Table 3.
Layers | Filters | Size/Stride | Output |
---|---|---|---|
Input | 128 × 128 | ||
Convolutional | 16 | (3 × 3 + 3 × 1 + 1 × 3)/1 | 128 × 128 |
Batch Normalization | 128 × 128 | ||
ReLu | 128 × 128 | ||
Max pooling | 2 × 2/2 | 64 × 64 | |
Convolutional | 32 | (3 × 3 + 3 × 1 + 1 × 3)/1 | 64 × 64 |
Batch Normalization | 64 × 64 | ||
ReLu | 64 × 64 | ||
Max pooling | 2×2/2 | 32 × 32 | |
Convolutional | 64 | (3 × 3 + 3 × 1 + 1 × 3)/1 | 32 × 32 |
Batch Normalization | 32 × 32 | ||
ReLu | 32 × 32 | ||
Max pooling | 2 × 2/2 | 16 × 16 | |
Convolutional | 128 | (3 × 3 + 3 × 1 + 1 × 3)/1 | 16 × 16 |
Batch Normalization | 16 × 16 | ||
ReLu | 16 × 16 | ||
Convolutional | 128 | (3 × 3 + 3 × 1 + 1 × 3)/1 | 16 × 16 |
Batch Normalization | 16 × 16 | ||
ReLu | 16 × 16 | ||
Convolutional | 128 | (3 × 3 + 3 × 1 + 1 × 3)/1 | 16 × 16 |
Batch Normalization | 16 × 16 | ||
ReLu | 16 × 16 | ||
Convolutional | 24 | 1 × 1/1 | 16 × 16 |
Transform | 16 × 16 | ||
Output |