Skip to main content
. 2021 Sep 7;21(18):5995. doi: 10.3390/s21185995

Table 3.

Colorectal polyp detection model architecture.

Layers Filters Size/Stride Output
Input 128 × 128
Convolutional 16 (3 × 3 + 3 × 1 + 1 × 3)/1 128 × 128
Batch Normalization 128 × 128
ReLu 128 × 128
Max pooling 2 × 2/2 64 × 64
Convolutional 32 (3 × 3 + 3 × 1 + 1 × 3)/1 64 × 64
Batch Normalization 64 × 64
ReLu 64 × 64
Max pooling 2×2/2 32 × 32
Convolutional 64 (3 × 3 + 3 × 1 + 1 × 3)/1 32 × 32
Batch Normalization 32 × 32
ReLu 32 × 32
Max pooling 2 × 2/2 16 × 16
Convolutional 128 (3 × 3 + 3 × 1 + 1 × 3)/1 16 × 16
Batch Normalization 16 × 16
ReLu 16 × 16
Convolutional 128 (3 × 3 + 3 × 1 + 1 × 3)/1 16 × 16
Batch Normalization 16 × 16
ReLu 16 × 16
Convolutional 128 (3 × 3 + 3 × 1 + 1 × 3)/1 16 × 16
Batch Normalization 16 × 16
ReLu 16 × 16
Convolutional 24 1 × 1/1 16 × 16
Transform 16 × 16
Output