 0.0092 0.0048 0.0033 0.0092 0.0048 0.8145 0.4838 0.7307 0.8145 0.4838 0.7307
Dataset: kr-vs-kp
A 1 0.0037 0.0135 0.0027 0.0261 0.1384 0.0435 0.9012 0.6553 0.9286 0.1075 −0.843 0.4148
A 2 0.0118 0.0165 0.0064 0.0204 0.0511 0.0079 0.8002 0.7261 0.8911 0.7115 0.3189 0.8936
A 3 0.0145 0.0201 0.0069 0.0157 0.0289 0.0072 0.7903 0.7126 0.8997 0.7881 0.6152 0.9034
A 4 0.0153 0.0250 0.0072 0.0153 0.0250 0.0072 0.7940 0.6672 0.9034 0.7940 0.6672 0.9034
B 1 0.0022 0.0031 0.0029 0.0050 0.4181 0.2507 0.9620 0.9502 0.9510 0.9533 −2.847 −1.331
B 2 0.0024 0.0119 0.0054 0.0029 0.1028 0.0232 0.9730 0.8712 0.9403 0.9731 0.0537 0.7841
B 3 0.0027 0.0239 0.0079 0.0028 0.0399 0.0098 0.9731 0.7678 0.9224 0.9742 0.6331 0.9091
B 4 0.0028 0.0324 0.0089 0.0028 0.0324 0.0089 0.9743 0.7020 0.9172 0.9743 0.7020 0.9172
C 1 0.0049 0.0168 0.7999 0.8384
C 2 0.0067 0.0083 0.0083 0.0211 0.8900 0.8672 0.9190 0.7966
C 3 0.0071 0.0096 0.0093 0.0081 0.0141 0.0120 0.9171 0.8890 0.8913 0.9208 0.8638 0.8833
C 4 0.0081 0.0122 0.0107 0.0081 0.0122 0.0107 0.9213 0.8823 0.8959 0.9213 0.8823 0.8959
D 1 0.0006 0.0054 0.0007 0.0131 0.1433 0.0020 0.9763 0.7898 0.9699 0.6952 −2.293 0.9543
D 2 0.0016 0.0088 0.0009 0.0042 0.0319 0.0011 0.9537 0.7520 0.9745 0.9019 0.2661 0.9756
D 3 0.0023 0.0117 0.0009 0.0029 0.0163 0.0010 0.9428 0.7124 0.9763 0.9323 0.6250 0.9762
D 4 0.0028 0.0142 0.0010 0.0028 0.0142 0.0010 0.9361 0.6747 0.9762 0.9361 0.6747 0.9762