
Bioorthogonal chemistry

Samuel L. Scinto1, Didier A. Bilodeau2,12, Robert Hincapie3,12, Wankyu Lee4,12, Sean S. 
Nguyen5,12, Minghao Xu3,12, Christopher W. am Ende6, M. G. Finn3, Kathrin Lang7,8, Qing 
Lin9, John Paul Pezacki2, Jennifer A. Prescher5,10, Marc S. Robillard11, Joseph M. Fox1,✉

1Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA.

2Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, Ontario, 
Canada.

3School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.

4Pfizer Worldwide Research and Development, Cambridge, MA, USA.

5Department of Chemistry, University of California, Irvine, CA, USA.

6Pfizer Worldwide Research and Development, Groton, CT, USA.

7Department of Chemistry, Technical University of Munich, Garching, Germany.

8Laboratory of Organic Chemistry, ETH Zurich, Zurich, Switzerland.

9Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, USA.

10Molecular Biology & Biochemistry, University of California, Irvine, CA, USA.

11Tagworks Pharmaceuticals, Nijmegen, Netherlands.

12These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. 
Nguyen, Minghao Xu.

Abstract

Bioorthogonal chemistry represents a class of high-yielding chemical reactions that proceed 

rapidly and selectively in biological environments without side reactions towards endogenous 

functional groups. Rooted in the principles of physical organic chemistry, bioorthogonal reactions 

are intrinsically selective transformations not commonly found in biology. Key reactions include 

native chemical ligation and the Staudinger ligation, copper-catalysed azide–alkyne cycloaddition, 
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strain-promoted [3 + 2] reactions, tetrazine ligation, metal-catalysed coupling reactions, oxime and 

hydrazone ligations as well as photoinducible bioorthogonal reactions. Bioorthogonal chemistry 

has significant overlap with the broader field of ‘click chemistry’ — high-yielding reactions that 

are wide in scope and simple to perform, as recently exemplified by sulfuryl fluoride exchange 

chemistry. The underlying mechanisms of these transformations and their optimal conditions are 

described in this Primer, followed by discussion of how bioorthogonal chemistry has become 

essential to the fields of biomedical imaging, medicinal chemistry, protein synthesis, polymer 

science, materials science and surface science. The applications of bioorthogonal chemistry are 

diverse and include genetic code expansion and metabolic engineering, drug target identification, 

antibody–drug conjugation and drug delivery. This Primer describes standards for reproducibility 

and data deposition, outlines how current limitations are driving new research directions and 

discusses new opportunities for applying bioorthogonal chemistry to emerging problems in 

biology and biomedicine.

Bioorthogonal chemistry encompasses a class of high-yielding rapid and selective chemical 

reactions that proceed in biological environments, with little or no reactivity towards 

endogenous functional groups. Rooted in the principles of physical organic chemistry and 

classic organic reactivity, bioorthogonal reactions are intrinsically selective transformations 

not commonly found in biology. Chemical tools to study biological processes with 

molecular detail are foundational to modern science. The advent of recombinant protein 

expression enabled tracking protein dynamics in living systems using fluorescent proteins 

and antibodies1,2. These tools are often essential for studying intricate protein systems, 

but can be limited by their large size. Common genetic tags such as fluorescent proteins 

can disrupt protein function and trafficking, and for these same reasons they cannot be 

easily translated to non-protein biomolecules such as glycans, lipids and nucleic acids. 

An expanded set of biomolecules can be tagged via bioorthogonal chemistry. The classes 

of reactions include native chemical ligation and the Staudinger ligation, copper-catalysed 

azide–alkyne cycloaddition, strain-promoted [3 + 2] reactions, tetrazine ligation, metal­

catalysed coupling reactions, oxime and hydrazone ligations as well as photoinducible 

bioorthogonal reactions (Fig. 1). Bioorthogonal reactions are intrinsically chemoselective, 

and therefore do not require proximity effects to achieve site-selective labelling. Also, 

bioorthogonal chemistry must readily proceed in aqueous environments at biocompatible 

pH and temperature, and be non-toxic under these conditions. Another consideration is the 

reaction rate3, as it is generally advantageous for reactions to proceed rapidly at the low 

concentrations required for many biological experiments. The size of reaction partners is an 

intrinsically important parameter as the native function of many targets can be sensitive to 

bulky chemical groups.

Chemoselective

A chemical reaction that is selective for a certain functional group even in the 

presence of differing functional groups. Reaction partners in bioorthogonal chemistry 

are chemoselective for each other, even in biological settings.
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Bioorthogonal chemistry enables probing biological systems through selective covalent bond 

formations that minimally disrupt the system(s) being studied. These reactions have been 

applied broadly both in cellular systems as well as in living animals; the growing list of 

applications includes probe construction, biomedical imaging, medicinal chemistry, polymer 

science and materials science as well as surface science. Similar to the broadening of 

applications enabled by bioorthogonal chemistry, the toolbox of chemical reactions has 

grown to meet the diverse needs of the chemical biology community.

Click chemistry.

Bioorthogonal chemistry has significant overlap with the broader field of click chemistry, 

which is defined by high-yielding and modular reactions that are wide in scope, simple to 

perform and generate only inert by-products4,5. Click chemistry also encompasses reactions 

that are not strictly bioorthogonal (as defined above) as these include selective reactions 

of functional groups commonly found in biological molecules. For example, alkylations 

and conjugate addition reactions of cysteines are classic approaches to achieving residue­

selective protein modification, and the ‘thiol–ene’ reaction between unactivated alkenes and 

free thiols has become a broadly used tool across a range of applications, including organic 

synthesis, polymer science and materials science6.

Click chemistry

A concept, coined by K. B. Sharpless and colleagues, describing bond-forming reactions 

that are thermodynamically driven, highly selective and reliable, and proceed in water 

without toxic by-products. Click reactions are often, but not strictly, bioorthogonal.

Scope.

Within the scope of this Primer are transformations where both reaction partners are not 

commonly found in biology and are the sources for chemoselectivity. This type of approach 

is complementary to strategies in which genetically programmed molecular recognition 

is responsible for selectivity, where effective chemistry is often still required, but the 

biological system is an active player and, thus, is at least somewhat perturbed by the 

modification(s). Here, examples include the use of reversible covalent reactions to modify 

specific protein sequences such as with genetically encoded tetracysteine motifs7. Another 

approach uses enzymatic modifications of proteins with encoded peptide sequences as a 

method of creating covalent bonds to exogenous molecules with high selectivity, enabling 

site-selective modifications at the carboxy terminus, amino terminus or internal positions8. 

Glycosyltransferases have been used for selective chemoenzymatic modification of glycans9. 

Directed evolution has been used to develop fusion proteins for covalent self-labelling 

with probe molecules10. These genetically programmed transformations represent powerful 

approaches to covalent bond formation, but they differ from bioorthogonal approaches 

where chemoselectivity derives directly from the reaction partners.

In this Primer, the scope of bioorthogonal chemistries examined includes the early 

developments such as native chemical ligation, oxime ligation and the Staudinger 
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ligation, which all exemplified how reaction design and mechanistic insight can guide 

the development of new chemical tools to study biology. With improved rates and 

minimally sized reactants, the copper-catalysed cycloaddition between azides and alkynes 

to form triazoles has been transformative for numerous scientific disciplines including 

bioorthogonal chemistry. Using ring strain to enhance reactivity is a classic concept 

in organic chemistry that has proven especially powerful in the area of bioorthogonal 

chemistry. Initially demonstrated with azides, the [3 + 2] cycloadditions of cyclooctyne 

derivatives with 1,3-dipoles have emerged as broadly important bioorthogonal reactions. 

Inverse electron-demand Diels–Alder (IEDDA) reactions of strained alkenes with tetrazines 

are also facilitated by the release of ring strain, and the reactions of trans-cyclooctene 

(TCO) represent the fastest bioorthogonal reactions developed to date. Spatio-temporal 

control over bioorthogonal chemistry can be achieved through the application of light 

through photoinduced processes that liberate reactive nitrile imine dipolarophiles or 

cycloalkynes. Metal-catalysed cross-coupling and ruthenium-mediated olefin metathesis 

have also emerged as complementary tools that can function in complex biological settings.

Here, we describe the range of reactions that encompass the bioorthogonal chemistry 

toolbox (Experimentation) and highlight the broad range of applications that implement 

this chemistry from site-specific protein labelling both in vitro and in vivo, as well as 

polymers and materials sciences (Applications). We discuss how handling these highly 

reactive reagents should be treated to ensure their use across diverse sets of applications 

(Reproducibility and data deposition). Finally, we examine the current limitations of 

bioorthogonal chemistry, the exciting areas of development in this research area (Limitations 

and optimizations) and what to anticipate in the next decade (Outlook).

Experimentation

The underlying mechanisms of key reactions in the bioorthogonal chemistry toolbox and 

their ideal operating conditions are discussed in this section, including native chemical 

ligation, oxime and hydrazone ligations, the Staudinger ligation, copper-catalysed azide–

alkyne cycloaddition, strain-promoted [3 + 2] reactions, tetrazine ligation, metal-catalysed 

coupling reactions and photoinducible bioorthogonal reactions.

Native chemical ligation.

For chemical protein synthesis and bioconjugation, a significant body of work has focused 

on selective reactivity at the protein N terminus. Grounded in classic work by Wieland 

and pioneered by Kent, Dawson and Muir, native chemical ligation involves the ligation 

of a peptide bearing a C-terminal thioester with a second peptide with an N-terminal 

cysteine11–14 (Fig. 2a). An initial thiol–thioester exchange reaction at the N terminus is 

key to the chemoselectivity of native chemical ligation, providing a transient thioester 

intermediate that undergoes an intramolecular S,N-acyl transfer to afford a native peptide 

bond to cysteine. As thioester exchange is the rate-determining step, native chemical 

ligation can be accelerated by nucleophilic catalysts including thiols or imidazole12,15. 

Subsequent to ligation, desulfurization reactions can serve to convert the internal cysteine 

into alanine16,17. Using selenocysteine and peptide selenoesters has enabled accelerating 
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these ligation reaction rates, and selenocysteines can function as alanine surrogates in 

complex target synthesis as deselenization reactions can proceed in the presence of 

unprotected cysteine and methionine residues18,19. Expressed protein ligation is another 

variant of native chemical ligation where the fragment containing the C-terminal thioester is 

created from a recombinant protein fused to an intein20. These methods are important tools 

for the synthesis and semi-synthesis of proteins that are too large to make by automated 

peptide synthesis alone and also provide a way to create proteins bearing site-specific post­

translational modifications (for example, glycoproteins) and unnatural amino acids (UAAs).

Nucleophilic catalysts

Electron-rich additives that increase the reaction rate for certain polar bioorthogonal 

chemistries. in general, the most effective catalysts target the rate-limiting step for a 

given transformation. Catalysts must also adhere to the same strict requirements as 

bioorthogonal reagents (non-toxic, chemoselective and so on) if used in a biological 

context.

Post-translational modifications

Chemical transformations that occur on reactive side chains (such as lysine, serine and 

cysteine) of proteins. The identity of the modification can drastically affect the function 

and activity of the target protein. The modifications can be installed enzymatically or can 

occur spontaneously in solution.

Numerous techniques complementary to native chemical ligation for the formation of 

amide bonds have been developed, including serine–threonine ligation, which involves a 

C-terminal o-formylphenolate reacting with an N-terminal serine or threonine21,22. Also, 

the α-ketoacid–hydroxylamine (KAHA) ligation involves a C-terminal ketoacid group 

reacting with N-terminal hydroxylamine functionality and the KAT ligation between O­

carbamoylhydroxylamines and potassium acyltrifluoroborates23,24. Other approaches for 

the selective modification at a protein’s N terminus include the direct condensation of 

N-terminal serine25, cysteine26 and tryptophan27 side-chain nucleophiles with aldehydes 

to form cyclic products. Inspired by luciferin biosynthesis, N-terminal cysteine can also 

rapidly react with 2-cyanobenzothiazole derivatives in vitro or on the surface of live cells28. 

Transamination reactions with pyridoxal-5′-phosphate29 or Rapoport’s salt30 convert the 

N terminus into a ketone or aldehyde capable of oxime formation. One-step N-terminal 

conjugation can be also achieved with 2-pyridinecarboxaldehyde derivatives to form a 

cyclic imidazolidinone product31. In combination with solid-phase peptide synthesis, native 

chemical ligation methods and variants that form native amide bonds have found extensive 

applications in the chemical synthesis and semi-synthesis of peptides and proteins12,13.

Solid-phase peptide synthesis

Amino acids are iteratively coupled from the carboxy terminus to the amino terminus on 

a solid support. Protecting group strategies ensure that only one amide bond is formed 

at a time, without oligomerization or cross-reactivity with reactive side chains. After 
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cleavage from the solid support, peptides are typically purified through high-performance 

liquid chromatography.

Oxime/hydrazone ligation chemistry.

The formation of oximes and hydrazones from the condensation of carbonyls with 

hydrazines and alkoxylamines, respectively, represents some of the oldest reactions applied 

to biological ligation applications. Carbonyl groups were some of the first extrinsic 

functional groups explored as reacting partners for bioorthogonal applications32 (Fig. 2b). 

As products of condensation, hydrazones and oximes display higher stability towards 

hydrolysis than imines owing to the stabilizing effect of the heteroatom adjacent to 

the sp2 nitrogen atom; with oximes being more stable to hydrolysis than hydrazones33. 

Under physiological conditions, and especially in acidic environments (pH 5–7), however, 

these ligation reactions can be reversible, a feature that can be tuned for the release 

of desired cargo34–36. At neutral pH, these reactions proceed with a second-order rate 

constant (k2) of 0.01 M−1 2 s−1, slower than most commonly employed bioorthogonal 

cycloaddition reactions37,38. Initial findings showed improved reaction rates with lower 

pH conditions (pH 4–6) or the use of aniline as a catalyst, through reactive Schiff base 

formation39–43. Improvements in reaction rates were further achieved at neutral pH through 

application of substituted anilines such as 5-methoxyanthranilic, 3,5-diaminobenzoic and 

2-aminobenzenephosphonic acids, with enhancements of reaction rates of up to 40 times 

compared with the original aniline catalysts44,45. Amine buffer systems have also been 

recently shown to promote condensation with fast rates46.

Schiff base

A subclass of imine compounds characterized by a carbon–nitrogen double bond, with 

a general formula of R1R2C=NR3, where R3 is not a hydrogen atom. They often arise 

from the condensation reaction between an amine and a carbonyl, and are classified as 

secondary ketimines or aldimines.

The Pictet–Spengler ligation is a more hydro-lytically stable variation of oxime ligation 

between indolyl-substituted nucleophiles and aldehydes27, and variations using hydrazine 

nucleophiles have also been reported47. Carbonyls have been traditionally incorporated 

into biomolecules via oxidative cleavage of vicinal diols in sugar moieties using sodium 

periodate, allowing facile modification of glycoproteins through sialic acid oxidation48,49. 

Oxidative cleavage of 1,2-amino alcohols, including N-terminal serine and threonine, is an 

analogous strategy50. Nucleic acids can also be functionalized through sodium periodate 

oxidation of 3′-ribonucleotides to yield dialdehydes51. The use of carbonyl-bearing UAAs 

and nucleic acids also allows for the site-selective incorporation of modification sites52–54. 

Comparatively, fewer methods have been developed for the incorporation of alkoxyamine 

and hydrazine nucleophiles, mostly limited to synthetic nucleic acids, through the use 

of phosphoramidites to modify 5′-end ribonucleotides and appropriately functionalized 

nucleobases. Although improvements to reaction rates and hydrolytic stability have been 

achieved, these ligations are best suited to in vitro, cell surface labelling, and to biological 
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ligation applications owing to their innate reversibility and potential cross-reactivity with 

carbonyl-bearing metabolites27,47–54. However, the recent development of new catalysts and 

more selective reacting partners has allowed for more specialized applications with reaction 

rates as fast as 0.1 M−1 s−1 (REFS44,45).

Phosphine-based transformations.

The Staudinger ligation — a reaction between triarylphosphines and organic azides — 

exploits the mild electrophilicity of organic azides and their propensity to react with 

mild nucleophiles55,56. Phosphine–azide chemistry was first reported by Staudinger in the 

context of azide reduction57. The reaction produced iminophosphorane intermediates that 

hydrolysed in water to give amine and phosphine oxide products. The relative simplicity 

of the Staudinger reaction — and the virtual absence of triarylphosphines and azides in 

biological settings — provided an ideal platform for biocompatible reaction development. 

Bertozzi and co-workers built upon this foundation to create a, now iconic, bioorthogonal 

transformation58. A methyl ester was installed on the triarylphosphine core, which served as 

an electrophilic trap for the iminophosphorane intermediate, circumventing hydrolysis and 

driving formation of a ligated adduct. This variant of the Staudinger reaction was termed 

the Staudinger ligation (or the Staudinger–Bertozzi ligation59). The Staudinger ligation 

was the first bioorthogonal transformation to be widely used in cells and living systems60 

(Fig. 3a). The two reactants — organic azides and phosphines — are both bioavailable 

and biocompatible. Azides also rank among the smallest bioorthogonal functional groups, 

making them a go-to choice for many applications. Additionally, phosphines can be outfitted 

with various probes for detection in biological environments and have been used to image, 

retrieve and profile biomolecules56. Initially used for cell surface glycan labelling58, the 

Staudinger ligation has since been used to target proteins61–63, nucleic acids64 and other 

biomolecules65–67. Fluorogenic phosphines and azides68,69 as well as more water-soluble 

probes have enabled additional studies70,71. The Staudinger ligation is one of the few 

bioorthogonal reactions that can be used in rodent models72,73. Although versatile, the 

ligation still ranks among the slowest bioorthogonal chemistries74 (Fig. 3a), which inspired 

the pursuit of more rapid reactions and drove many early advances in bioorthogonal 

cycloadditions as described below.

The Staudinger ligation also spurred the development of other phosphine-based 

transformations. The most well known feature phosphines with alternative electrophilic 

traps (for example, thioesters)75,76. Some of these variants react with azides to form amide 

bonds with concomitant release of the phosphine probe. Such ‘traceless’ versions of the 

ligation were developed contemporaneously by Raines and Bertozzi77,78 and have seen 

application in peptide and protein synthesis56,79,80. Alternative phosphine nucleophiles, 

including phosphite81 and phosphonite82 probes, have been used to functionalize peptides 

and proteins. These reagents react with azides to form covalent adducts under physiological 

conditions.

Bioorthogonal phosphines have also been used for ligation chemistries with electrophiles 

other than azides. Recent examples include Michael-type reactions with α,β-unsaturated 

amides83,84 and cyclopropenone derivatives85–88.
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Azide–alkyne cycloaddition.

The azide and terminal alkyne functional groups are very small and lack the ability to 

associate with other molecules by anything more stable than weak dipolar interactions. 

Accordingly, they often minimally perturb the functional properties of the molecules 

to which they are attached. Azides and alkynes are largely unreactive with most other 

molecules in biological systems, and so can move through cells and organisms intact, only to 

be revealed when provided with the right conditions or catalysts for their reaction.

The Huisgen 1,3-dipolar cycloaddition of organic azides and alkynes, giving 1,2,3-triazoles, 

is usually much too slow to be of use in biological applications. The introduction of 

copper(I) catalysts, reported independently by the groups of Meldal89 and Sharpless90, 

transformed the process into one of wide use by accelerating triazole formation up to 100 

million-fold (Fig. 3b). Copper(I)-catalysed azide–alkyne cycloaddition (CuAAC) enables the 

exclusive formation of 1,4-disubstituted triazoles, which are good mimics of native peptide­

based trans-amide connectors, in terms of size and geometry, and are far more stable than 

amides to thermal and chemical cleavage. The CuAAC reaction is modular, compatible with 

aqueous conditions, usually free of by-products and user-friendly, all characteristics that 

enable successful click reactions4. Its mechanism is stepwise, proceeding through an easily 

formed binuclear copper acetylide intermediate91,92. A wide range of catalysts have been 

employed, including simple copper(I) salts90, small-molecule copper-binding ligands92,93 

and heterogeneous, polymeric and nano-structured materials of different kinds94–96. The 

development of CuAAC has driven many applications in the realms of organic synthesis, 

polymer functionalization, drug discovery and chemical biology.

Although a few examples exist of terminal alkyne biosynthetic pathways in microorganisms 

and fungi97,98, naturally occurring azides are exceedingly rare. Proteins, lipids, 

oligonucleotides and cell surface moieties can be labelled with azides or alkynes through 

benign chemical transformations or via metabolic incorporation of labelled metabolites, 

allowing their conjugation to an orthogonally labelled partner. The use of CuAAC for 

bioorthogonal bioconjugation was largely enabled by the development of water-soluble 

copper-binding ligands, which allowed users to address the most striking limitation of 

CuAAC for biology: the copper-mediated formation of reactive oxygen species99–101. These 

ligands stabilize the required copper(I) oxidation state and provide access to coordination 

sites on the metal, accelerating the reaction while minimizing copper-mediated oxidative 

stress. Ligands with notable characteristics such as the ability to scavenge reactive oxygen 

species99–101 or to enhance local concentrations of reactive partners by combining substrate 

and copper-binding moieties102–107 have further allowed CuAAC to be adapted for more 

demanding biological applications such as the labelling of living cellular surfaces108, 

labelling tagged enzymes or other biomolecules in complex cellular mixtures109, fast click 

reactions inside cellular compartments110,111 and versatile dye labelling of a wide variety of 

cellular structures for super-resolution expansion microscopy112.

Reactive oxygen species

Highly reactive forms of oxygen involved in diverse cellular signalling processes, and 

tightly regulated in cells. For bioorthogonal chemistry, reactive oxygen species arise from 
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the oxidation of copper(i) to copper(ii) in water, which generates damaging superoxide 

or hydroxyl radicals. An accumulation of reactive oxygen species damages nucleic acids, 

proteins and lipids, and is cytotoxic.

A few limitations remain in the application of CuAAC to bioconjugation. First, copper 

is highly regulated in cells, and tightly bound by a network of interacting proteins and 

chaperones; thus, the best copper-binding ligands for CuAAC cannot retain the metal ion 

when encountering endogenous copper-binding proteins113. In addition, thiols — abundant 

in the form of protein cysteines and intracellular glutathione — bind copper tightly, and 

thereby inactivate catalysts and trigger copper-mediated oxidative stress114. A systematic 

evaluation of copper-mediated toxicities in various human cell lines illustrates the practical 

consequences of these phenomena114. Copper-free variants of CuAAC, detailed below, 

were developed in part to address these limitations, but suffer from reduced reaction rates, 

susceptibility to unproductive side reactions or use of sterically larger connecting groups that 

can compromise function. Thus, fully biocompatible accelerating ligands for CuAAC, able 

to rapidly catalyse intracellular reactions without inducing biological stress and exchanging 

copper with endogenous biomolecules, await discovery.

Strain-promoted [3 + 2] cycloadditions.

Strained cyclooctynes were introduced as an alternative to CuAAC to circumvent copper 

catalysts in various applications115. Cyclooctynes are the most commonly used substrates 

for strain-promoted azide–alkyne cycloadditions (SPAAC; as shown in Fig. 4a), with 

rates that are rapid enough to be used in living systems without the need for a 

catalyst116,117. Many different cyclooctynes have been developed specifically for use 

in SPAAC reactions, including a difluorinated cyclooctyne (DIFO)116,118,119 (Fig. 4a). 

However, early versions of cyclooctynes (OCT; Fig. 4a) suffered from slow reaction rates 

and poor aqueous solubility. These limitations spurred the development of alternative 

scaffolds that enabled rates as fast as 1 M−1 s−1, including bicyclic derivatives (for example, 

bicyclo[2.1.0]nonyne (BCN))120 (Fig. 4a), benzannulated cyclooctynes (for example, 

biarylazacyclooctynone (BARAC) and dibenzocyclooctyne (DIBO or DBCO))121–124 (Fig. 

4a) and more hydrophilic variants125–127. More highly strained cycloheptynes have 

also been used for SPAAC reactions to achieve further rate acceleration (for example, 

3,3,6,6-tetramethylthiaheptyne (TMTH))128–130 (Fig. 4a). Fluorogenic cyclooctynes serve 

to both conjugate and introduce reaction-dependent fluorescence read-outs for SPAAC 

reactions131,132. Distortion/interaction modelling has also been a useful tool for tuning 

the reactivity of strained alkyne systems133–135. Overall, there are many options for using 

SPAAC chemistry to report on different biological events or to connect components, making 

this bioorthogonal chemistry a popular choice for in situ and in vivo applications.

Although SPAAC reactions are both versatile and robust, dipoles other than azide have 

been found to react with faster rates in the analogous cycloaddition reactions, which can be 

critical for the success of bioorthogonal reactions in living systems. Different dipoles also 

offer additional sites for stereoelectronic tuning of their reactivity. As an example, strain­

promoted alkyne–nitrone cycloaddition reactions involve nitrone dipoles that are faster 

and have three sites of substitution available for reaction tuning136–139. Other dipoles that 

Scinto et al. Page 9

Nat Rev Methods Primers. Author manuscript; available in PMC 2022 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



react with cyclooctynes include diazo compounds and nitrile oxides140–143. Strain-promoted 

sydnone–alkyne cycloadditions are also versatile and rapid alternatives to SPAAC reactions, 

which have been applied in positron-emission tomography imaging using 18F-labelled 

antibodies, where fast reaction rates are required144–146. The strain-driven quadricyclane 

(QC) ligation involving nickel bis(dithiolene) derivatives offers another unique tool for 

bioorthogonal bond creation147. Taken together, these examples illustrate the large and 

growing number of possibilities for fast and efficient bioorthogonal chemistry utilizing 

strained alkynes with different dipoles as reaction partners.

Inverse electron-demand Diels–Alder reactions.

The bioorthogonal tetrazine ligation refers to the reaction between a 1,2,4,5-tetrazine and an 

alkene or alkyne dienophile via a sequence of [4 + 2]/retro [4 + 2] cycloaddition to provide a 

dihydropyridazine or pyridazine conjugate (Fig. 4b). Tetrazine ligation is an IEDDA reaction 

that is notable for rapid kinetics without the need for catalysis, which yields nitrogen gas 

as the only by-product. Tetrazines initially found utility in organic synthesis148,149 and were 

noted for their rapid kinetics in reactions with strained dienophiles150.

Dienophile

An alkene or alkyne that reacts with a conjugated diene in [4 + 2] cycloadditions. Diels–

Alder cycloadditions are enabled by electron-poor dienophiles and electron-rich dienes. 

Conversely, inverse electron-demand Diels–Alder reactions occur between electron-rich 

dienophiles and electron-poor dienes.

In 2008, the bioorthogonal reactions of tetrazines with strained alkenes were first 

described151–153, including the reactions with derivatives of TCO and norbornene by the 

groups of Fox and Weissleder, respectively151,152. There has since been a growing diversity 

of chemical richness for both tetrazines and their dienophile reaction partners for the tuning 

rate, stability and design of ‘minimal’ reporter molecules. As an IEDDA reaction, the 

tetrazine ligation is accelerated by electron-withdrawing groups on the tetrazine.

Tetrazines are most often prepared through condensation of Pinner salts or nitriles with 

hydrazine and facilitated by Lewis acidic, thiol or sulfur catalysts154–156. Milder protocols 

have been developed for directly introducing intact tetrazine groups via palladium-catalysed 

coupling reactions of aryl halides or aryl boronic acids157,158. Carboxylic esters also serve as 

a handle for the preparation of unsymmetrical and monosubstituted tetrazines159.

A range of dienophiles have been developed for tetrazine ligation. TCO can be prepared by 

flow photochemistry160,161, and variants have been designed that combine with tetrazines in 

the most rapid bioorthogonal reactions known — with k2 = 104–106 M−1 s−1 under aqueous 

conditions162,163 — with applications that extend to radiochemistry, in vivo chemistry, cell 

imaging and click to release chemistry. Highly strained cyclooctynes such as BCN also 

react rapidly (k2 = 102–103 M−1 s−1) with tetrazines, and produce aromatic conjugates 

that can simplify workflows where defined stereochemistry is needed164. Cyclopropenes 

(k2 = 1–104 M−1 s−1) are the smallest class of ring-strained dienophiles, offering a 

complementary approach when size and stability are important, such as for genetic encoding 
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and metabolic incorporation165,166. Norbornene retains good kinetics at a low cost and 

has proven an advantage for scale-up and materials applications. Small dienophiles such 

as cyclobutenes, azetidines, unstrained olefins and isonitriles also react efficiently with 

tetrazines but typically require large excess of one reagent owing to slower kinetics167–171. 

Similarly, triazines can serve as surrogates for tetrazines that offer advantages of smaller size 

and greater stability172.

Another useful feature of tetrazine ligation is that many tetrazine–fluorophore conjugates 

are fluorogenic. Resonant energy transfer to the tetrazine reduces fluorescence, but upon 

reaction with a dienophile the fluorescence is ‘switched’ on with up to an 11,000-fold 

increase in fluorescence intensity173–175. Fluorogenic tetrazine–fluorophores have found 

particularly strong use in the field of live-cell microscopy, and the area is actively growing 

with a focus on improving the signal to noise ratio that can result from background tetrazine 

reactivity in the intracellular environment176,177. External cues for temporal control of the 

tetrazine ligation have been developed for photoactivatable cyclooctynes or redox activation 

of dihydrotetrazine to tetrazines using electrochemistry, photocatalysts or enzymes178–180. 

This toolkit of dienes and dienophiles has enabled an exciting range of applications as 

further detailed throughout the applications section below.

Photoinducible bioorthogonal chemistry.

In contrast to thermal processes, light-triggered reactions often display higher yields and 

selectivity without the need for transition metal-mediated catalysis. The first example of 

using light to initiate selective reactions efficiently in biological systems is a photoinduced 

1,3-dipolar cycloaddition reaction between a 2,5-diaryltetrazole and an alkene, often referred 

to as photoclick chemistry181 (Fig. 5a). This chemistry was based on the seminal work by 

Huisgen, who reported outstanding reactivity of the transient nitrile imine dipole generated 

photochemically from 2,5-diphenyltetrazoles in benzene182. Milder conditions using a 

handheld low-powered UV lamp183 facilitated the rapid development of tetrazole photoclick 

chemistry for bioorthogonal protein modifications in vitro184 and inside bacterial cells185. 

Mechanistically, the reaction proceeds through a photoinduced cycloreversion to exude N2 

and generate a highly reactive nitrile imine followed by [3 + 2] cycloaddition with an alkene 

dipolarophile. A prominent feature of tetrazole photoclick chemistry is that the pyrazoline 

adducts are fluorescent, making the reaction fluorogenic184.

Photoclick chemistry

Click chemistry in which reactions that are initiated using light as an external stimuli. 

Photoclick reactions can use light sources ranging from short-wavelength to near-IR light 

and allow for spatial and temporal control of reactions.

2,5-Diaryltetrazoles can be prepared from cycloadditions of azides with nitriles, 

condensations of phenylsulfonyl hydrazide with arene diazonium salts or copper-catalysed 

regioselective N-arylation of 5-aryl-2H-tetrazoles with either phenyl iodonium salts or aryl 

boronic acids186. As the rate of cycloaddition is dictated primarily by the HOMO (dipole)–

LUMO (dipolarophile) energy gap, electron-rich tetrazoles187 and electron-deficient alkenes 
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such as acrylamide188 and fumarate189 are privileged substrates for tetrazole photoclick 

chemistry. Because of these electronic requirements, tetrazole photoclick chemistry is 

mutually exclusive to the tetrazine ligation190. Tetrazoles bearing the steric shielding 

groups show improved reaction selectivity191. For enhanced spatio-temporal control, 

photoactivation of tetrazoles can be achieved using a 405-nm laser192 and a near-IR 

femtosecond laser193 by modifying tetrazole structures as well as combining a near-IR laser 

with nanoparticles capable of two-photon upconversion194.

HOMO

(Highest occupied molecular orbital). A molecule’s highest energy molecular orbital 

containing an electron pair.

LUMO

(Lowest unoccupied molecular orbital). A molecule’s lowest energy molecular orbital not 

containing an electron. The energies of HOMO and LUMO are related to the reactivity 

of the molecule and the energy difference between the HOMO and LUMO is termed the 

HOMO–LUMO gap.

Two-photon upconversion

A molecule is excited from the ground state (S0) to the second excited singlet state (S2) 

by simultaneous absorption of two photons, via a virtual state. A photon with frequency 

greater than those of the absorbed photons is emitted upon relaxation from the excited 

state, that is, two-photon upconversion.

For increased stability in biological systems, strained alkenes such as 3,3-disubstituted 

cyclopropene195, spiro[2.3]hex-1-ene (REF.196) and water-soluble azaspiro[2.3]hex-1-ene 

(REF.197) have been developed for tetrazole photoclick chemistry with robust reaction 

kinetics (k2 = 102–104 M−1 s−1). The alkene-based chemical reporters, along with the 

optimized tetrazole reagents, have allowed bioorthogonal labelling of membrane proteins191, 

DNA198, RNA199 and glycans200. The fluorogenic property has been exploited in the 

design of photoactivatable fluorescent probes for cellular proteins201 and the detection of 

oncometabolites202.

The spatio-temporal control afforded by photoinduction can be infused with SPAAC. For 

example, a dibenzocyclopropenone undergoes decarbonylation upon photoirradiation at 

350 nm to generate dibenzocyclooctyne, which then reacts rapidly with azides to form 

the cycloadducts203 (Fig. 5a). The utility of this dibenzocyclopropenone-based photoclick 

chemistry was demonstrated through successful glycan labelling203 as well as surface 

immobilization204. More recently, a cyclopropenone‐caged dibenzoannulated bicyclo[6.1.0] 

nonyne probe was applied in conjugation with tetrazine ligation using irradiation at 365 nm 

(REF.179). Spirocyclic aminocyclopropenes can be protected with either light or enzyme 

labile groups and uncaged for controlled reactions with tetrazines205. The photoclick 

Scinto et al. Page 12

Nat Rev Methods Primers. Author manuscript; available in PMC 2022 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



chemistry toolbox also includes hetero-Diels–Alder reactions based on 2-naphthoquinone-3­

methide (REF.206), o-quinodimethane207 and 9,10-phenanthrenequinone208, light-induced 

tetrazine ligation180 and diarylsydnone–alkene photoligation209.

Palladium-catalysed and ruthenium-catalysed bioorthogonal reactions.

The power of palladium-catalysed cross-coupling reactions has been harnessed for 

biomolecular functionalization in vitro and in living cells (Fig. 5b). Early efforts uncovered 

conditions with limited reaction efficiency and biocompatibility210–213, including high 

catalyst loading, high temperature and the presence of organic co-solvent, but further 

developments have led to the discoveries of novel catalyst systems and additives that enable 

efficient palladium-mediated cross-coupling reactions with a broader substrate scope and 

utility in biological systems214,215.

In homogeneous catalysis, the palladium–2-amino-4,6-dihydroxypyrimidine catalyst 

allowed fast and high-yielding Suzuki–Miyaura cross-coupling between proteins bearing 

p-iodobenzylcysteine and various aryl and vinyl-boronic acids in phosphate buffer216. 

The palladium–2-dimethylamino-4,6-dihydroxypyrimidine catalyst enabled copper-free 

Sonogashira cross-coupling between homopropargylglycine-encoded proteins and aryl 

iodides in aqueous media as well as inside Escherichia coli217. The aryl–palladium(II) 

complexes from decarboxylative palladation of substituted benzoic acid derivatives enabled 

functionalization of a styrene-modified protein with biotin and a cyanine dye via a Heck­

type mechanism218. In heterogeneous catalysis, polystyrene microspheres encapsulating 

Pd0 allowed cytosolic uptake of the palladium catalyst and subsequent in situ synthesis 

of a fluorescent dye via Suzuki–Miyaura cross-coupling inside HeLa cells219. The main 

advantage of using the palladium-encapsulated microspheres is that the palladium catalysts 

stay inside cells to perform intracellular chemistry for an extended period without posing a 

toxicity risk.

Homogeneous catalysis

The catalyst and reaction mixture are in the same phase.

Heterogeneous catalysis

The catalyst and reaction mixture are in a different phase.

Obtaining kinetic parameters for these cross-coupling reactions is challenging owing to the 

complex reaction mechanisms involved and the excess amount of palladium catalysts used. 

In cases where stable palladium catalysts were used, the apparent k2 values were determined 

to be 0.011 M−1 s−1 for Suzuki–Miyaura cross-coupling220 and 5.2 M−1 s−1 for copper-free 

Sonogashira cross-coupling221. By placing an alkyne reporter in the middle of a selected 

protein sequence environment to facilitate recruitment of the palladium complex, faster 

reactions were observed for Sonogashira cross-coupling with apparent k2 values as high as 

1.3 × 104 M−1 s−1 (REF.222).
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Palladium-mediated cross-coupling reactions have been used for modifying proteins with 

fluorophores218,223, polyethylene glycol224 and carbohydrates224 in vitro, on the surface of 

E. coli225, inside bacterial cells217 and on the mammalian cell surface220–222, as well as 

for modifying DNA226. As palladium is an abiotic transition metal, the toxicity225 and cell 

permeability of palladium complexes need to be carefully monitored in cellular applications. 

Also, non-specific sequestration of palladium catalysts by biomolecules227 may further 

decrease the cross-coupling reaction efficiency.

Ruthenium-mediated cross-metathesis of olefins has also been adopted for bioorthogonal 

chemistry (Fig. 5b). As ruthenium alkylidenes are highly reactive and prone to 

decomposition in protic solvents, the use of allyl chalcogen-based privileged substrates for 

accelerated cross-metathesis228, MgCl2 as a competitive, hard Lewis acid and tert-butanol as 

co-solvent has proven crucial. This unique reactivity was harnessed for modifying proteins 

bearing allyl chalcogen tags such as S-allylcysteine229 and Se-allyl selenocysteine230 in 

vitro using the Hoveyda–Grubbs second-generation catalyst.Kinetic studies231 showed that 

Se-allyl-selenocysteine is ten times more reactive towards allyl alcohol than S-allyl-cysteine, 

with an apparent k2 value of 0.3 M−1 s−1. The development of a genetically encoded 

allylsulfide reporter, S-allylhomocysteine, further enhanced the utility of this chemistry232. 

It remains to be seen whether this reaction is sufficiently robust for cellular applications.

Lewis acid

A chemical species that can accept a pair of non-bonding electrons.

Safety.

Bioorthogonal reagents are designed to react quickly. Accordingly, the energetic properties 

of any bioorthogonal reagent that is purchased or prepared should be carefully considered 

prior to use. Safety analysis is especially important for nitrogen-rich compounds including 

azides, diazo compounds, tetrazines and tetrazoles, or compounds with other high-energy 

functional groups (for example, alkynes and nitro groups). For reagents that are synthesized, 

the safety of all synthetic intermediates should be critically evaluated even for compounds 

already known in the literature. Some common starting materials for bioorthogonal 

chemistry also have documented safety concerns. For example, sodium azide (used to 

prepare reagents for CuAAC and SPAAC) is incompatible with acids and halogenated 

solvents such as dichloromethane233, and anhydrous hydrazine (often used to prepare 

tetrazines) is highly toxic, energetic and not available for purchase in all countries234.

For nitrogen-rich bioorthogonal reagents, it is generally observed that the safety profile 

improves with an increasing carbon to nitrogen ratio. One rule of thumb is to avoid 

compounds that do not have at least six carbons (or other atoms of about the same size) 

per high-energy functional group (such as azide, diazo, nitro and so on)4. However, there 

are exceptions235, and therefore testing safety properties is recommended for any compound 

with a high-energy functional group. Differential scanning calorimetry (DSC) represents a 

simple and informative initial measurement of energetic safety that requires only milligrams 

of material. In DSC, heat flow associated with phase transitions is measured as a function of 
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time and temperature. To obtain accurate data, DSC analyses of energetic compounds must 

be performed in sealed pans rated for pressure. Energetic compounds display an exothermic 

decomposition that can be analysed for onset temperature, decomposition energy and rate of 

decomposition. Based on these DSC data, the Yoshida correlation can also be used to inform 

whether to further test for explosivity or impact sensitivity of the material236. Therefore, 

DSC provides a good starting point for understanding the overall energetics of a material237, 

and to help guide the reaction scale and safety precautions (for example, blast shields) that 

should be employed238.

Differential scanning calorimetry

(DSC). A technique that measures heat flow rates to determine phase transitions and 

quantitative heats of decomposition of a compound of interest. DSC requires only 

milligram quantities of a sample and provides a rapid measurement of the thermal 

properties of a compound.

Yoshida correlation

The impact sensitivity and explosive propagation properties of compounds can be derived 

from differential scanning calorimetry data.

Applications

Bioorthogonal chemistry is rich in chemical diversity and offers a palette of tools for many 

applications. Live-cell imaging has been revolutionized by bioorthogonal reactions and these 

chemistries have been essential for genetic code expansion and detecting chemical reporters 

following their metabolic incorporation into target biomolecules239. Activity-based protein 

profiling (ABPP) utilizes advancements in reaction and probe design for understanding 

protein function in complex biological systems240. Applications of bioorthogonal chemistry 

in polymer and materials science and surface chemistry have expanded significantly, 

including fabrication of three-dimensional (3D) networks, hydrogels for live cells and 

drug-delivery strategies241. Advances in reaction chemistry have not only been used for 

bond-forming reactions but also bond-breaking ‘decaging’ reactions for release or activation 

of biomolecules or small molecules242. Together, the tools available for bioorthogonal 

chemistry have provided a diverse set of methods that are impacting multidisciplinary 

research and are expanding to medicinal applications.

Metabolic engineering.

Metabolic engineering is a tactic used to install non-natural functional groups into 

target biomolecules using the cell’s own enzymatic machinery. Metabolites outfitted with 

bioorthogonal functional groups (chemical reporters) can hijack biosynthetic pathways 

and be incorporated into target biomolecules239. Once installed, the reporters are 

detected via bioorthogonal ligation with complementary reagents243–245 (Fig. 6a). This 

two-step approach (the chemical reporter strategy) has been routinely used to image 

and profile proteins61, glycans246,247 and other biomolecules248,249 in cells and other 
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environments250–252 (Fig. 6b). Importantly, the chemical reporter strategy provides a 

mechanism to examine structures that are difficult to study via genetic manipulation, such as 

lipids67,253, small-molecule cofactors254 and other secondary metabolites255.

The most widely used chemical reporters are the azide and alkyne. These motifs are among 

the smallest and most stable bioorthogonal functional groups, and they are tolerated by a 

wide variety of cellular enzymes256,257. Azides and alkynes can also be readily appended 

to biosynthetic precursors for metabolic labelling258. Typical detection chemistries include 

CuAAC (primarily in the context of fixed or lysed samples) or SPAAC (in the case of 

live cells)259,260. Other bioorthogonal functional groups can be employed for metabolic 

engineering, although smaller functional groups are the most useful. Ketones261 and 

cyclopropenes165,262 are included in this group. Importantly, these motifs (and their ligation 

chemistries) are orthogonal to typical azide/alkyne reactions, enabling multicomponent 

detection.

Metabolic labelling strategies — although straightforward — are not often selective for 

a single target. The metabolite employed can be incorporated into multiple biomolecules, 

depending on the enzymatic pathways employed, because some metabolites are common 

to multiple biosynthetic pathways. Additional modifications to probes and pathways 

are necessary to label specific cell populations or individual biomolecules263–265. For 

example, cell-selective labelling can be achieved using targeted delivery strategies or caged 

metabolites that are released in response to specific enzymes. Caged probes have been 

primarily used to label cancer cell targets264,266, although other cell and tissue types can 

be labelled. Biosynthetic enzymes can also be engineered to selectively process non-natural 

metabolites267–269, and are the underlying strategy for site-specific protein tagging/genetic 

code expansion technologies with bioorthogonal amino acids.

Genetic code expansion.

Metabolic engineering approaches, such as residue-specific incorporation of UAAs bearing 

bioorthogonal side chains, allow globally modifying proteins and targeting proteomes 

of entire cells or organisms270, but genetic code expansion approaches enable the site­

specific genetic encoding of UAAs to modify proteins with medicinal chemistry-like 

precision271,272. Genetic code expansion relies on the use of an orthogonal aminoacyl-tRNA 

synthetase (aaRS)–tRNA pair to direct co-translational UAA incorporation in response to 

an amber stop codon introduced at a chosen position in a gene of interest. Orthogonality 

refers to mutual and exclusive recognition of an orthogonal aaRS–tRNA pair for charging 

the UAA in the host of choice without interfering with endogenous aaRS, tRNAs and 

natural amino acids. In the past 20 years, numerous orthogonal aaRS–tRNA pairs have 

been developed for incorporation of UAAs with bioorthogonal functionalities271 to site­

specifically modify and label proteins in bacteria, yeast, mammalian cells and multicellular 

model organisms (Fig. 6c). This strategy offers a modular approach for installing diverse 

probes with a single genetic system and removes limitations that the translational machinery 

may place on the size of probes. The most common and useful bioorthogonal UAAs that 

can be encoded include keto, azide, terminal alkyne, strained alkyne/alkene and tetrazine 

functionalities and have been used for site-specific protein conjugation through oxime 
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ligation, Staudinger ligation, CuAAC, SPAAC, photoclick and IEDDA reactions271,273. 

Many of these approaches have been used for generating in vitro defined protein conjugates 

such as PEGylated and biotinylated proteins, antibody–drug conjugates (ADCs) and proteins 

labelled with spectroscopic probes such as fluorophores and spin labels. An important recent 

advance has been the encoding of IEDDA reaction partners274, such as strained alkenes/

alkynes164,275,276 and tetrazines179,277,278 that permit rapid and selective labelling in live 

cells (both on the cell surface and intracellularly; shown in Fig. 6d) and have allowed 

researchers to visualize and image proteins in their native environment176,275,279–281 and 

to monitor protein turnover282. Site-specific incorporation of two distinct bioorthogonal 

UAAs into the same protein using further engineered translational machineries has enabled 

selective dual protein labelling for applications such as Förster resonance energy transfer 

studies on protein folding283,284. Furthermore, the exquisite selectivity and fast rate (Fig. 4b) 

of the IEDDA reaction between a site-specifically incorporated cyclooctyne-bearing UAA 

and a tetrazine–inhibitor conjugate has been used to selectively inhibit a target enzyme 

within live cells285. Introducing a photoisomerizable linker into tetrazine–inhibitor conjugate 

has allowed reversible switching of enzyme activity with light in living mammalian cells285.

Cell imaging.

Bioorthogonal chemistry has proven a powerful and versatile approach for imaging various 

processes in living cells. Strategies for cell imaging that allow for direct attachment of 

reporter molecules to an expanded set of important biomolecules are free of conventional 

restraints imposed by genetically fused tags, and benefit from a researcher’s choice of 

chemistry for their particular application(s). Many bioorthogonal reactions have been 

used for cell imaging, but some are more well suited than others. For example, CuAAC 

and SPAAC have been used in bacteria to image peptidoglycan remodelling during cell 

division286 (Fig. 6e), and SPAAC has been used to image differential expression of different 

glycosylated proteins within cells and transparent model organisms such as zebrafish246 

and Caenorhabditis elegans287. Strain-promoted alkyne–nitrone cycloaddition reactions 

have been used to image external growth factor receptors136, and for duplex labelling 

to image different bacterial species simultaneously139. In combination with genetic code 

expansion to site-specifically incorporate strained dienophile-bearing UAAs, the tetrazine 

ligation has enabled labelling and imaging of cell surface and cytoskeletal proteins by super­

resolution microscopy176,279,288,289 (Fig. 6f). Furthermore, the tetrazine ligation has been 

used to image and enrich diverse proteomes in bacteria290, mammalian cells290, Drosophila 
melanogaster291 and the mouse brain292 in a temporally and spatially resolved fashion. 

Aside from being spatially permissive and applicable to different types of biomolecule, 

bioorthogonal chemistry strategies enable the use of newer and advanced imaging agents.

A suite of organic fluorophores covering the entire visible spectrum can be chosen for 

super-resolution microscopy techniques. In addition, some bioorthogonal reagents and 

fluorophore pairs are capable of turn-on fluorescence to enhance the signal to noise 

ratio132,174,201,293–295. Depending on the application, the turn-on approach has enabled 

‘no-wash’ imaging strategies175. The groups of Bertozzi and Tsien combined bioorthogonal 

chemistry with electron microscopy in creative ways to perform super-resolution imaging 

of non-protein biomolecules. Selected dyes could be used to image cells by fluorescence, 
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and then these cells were fixed and the dyes used to photooxidize the electron microscopy 

stain diaminobenzidine (DAB) to create contrast for electron microscopy imaging296 (Fig. 

6d). This approach led to unprecedented resolution in images of subcellular localization 

of DNA, RNA, lipids and metabolites. Another complementary technique is bioorthogonal 

Raman spectroscopy, where spectroscopically bioorthogonal Raman tags, such as alkynes, 

azides and nitriles, are directly engineered into biological targets in live cells297. Taken 

together, these bioorthogonal chemistry approaches provide a wide variety of possibilities 

for molecule-specific imaging of cells with different imaging modalities.

Pharmaceutical applications.

Bioorthogonal chemistry has found widespread use in drug discovery programmes, 

including applications in target identification (for example, phenotypic screening), target 

engagement and selectivity profiling of lead compounds298. An immensely valuable method 

to evaluate these directions has been ABPP, which assesses protein functionality in complex 

physiological systems299–301. As compared with assessing mRNA or total protein levels, 

ABPP differentiates active proteins from inactive proteins resulting from zymogens, post­

translationally modified and/or inhibitor-bound forms. This method is dependent on an 

activity-based probe that consists of a chemical ‘warhead’ (for example, an electrophile), 

designed to covalently react in an activity-dependent manner, attached via a linker to 

a reporter group that allows for downstream analysis of labelled proteins by in-gel 

fluorescence, western blot and/or mass spectrometry-based proteomics that are attached 

to each other with a linker299,300. Relevant applications of ABPP include identification 

of activity in different cancer cell lines302, characterization of aberrant enzymatic activity 

in aggressive cancer cells303 and illumination of previously uncharacterized protein 

targets302–305.

Zymogens

inactive forms of an enzyme. The enzyme takes its active form following a natural 

biochemical process such as cleavage, hydrolysis or post-translational modification.

When evaluating reversible small molecules as ligands across the proteome, a probe 

can be designed for photoaffinity labelling301,306,307. In addition to a protein binding 

element, photoaffinity probes possess a photo-reactive group, such as benzophenone, phenyl 

azide or diazirine. Upon irradiation with UV light, these groups form reactive species, 

each by a unique chemical mechanism, to generate covalent bonds with proximal amino 

acid residues306,307. Similar to ABPP, a reporter group is necessary for identification. 

Photoaffinity labelling has been useful for finding protein targets in phenotypic screens306, 

as well as off-target interactions that can lead to undesired toxicological outcomes, and 

discovering novel protein–protein interaction partners as exemplified by the interaction of 

IFITM3 with γ-secretase308,309.

Common tagging groups for activity-based and photoaffinity probes include biotin and 

various fluorophores; however, the incorporation of these large reporter groups can 

negatively impact cellular permeability and localization. Towards this end, less perturbative 
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CuAAC chemistry handles (for example, azide or alkyne) have been incorporated to 

improve the physiochemical properties of the probes240,310,311. Copper-free clickable 

handles have also been utilized in activity-based probes to increase experimental throughput 

and avoid copper removal steps that can result in protein loss312. These bioorthogonal 

probes have been useful for screening compound libraries in the development of selective 

inhibitors305,313 and for assessing target engagement and proteome selectivity for small­

molecule drug candidates314–316.

Bioorthogonal chemistry handles also grant modularity during a proteomic workflow for 

both ABPP and photoaffinity labelling (Fig. 7a). For example, cleavable linkers and/or 

isotopic reporters can be incorporated to assess sites of engagement and/or perform 

quantitative analysis317,318. A variant of ABPP employs a generally reactive warhead, 

such as cysteine-reactive iodoacetamide appended to an alkyne handle, to discover novel 

ligandable hotspots in the proteome319,320. These ligands can provide useful handles for 

developing novel small-molecule inhibitors or for other therapeutic modalities such as 

targeted protein degradation321.

Targeted protein degradation

A technique used for targeting specific proteins for degradation within a cell. Commonly, 

hetero-bifunctional small-molecule compounds are used for targeting the protein of 

interest to an E3 ubiquitin ligase protein. This facilitates the polyubiquination and 

subsequent degradation of the targeted protein.

An additional area of interest in drug discovery that has benefited from bioorthogonal 

chemistry is the development of ADCs. ADCs combine a potent small-molecule drug and a 

highly selective antibody for delivery to an antigen-specific cell type322. This approach has 

been utilized primarily in oncology indications to avoid toxic effects to normal tissue cells 

by targeting the cytotoxic molecule directly to cancerous tissues. Bioorthogonal chemistry 

has played a pivotal role in linking the small molecule to the antibody322. Traditionally, 

this linkage occurs via acylation of lysine residues by N-hydroxysuccinimide esters or 

alkylation of cysteines by maleimide; however, heterogeneous labelling of the antibodies has 

led to the exploration of alternative chemistries, including the development of site-selective 

small-molecule conjugation strategies that exploit the incorporation of UAAs, followed by 

bioorthogonal conjugation reactions such as SPAAC or oxime condensation323.

Bioorthogonal uncaging strategies.

Successes in the rapidly evolving field of bioorthogonal conjugation inspired the 

development of bioorthogonal cleavage approaches to release or activate small molecules 

and biomolecules242 (Fig. 7b). Most cleavage reactions were derived from their 

bioorthogonal bond-forming counterparts, typically resulting in conjugation intermediates 

designed to decompose and release a payload. By initially targeting and later releasing a 

bioactive molecule, bioorthogonal uncaging represents a way to achieve spatio-temporal 

control over cargo delivery in biological systems. In addition to the parameters that are key 
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for successful bioorthogonal conjugation (reactivity and stability), the release rate and the 

nature of the group being released are important factors when choosing a cleavage reaction.

The first examples used the Staudinger ligation and Staudinger reaction to achieve, 

respectively, the elimination of a carbamate from the part originating from the 

triphenylphosophine324 or an azide to amine reduction71,325, optionally followed by further 

release of a self-immolative linker to liberate the payload. Similarly, cycloaddition of 

TCO with organic azide affords an unstable product that rearranges to liberate the 

corresponding amine326. The well-known SPAAC between cyclooctyne and azide has 

not yet been transformed into a dissociative reaction, but the conjugation between 

cyclooctyne and sydnones has led to efficiently cleavable iminosydnones144. Also, 

hydroxyl-functionalized cyclooctyne was used to release an amide-linked payload from a 

tetrazine following cycloaddition and intramolecular cyclization327. The IEDDA between 

tetrazines and dienophiles has proven to be a fertile ground for the development of 

several tetrazine-triggered cleavage reactions, such as the cleavage of allylic-substituted 

TCO (IEDDA pyridazine elimination)328, vinyl ethers329–331, 3-isocyanopropyls332 and 

carbamate-linked benzonorbornadienes333. From this series, allylic-substituted TCO has 

the highest reactivity328, mirroring the reactivity differences between the click conjugation 

reactions. Recently, click conjugation reactivity was increased by three orders of magnitude 

by the development of a new IEDDA pyridazine elimination mechanism where the 

roles are reversed, with highly reactive TCO triggering payload release from a tetrazine 

linker334. Isonitriles were shown to cleave this tetrazine linker through a slightly 

different mechanism335. Finally, the well-known fluoride-mediated removal of the tert­
butyldimethylsilyl (TBS) protecting group in organic synthesis was recently reworked into 

an effective bioorthogonal cleavage reaction by using imaging agent-derived Phe-BF3 as the 

fluoride source336.

Self-immolative linker

A class of linker that, when exposed to a certain trigger, is designed to break the payload 

connecting bonds via an intramolecular process.

Bradley and co-workers have used transition metals as triggers for bioorthogonal cleavage 

reactions219. The amine-protecting allyloxycarbonyl (alloc) group can be catalytically 

removed in physiological conditions by ruthenium and palladium complexes337,338. Pd0 

nanoparticles and palladium complexes encapsulated in nanoparticles afforded selective 

alloc removal in cells and mice219. Likewise, the amine-protecting propargyl group has 

been catalytically removed by palladium338, copper339 and gold340 complexes as well as 

metallic palladium341. Hydroxyl groups were caged with an allene moiety and uncaged with 

palladium catalysts342. Although the use of metals or metal complexes may pose challenges 

in living systems in view of long-term stability and biocompatibility, their catalytic nature 

offers compelling opportunities, for example in prodrug activation.
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Prodrug

A pharmacologically inactive precursor compound that is converted into an active drug 

through in vivo chemical modification achieved via metabolic/enzymatic processes. 

Prodrugs are employed to improve pharmacokinetic properties (absorption, distribution, 

metabolism and elimination) and pharmacodynamics properties (selectivity, reduction of 

adverse effects) of the active drug molecule.

In vivo chemistry.

A central development in bioorthogonal chemistry has been the enormous reaction rate 

increase as new transformations are developed. As the reactivity increased, so did the 

application scope, leading to today’s use in a wide range of fields. Higher reactivity 

enables equimolar reagent stoichiometry, lower concentrations and shorter reaction times, 

and therefore allows demanding applications such as those found in medicine.

The Staudinger ligation and SPAAC were successfully used for the detection of 

metabolically engineered tissues in mice343, but the reaction kinetics (k2 ~ 10−3–101 M−1 

s−1) required a high dose of secondary reagent (such as triarylphosphines and cyclooctynes, 

respectively) to achieve detectable binding, limiting the application scope. Nevertheless, 

there are examples of medical applications, such as SPAAC-mediated clearing of azide­

containing warfarin344 and cardiac homing of endogenous stem cells345.

The rate constant for the tetrazine ligation (k2 ~ 105 M−1 s−1) is on a par with biomolecule 

association rates, opening up applications where chemistry substitutes for, or works in 

conjunction with, biology, at the same timescale and the same low concentrations. It 

was shown to be fast enough to be used for pre-targeted radioimmunoimaging, which 

involved treating tumour-bearing mice with TCO-tagged monoclonal antibody followed a 

few days later by administration of an equimolar amount of a fast-clearing radiolabelled 

tetrazine probe and its reaction with the tumour-bound monoclonal antibody346–348 (Fig. 

7c). This approach has since been markedly improved by the development of tags with 

improved reactivity and stability349, pharmacokinetics350, the introduction of bioorthogonal 

monoclonal antibody clearing agents351,352 and the development of a wide range of 

probes for imaging353,354 and for radiotherapy355,356, together affording strongly increased 

tumour to normal tissue ratios. As a result, the tetrazine ligation is now an established 

method for companion diagnostic imaging of monoclonal antibodies and pre-targeted 

radioimmunotherapy in live animals.

Mirroring its parent reaction, the high reactivity of the IEDDA pyridazine elimination 

reaction has led to widespread utility328, applications of which include unmasking of 

TCO-containing ADCs357,358 (Fig. 7d), prodrugs359, proteins360 and peptide antigens361. 

Contrary to the imaging and radiotherapy applications, in cleavage applications the 

tetrazine is typically not radiolabelled and can be dosed in excess to achieve complete 

activation yields, as demonstrated for the activation of a tumour-bound ADC by a 

tetrazine administered intravenously in a second step357,358. Other approaches centre on 

the pre-administration of the tetrazine362,363, such as the intratumoural injection of a 
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tetrazine followed by intravenous administration of a TCO prodrug, local capture and drug 

activation359. The IEDDA between liposome-encapsulated tetrazine and vinyl ether prodrug 

afforded an enhanced permeability and retention-mediated drug release in tumours364, and 

the iminosydnone release reaction was used to trigger fragmentation of and payload release 

from a tumour-bound micelle344. Likewise, nanoparticle-bound drugs were efficiently 

activated inside cancer cells in vivo using the desilylation reaction336. Finally, nanoparticle­

encapsulated palladium complexes have been successfully used for on-tumour prodrug 

activation of alloc-caged doxorubicin as well as its micelle-encapsulated analogue365,366.

Most applications of in vivo chemistry have been mainly performed in mice. Bioorthogonal 

uncaging using the TCO–tetrazine pyridazine elimination has recently entered phase I 

clinical evaluation as a method of breast cancer chemotherapy367. Future clinical studies 

are expected to be fuelled by very promising results in several of the imaging, radiotherapy 

and drug delivery studies.

Polymer and materials science.

Bioorthogonal reactions have emerged as enabling tools in the areas of polymer science, 

materials science and surface science. In the field of polymer modification, CuAAC 

has been impactful with applications extending to the synthesis and functionalization of 

essentially every polymer class, including adhesives, block and multiblock copolymers, 

brush and comb copolymers as well as star, hyperbranched and dendronized 

polymers281,368–371. Bioorthogonal chemistry can also be used to create high molecular 

weight polymers through polymer–polymer couplings372. The tetrazine ligation has been 

used to investigate defects in polymer network formation373. Bioorthogonal reactions have 

also been used as tools for the construction of monodisperse macromolecules including 

dendrimers374 and sequence-specific polymers375. Here, the sequential application of two 

mutually orthogonal reactions can be used to produce well-defined macromolecules. For 

example, CuAAC in combination with sulfuryl fluoride exchange (SuFEx) chemistry (BOX 

1) has been applied to the preparation of sequence-specific polymers376, and SPAAC in 

combination with tetrazine ligation has been used to produce dendrimer scaffolds attached 

to antibodies that can be used to amplify the signal in pre-targeted positron-emission 

tomography imaging377.

Sequence-specific polymers

Macromolecules that are monodisperse with defined monomer sequences or block 

sequences. This requires controlled, sequential addition of subunits using highly efficient 

bond-forming chemical reactions. Naturally occurring examples of sequence-specific 

macromolecules include DNA, RNA and protein.

Multivalency is a ubiquitous phenomenon in biology involving the simultaneous binding of 

multiple copies of a ligand displayed on one surface to complementary binders or receptors 

on another surface. Bioorthogonal chemistry has been used broadly to enable the multivalent 

display of designer ligands based on naturally occurring biomacromolecules. For example, 

CuAAC has been used to label the outer and inner surfaces of viral particles378,379, and 
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has been a widely used tool for the creation of multivalent glycomaterials, glycopolymers 

and glycosurfaces380. Bioorthogonal reactions are also important to the functionalization 

of surfaces as well as nanoparticles381. CuAAC emerged as an early tool for electrode 

and surface functionalization382, and, more recently, SPAAC, tetrazine ligation and other 

bioorthogonal reactions have become important tools for the selective attachment of 

proteins and other biomolecules to surfaces383. Beyond surface modification, bioorthogonal 

chemistry also enables the creation of 3D networks, with applications that include the 

development of hydrogel supports for cell culture applications241. Here, copper-free 

methods including SPAAC and tetrazine ligation are proving especially useful for the 

assembly of 3D scaffolds that display biological ligands capable of supporting tissue-like 

structures384,385.

Materials construction (and deconstruction) in response to external stimulus is a field of 

increasing importance in various applications, and bioorthogonal reactions allow for creative 

applications of molecular connectivity in tailored circumstances or environments. Examples 

include photoinducible ligations, which have proven highly useful for the activation and 

patterning of surfaces and 3D materials, such as for biomolecular attachment in 3D 

scaffolds386,387. The tetrazole photoclick chemistry has also been employed in materials 

science for preparation of photodegradable supramolecular hydrogels388, grafting polymers 

onto silicon and cellulose surfaces389, and synthesis of polymeric networks390. Thiol–ene 

and thiol–yne chemistry has so far been the technique of choice for light-based 3D printing, 

such as for interesting hydrogel materials391. The inherent reversibility of properly designed 

thiol–ene connections has also been exploited for controllable disassembly392. Similarly, the 

rapid kinetics of tetrazine ligation can be used for further advantage in materials assembly 

through interfacial processes that can be used for attaching ultrasound microbubbles to 

cell surfaces393, as a method for modulating cell–cell adhesion394 and as a method for the 

creation of molecularly patterned fibres395, core-shell particles396 and hydrogel channels397 

or shapes398 capable of directing cell behaviour in three dimensions.

Reproducibility and data deposition

The characterization of new bioorthogonal reagents and small-molecule conjugates follows 

the standards of the field of organic chemistry. At a minimum, new compounds are 

generally characterized by 1H and 13C NMR spectroscopy as well as elemental analysis 

and/or high-resolution mass spectrometry. Additional characterization by NMR (probing 

other nuclei, 2D NMR experiments as well as measuring the nuclear Overhauser effect), 

Fourier transform infrared spectroscopy, chromatography (for example, high-performance 

liquid chromatography or gas chromatography) and X-ray crystallography are also routinely 

performed to support structural assignments. In general, copies of spectral data along with 

spectral peak listings are submitted for peer review and made available as supporting 

information by the journal at the time of publication. Additionally, X-ray crystallographic 

data are typically deposited in the Cambridge Structural Database. Where possible, 

kinetic rate constants should be measured under purely aqueous conditions to enable rate 

comparisons across different reaction types and, where applicable, the effect of the catalyst 

concentration on the rate should also be indicated. One of the hallmarks of bioorthogonal 

chemistry is that reactions are reliable and successful under a wide range of conditions. 
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However, the high reactivity associated with the most reactive bioorthogonal substrates can 

also require additional considerations to verify reagent quality prior to use. It is generally 

advisable to store reagents under refrigeration and to periodically validate reagent quality 

by spectroscopic (such as NMR) or chromatographic (such as high-performance liquid 

chromatography) analysis.

Additionally, reagent stability should be evaluated under physiological conditions. Valuable 

methods include studying the reagent in the biological milieu of interest (for example, 

blood, serum, cell lysate) as well as in the presence of glutathione at 10 mM, which 

approximates the thiol’s intracellular concentration. In addition to rigorous analytical 

chemical characterization, bioorthogonal reactions should be characterized on labelled 

biomolecules whenever possible. Mass spectrometry as well as quantification by high­

performance liquid chromatography or gel electrophoresis should be routinely used for 

deducing reaction conversions and yields. To validate bioorthogonal reaction efficiency in 

live cells, it is generally useful to quantify labelling using fluorescent probes and in-gel 

fluorescence. Mass spectrometry can be used to validate overexpressed protein targets 

in bacteria. In mammalian cells, it is useful to validate specificity through labelling 

of recombinant fluorescent proteins with fluorescent probes, where co-localization of 

fluorescence from the protein and probe can be used to provide a measure of the specificity 

and efficacy of labelling.

Limitations and optimizations

The impact of bioorthogonal chemistry on biology and biomedical research has been 

facilitated by the increasing availability of commercial reagents to the wider scientific 

community, and a growing number of companies now specialize in reagents for 

bioorthogonal and click chemistry. An increased variety of bioorthogonal reagents in 

formats that are ready to use for bioconjugation and applications including fluorescent 

imaging, radiochemistry and proteomics would be beneficial for researchers using these 

tools. There is a continued need to develop improved reagents that display rapid kinetics 

while exhibiting high stability towards extended incubation in the cellular or in vivo 

environment. There are opportunities for synthetic chemists to further impact the scientific 

community by creating new and improved bioorthogonal reagents.

The expanding catalogue of bioorthogonal reactions has brought the associated challenge 

of deciding how to choose a bioorthogonal reaction for a given application. As pointed 

out above, different reactions in the bioorthogonal toolbox have associated strengths and 

limitations, and it is advisable for practitioners to begin by prioritizing the characteristics 

that are most important for the application. With small and readily available reaction 

partners and fast rates under catalytic conditions, CuAAC has been applied across a 

remarkable range of applications in vitro and in extracellular and cell surface settings, 

but, as noted above, is typically less well suited for intracellular labelling applications. 

For intracellular and in vivo applications where fast reactivity is required, the kinetics 

of tetrazine ligation can enable fast labelling even at sub-micromolar concentrations. 

For tetrazine ligation, a consideration is that both reaction partners are relatively bulky, 

especially for TCO dienophiles, which are also the most reactive. Cycloalkyne [3 + 2] 
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cycloadditions also function efficiently in the intracellular environment, with the advantage 

of using azides and other small dipoles as one reaction partner. However, the kinetics are 

generally less rapid than tetrazine ligation and require concentrations in the high micromolar 

to millimolar range. Native chemical ligation serves as the standard for the conjugation 

of large peptidic or protein fragments using native amide linkages but is relegated to 

in vitro applications. The Staudinger ligation offers an alternative for the formation of 

amide bonds in cellular or in vivo settings, but can be limited by bulky reagents and 

relatively slow kinetics. Oxime, palladium-catalysed and ruthenium-catalysed reactions 

offer unique new functional group handles in bioorthogonal chemistry applications. With 

some exceptions, these tools are generally best suited for applications in vitro and in 

the extracellular environment. Photoclick chemistry has proven to be a powerful tool for 

exercising spatio-temporal control over bioorthogonal reactivity in varied settings, including 

live-cell applications. Continued efforts to reduce the size of photoinducible groups and 

red-shift activation wavelengths will enable a wider range of applications. Finally, the 

development of cleavage reactions with increased reactivity and release kinetics would 

provide researchers with a wider set of uncaging tools.

Outlook

Bioorthogonal chemistry has emerged as an enabling method for the construction of 

molecules with complexity and in contexts that were previously unthinkable. The impact of 

bioorthogonal reactivity has been far-reaching with applications spanning protein synthesis, 

drug discovery, in vivo chemistry and polymer science. Moving forwards, bioorthogonal 

chemistry will continue to develop into a tool capable of delivering new drugs, creating new 

materials and answering biological questions that cannot be addressed by modern molecular 

biology tools (such as GFP and CRISPR–Cas9) or small-molecule ligands.

Despite tremendous progress in the development and application of bioorthogonal chemistry, 

there is much work to be done. Although all bioorthogonal groups are much lower in 

molecular weight than directly expressed protein tags, bioorthogonal linkers still represent 

a perturbation to the biological system under study, and bulky derivatives may not be 

accepted by the enzymatic machinery used to incorporate a tag into a biological target. 

There is still a need for new reagents that are small, safe, stable and capable of rapid 

kinetics, with high value for reagents that work efficiently inside living cells and animals. 

Initial efforts to minimize the size and improve the physiological properties of bioorthogonal 

groups have been successful, yet few classes of bioorthogonal reactions can produce native 

biological bonds such as amides. New classes of reactions capable of producing native 

covalent bonds with rapid kinetics in living systems would be valuable tools for chemical 

biology. The continued advancement of ‘orthogonal bioorthogonal’ reactions399, which 

enable the simultaneous use of multiple bioorthogonal reactant pairs in living systems, offers 

another level of control over the biological system under study and is valuable. Furthermore, 

bioorthogonal covalent reactions that can be reversed using benign triggers would be ideal 

tools for studying and manipulating biological systems.

Biological imaging has been advanced through the development of methods that couple 

bioorthogonal chemistry to imaging in living systems. Innovations in the development of 
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fluorogenic bioorthogonal reactions as well as in vivo radiochemistry have emerged as 

powerful imaging tools from the cellular to the whole animal level346–356. Complementary 

approaches are needed that will continue to push the limits of detection by ameliorating 

non-specific interactions or side reactions that can decrease signal to noise ratios, and 

thereby enable new frontiers in imaging, including the live-cell imaging of low abundance 

biomolecular targets (such as endogenous proteins), and in the development of in vivo 

approaches for diagnosing, monitoring and staging human diseases in the clinic. These 

developments will benefit from ongoing efforts in synthesizing sophisticated dyes and 

fluorophores with custom-designed physical properties to illuminate individual biomolecules 

in complex biological systems.

Chemical techniques for site-specific attachment of bioorthogonal handles onto 

biomacromolecules have made tremendous advancements in recent years. Recombinant 

methods to install uniquely reactive peptide tags have simplified site-specific incorporation 

with broad substrate scope onto protein targets. But these methods do suffer from 

incomplete conversions and require high reagent concentrations, which results in limited in 

vivo use. Genetic code expansion has also been instrumental for installing bioorthogonal 

handles with amino acid precision devoid of extra peptide tags. However, extensive 

re-engineering of machinery is often necessary to accommodate new substrates. Simple 

methods for quantitative, non-invasive, highly pure, site-specific attachment of small 

molecules to proteins in a living system with broad substrate scope are highly desirable, 

and represent an idealized protein conjugation method to strive for. Substantial effort 

has been focused on protein conjugation strategies; expanding these strategies to other 

biomacromolecules and complex metabolites remains largely unexplored and a critical area 

for newer methodology.

Photoclick chemistry has also provided a powerful method for the study of cellular processes 

with spatio-temporal precision. Moving forwards, the control offered by photoinducible 

bioorthogonal chemistry may enable real-time imaging of individual biological molecule 

dynamics and provide a tool for elucidating the biomolecule function in signalling pathways. 

The development of photoinducible bioorthogonal chemistry based on tissue-penetrant near­

IR light180 may offer the ability to induce rapid reactivity in vivo, providing a new level of 

precision for studying pathogenesis in living animals.

From the intersection of organic chemistry and biology, bioorthogonal chemistry has 

emerged as an essential way to construct biological molecules and to study them in their 

native environment. With ever-increasing momentum, bioorthogonal chemistry is enabling 

research in biology and biomedicine and is influencing scientists across the spectrum of 

disciplines through a broad range of applications.
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Box 1 |

Sulfuryl fluoride exchange chemistry

Sulfuryl fluoride exchange (SuFEx) chemistry represents a class of biocompatible click 

reactions described in 2014 by Sharpless and colleagues, who identified sulfuryl fluorides 

(RSO2F) and related species as having balanced reactivity well matched to bioorthogonal 

applications5. Sulfur(VI) fluorides are compatible with water and are potently activated 

by acid-mediated stabilization of fluoride as a leaving group in aqueous media, the 

H···F interaction being the strongest known hydrogen bond400. Sulfuryl fluorides and 

related nitrogen-containing groups (such as sulfuramidimidoyl fluorides)401 are thereby 

proving to be quite selective in biomolecular labelling promoted by initial non-covalent 

interactions. In the formation and modification of polymeric materials, activation of 

the S–F bond by silyl reagents has proven especially useful. Thus, the combination 

of building blocks containing S–F and Si–O bonds, when addressed by the right 

nucleophilic catalysts, gives very high yields of S–O linkages, thermodynamically driven 

by the concomitant formation of ultra-stable Si–F by-products402. The term ‘exchange’ 

in the SuFEx moniker is meant to emphasize the fact that both the departing fluoride and 

the entering alkoxide/aryloxide must be appropriately activated in order for the reaction 

to proceed, and that thermodynamic factors governing the swap of S–F for S–O bonds 

are more balanced than is typical for other bioorthogonal ligations. As the most recently 

recognized click reaction, SuFEx chemistry is only now becoming recognized as an 

especially useful tool for numerous biological applications403, and relevant reagents for 

SuFEx chemistry are becoming increasingly available404,405.
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Fig. 1 |. Different classes of bioorthogonal reactions.
The broad range of bioorthogonal reactions with their associated reactants, key reagents, 

products and key feature(s) are highlighted here.
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Fig. 2 |. The native chemical ligation and oxime and hydrazine ligations.
a | Native chemical ligation is enabled by a catalysed reaction between a thioester and 

an amino-terminal cysteine residue to afford a native amide bond through a thioester 

intermediate that undergoes an S,N-acyl shift. b | Using aniline-based catalysts, the oxime 

and hydrazone ligations occur between a carbonyl group with a hydroxylamine or a 

hydrazine, respectively. k2, second-order rate constant.
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Fig. 3 |. The Staudinger ligation types and the copper-catalysed azide–alkyne reaction.
a | Both the original and traceless Staudinger ligations enable native amide bond formation 

between an azide and a carbonyl group using triaryl phosphines to afford the product and 

a phosphine oxide as a by-product. b | The model ‘click reaction’ between an azide and an 

alkyne enabled by use of a copper-based catalysis route to afford a triazole product. Ligand 

examples are provided. k2, second-order rate constant.
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Fig. 4 |. Cycloaddition-based bioorthogonal chemical reaction types.
a | Strained alkynes enable copper-free catalysis of cycloaddition to dipoles such as 

azides. b | The fastest biorthogonal reaction involves the inverse-electron demand [4 + 

2] addition between a tetrazine and a dienophile. BARAC, biarylazacyclooctynone; BCN, 

bicyclo[2.1.0]nonyne; DIBO, dibenzocyclooctyne; DIFO, difluorinated cyclooctyne; k2, 

second-order rate constant; OCT, cyclooctyne; TMTH, 3,3,6,6-tetramethylthiaheptyne.
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Fig. 5 |. Light-activated click chemistry and metal-catalysed coupling reactions.
a | Two examples of photoclick chemistry: a photoinduced tetrazole-alkene 1,3-dipolar 

cycloaddition reaction to generate a pyrazoline adduct (top) and a photo-triggered 

alkyne-azide cycloaddition reaction (bottom). The cycloalkyne is masked in the 

dibenzocyclopropenone form. b | Two examples of palladium-catalysed reactions: Suzuki–

Miyaura cross-coupling and copper-free Sonogashira cross-coupling (top left and right, 

respectively), and ruthenium-mediated olefin cross-metathesis (bottom) involving the use of 

allyl chalcogen-based privileged substrates. BCN, bicyclo[2.1.0]nonyne.
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Fig. 6 |. Applications for labelling different molecule types in cells.
a | Model for metabolic engineering for cell labelling and imaging. b | Fluorescence 

microscopy of CHO cells incubated in the presence (left) or absence (right) of 

peracetylated N-azidoacetylmannosamine (Ac4ManNAz) and labelled with a fluorophore 

by the Staudinger ligation. c | Model for genetic code expansion as a strategy for 

cell labelling and imaging. d | Fluorescence and direct stochastic optical reconstruction 

microscopy (dSTORM) super-resolution images of COS-7 cells where microtubule­

associated protein was encoded with an unnatural trans-cyclooctene (TCO) amino acid 

and tetrazine ligation was used to attach a microscopy dye. e | Structured illumination 

microscopy (SIM) images of Escherichia coli, where N-azidoacetyl-muramic acid (NAM) 

was metabolically incorporated into the bacterial peptidoglycan and fluorophore-labelled 

by copper(I)-catalysed azide–alkyne cycloaddition (CuAAC). f | Electron microscopy 

images of HeLa cells, where azido-choline was metabolically incorporated, and cyclooctyne/

azide click chemistry was used to conjugate electron microscopy imaging agents. The 
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arrows indicate sites of endoplasmic reticulum–mitochondria contacts. aaRS, aminoacyl­

tRNA synthetase; WF, widefield image. Images in panel b adapted with permission 

from REF.252, ACS. Images in panel d reprinted from REF.176, CC BY 4.0 (https://

creativecommons.org/licenses/by/4.0/). Images in panel e reprinted from REF.286, CC 

BY 4.0 (https://creativecommons.org/licenses/by/4.0/). Images in panel f reprinted from 

REF.296, Springer Nature Limited.
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Fig. 7 |. Examples of biorthogonal chemistry applications in vitro and in vivo.
a | Enrichment strategies for proteome labelling enabled by the copper-catalysed azide–

alkyne reaction. b | Examples of bioorthogonal cage molecules. c | The tetrazine ligation 

as a strategy for pre-targeted radiochemical imaging of cancer. d | Uncaging small­

molecule cargo has been applied at tumour sites in animal models. LC-MS/MS, liquid 

chromatography with tandem mass spectrometry; SPECT, single-photon emission computed 

tomography; WB, western blot. Middle image in panel c originally published in REF.351, 

JNM. Rossin, R., Läppchen, T., Van Den Bosch, S. M., Laforest, R. & Robillard, M. S. 

Diels–Alder reaction for tumor pretargeting: in vivo chemistry can boost tumor radiation 
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dose compared with directly labeled antibody. J. Nucl. Med. 54, 1989–1995 (2013). © 

SNMMI. Bottom image in panel c adapted with permission from REF.354, ACS. Panel d 
adapted from REF.357, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
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