Skip to main content
. 2021 Aug 30;11(9):863. doi: 10.3390/jpm11090863

Table 2.

Results of several performance parameters of machine learning algorithms to predict hemorrhagic transformation in the test dataset.

TP FP FN TN Total Precision Recall Accuracy F1-Score
BLR 486 28 71 24 609 87.3 94.6 83.7 90.8
SVM 504 10 78 17 609 86.6 98.1 85.6 92.0
XGB 486 28 73 22 609 86.9 94.6 83.4 90.6
ANN_crude 506 17 57 29 609 89.9 96.7 87.8 93.2

TP: true positive; FP: false positive; FN: false negative; TN: true negative; BLR: binary logistic regression; SVM: support vector machine; XGB: extreme gradient boosting; and ANN crude: artificial neural network crude model.