Skip to main content
. 2021 Sep 8;21(18):6013. doi: 10.3390/s21186013
Algorithm 1 Dinkelbach-assisted Alternating Parameter Optimization
  • 1:

    Initialize: κ=0, any feasible δ,θ,w, and ϵ¯ : Threshold limit;

  • 2:

    REPEAT (for a given κ, iteration: n)

  • 3:

      Solve (28)–(32) to obtain PT, for given δ,θ,w;

  • 4:

      Utilizing PT, Solve (28)–(32) to obtain δ, for given θ,w;

  • 5:

      Using PT and δ , Solve (28)–(32) to obtain θ, for given w;

  • 6:

      Finally compute w by solving (28)–(32) via PT, δ, θ;

  • 7:

     IF (ωRRU+ωEEU)κ(ωPPT)ϵ¯

  • 8:

      Convergence = TRUE;

  • 9:

      RETURN {PT,δ,θ,w}={PT,δ,θ,w}, κ=(ωRRU+ωEEU)ωPPT;

  • 10:

     ELSE

  • 11:

       Set κ=(ωRRU+ωEEU)ωPPT and n=n+1;

  • 12:

       Convergence = FALSE;

  • 13:

     END IF

  • 14:

    UNTIL Convergence = TRUE.