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Abstract: Specific partially hydrolysed whey-based infant formulas (pHF-W) have been shown
to decrease the risk of atopic dermatitis (AD) in infants. Historically, AD has been associated
primarily with milk allergy; however, defective skin barrier function can be a primary cause of
AD. We aimed to ascertain whether oral supplementation with pHF-W can improve skin barrier
function. The effect of pHF-W was assessed on transepidermal water loss (TEWL) and antibody
productions in mice epicutaneously exposed to Aspergillus fumigatus. Human primary keratinocytes
were stimulated in vitro, and the expression of genes related to skin barrier function was measured.
Supplementation with pHF-W in neonatal mice led to a significant decrease in TEWL and total IgE,
but not in allergen-specific antibody levels. The whey hydrolysate was sufficient to decrease both
TEWL and total IgE. Aquaporin-3 gene expression, linked with skin hydration, was modulated in the
skin of mice and human primary keratinocytes following protein hydrolysate exposure. Skin barrier
improvement may be an additional mechanism by which pHF-W may potentially reduce the risk of
AD development in infants. Further human studies are warranted to confirm the clinical efficacy of
these observations.

Keywords: aquaporin; partially hydrolysed whey-based infant formula; skin barrier function;
transepidermal water loss

1. Introduction

Atopic dermatitis (AD) is the most prevalent allergic disease in the first year of life,
affecting 5 to 20% of infants and toddlers [1] and is associated with morbidities later in
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childhood. Clinical trials in infants at risk of developing AD have shown that, when
exclusive breastfeeding is not possible, supplementation with specific partially hydrolysed
whey-based infant formulas (pHF-W) significantly reduces infant risk of developing AD as
compared to intact protein formula [2]. However, the mechanism by which specific pHF-W
reduces the risk of AD development [3,4] is not well described and may be informed by
the etiology of AD disease.

Defective skin barrier function is a well-documented risk factor for skin diseases,
including AD. Recent genome-wide association studies suggest that specific mutations in
genes encoding for skin barrier function molecules are strongly linked with AD risk [5].
Notably, loss-of-function variants in the filaggrin gene, a filament binding protein of the
stratum corneum, have been identified as a key risk factor for AD [5–13]. Additional studies
have demonstrated that increased transepidermal water loss (TEWL) in the first weeks of
life was associated with an increased risk of AD development, which was independent
of family history [14], yet the retraction of a key publication added controversy to the
field [15]. Furthermore, recent evidence in murine studies has demonstrated that allergen
application (including ovalbumin, peanut, milk protein, or Aspergillus fumigatus) on an
impaired barrier can lead to systemic sensitisation [16–20]. These studies, along with
genetic studies linking filaggrin mutations with food allergy [21], have led to the hypothesis
that allergic sensitisation may be secondary to AD or skin barrier impairment. AD is thus
now recognised as a major risk factor for the development of food allergy [22], and as a
consequence, preventive strategies for food allergy may require a primary prevention of
AD or skin barrier impairment [23].

AD prevention has been explored with various nutritional and topical approaches. The
efficacy of pHF-W supplementation on AD risk reduction has been tested in clinical settings
with numerous product types, and the meta-analyses of these studies produced conflicting
results [24–28]. However, two recent meta-analyses with a specific pHF-W demonstrated its
efficacy at reducing the risk of AD development [2,29]. Yet, the mechanism by which pHF-
W may reduce AD risk is highly debated. In a context where AD is a skin disease before
being a food allergy disease, unappreciated mechanisms, beyond a decreased exposure to
milk allergen and oral tolerance induction [3,18], may play a role in the clinical reduction
in AD risk observed with specific pHF-W as compared to intact protein infant formula (IF).
Overall, the mounting knowledge involving the skin barrier hypothesis in AD etiology,
and the recent demonstration that pHF-W may be effective in reducing the risk of AD in
the general infant population with a similar effect size as at-risk for allergy infants [29],
led to the hypothesis that pHF-W efficacy may be linked to a milk allergen-independent
mechanism such as improvement in skin barrier function.

Here, we describe a pre-clinical model that was employed to test the efficacy of a
specific pHF-W on skin barrier function and allergen-specific immunoglobulin levels. We
used a non-milk-related allergen (Aspergillus fumigatus, Af) to dissociate the benefit that
pHF-W may have on milk-specific oral tolerance induction from potentially beneficial
effects on skin barrier function. We demonstrated that in addition to inducing oral tol-
erance [4], pHF-W can also improve skin barrier function, thereby protecting the skin
from non-milk-related entries of allergens. Our findings may explain one of the possible
mechanisms by which pHF-W may prevent AD development in infants.

2. Materials and Methods
2.1. Murine Model for Skin Barrier Impairment in Neonatal Mice

The animal study protocol VD3059 was approved by the Service Vétérinaire du Canton
de Vaud, Switzerland. Briefly, ten-day-old neonatal mice (BALB/cByJ JAX TM strain from
Charles River, L’Arbresle, France) were exposed to Af protein extract via a skin patch on
the back of the animal (Figure 1).
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either intact protein formula (IF), partially hydrolysed formula (pHF-W), hydrolysate, or the lipid 
blend. Mice receiving nutritional interventions were all exposed to Af. The tissues were harvested 
on day 32. 

Each patch was applied for 5 consecutive days before removal. In total, 3 patches 
were applied with 3 days between each patch exposure, beginning 10 days after birth. The 
skin exposure was performed under isoflurane (Baxter, Volketswil, Switzerland) anaes-
thesia. The hair on the back skin was clipped closely with an electric clipper when needed 
and the skin was cleaned with 70% isopropanol solution (VWR, Nyon, Switzerland). 
Amounts of 20 µL (patch-1), 50 µL (patch-2) and 100 µL (patch-3) of Af protein extract 
(Greer Laboratories, Lenoir, NC, USA) at 2 mg/mL were applied in the sensitised groups 
(S.) and NaCl 0.9% (Merck, Zug, Switzerland) was applied in the non-sensitised (N.S.) 
group on a 0.3 cm2 (patch-1), 0.5 cm2 (patch-2) and 1 cm2 (patch-3) patch of sterile gauze 
(Hartmann Dermaplast, Chatenois, France) secured on the skin with a bio-occlusive, wa-
terproof transparent dressing (Systagenix Bioclusive, San Antonio, Texas, USA) and a 
Band-Aid (Mefix, Wasquehal, France). Mice were challenged intranasally under isoflu-
rane anaesthesia on day 30 with 100 µg of Af diluted in 0.9% NaCl and euthanatised on 
day 32. It is important to note that our models do not involve tape stripping or other meth-
ods of skin abrasion. The clipping and isopropanol skin preparation have been shown, by 
us and others, to be enough in adult mice to induce systemic sensitisation with Af, house 
dust mite extract, and beta-lactoglobulin (BLG) ([19,20,30] and data not shown). 

2.2. Nutritional Intervention 
Neonate mice were fed from the first day of life to their 11th day with supplementa-

tion of 10 to 100 µL of IF (Beba Optipro1, NWSB003, Nestlé, Switzerland); pHF-W (Beba-
HA1, NWHSB 228, Nestlé Switzerland), hydrolysate, or lipid blend (Nestlé Factory, Bis-
senhofen, Germany), or plain water (control groups N.S. and S.), daily. The hydrolysate 
and lipid blend were composed of the exact ingredients used in the preparation of the 
pHF-W infant formula. Ingredients were prepared in water and based on the protein con-
tent and lipid content of pHF-W. This was in addition to the mother’s breast milk. On day 
11, the pups received the formula ad libitum. At weaning, the pups were separated from 
their mothers, and formulas were given in a drinking bottle and changed every day. For-
mulas (IF and pHF-W) were prepared according to the manufacturer’s recommended re-
constitution dose (at the concentration of 146 mg/mL). The mothers were fed a milk-free 
diet. 

2.3. Transepidermal Water Loss (TEWL) 
TEWL was measured in the patch area once a day, 1 to 3 h after patch removal with 
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Figure 1. Atopic dermatitis model in neonatal mice and nutritional intervention: (a) neonatal mice
were exposed to Af protein extract epicutaneously with 3 consecutive patches. Mice were challenged
intranasally with Af day 30. The nutritional intervention was performed over the experiments with
either intact protein formula (IF), partially hydrolysed formula (pHF-W), hydrolysate, or the lipid
blend. Mice receiving nutritional interventions were all exposed to Af. The tissues were harvested on
day 32.

Each patch was applied for 5 consecutive days before removal. In total, 3 patches were
applied with 3 days between each patch exposure, beginning 10 days after birth. The skin
exposure was performed under isoflurane (Baxter, Volketswil, Switzerland) anaesthesia.
The hair on the back skin was clipped closely with an electric clipper when needed and
the skin was cleaned with 70% isopropanol solution (VWR, Nyon, Switzerland). Amounts
of 20 µL (patch-1), 50 µL (patch-2) and 100 µL (patch-3) of Af protein extract (Greer Lab-
oratories, Lenoir, NC, USA) at 2 mg/mL were applied in the sensitised groups (S.) and
NaCl 0.9% (Merck, Zug, Switzerland) was applied in the non-sensitised (N.S.) group on a
0.3 cm2 (patch-1), 0.5 cm2 (patch-2) and 1 cm2 (patch-3) patch of sterile gauze (Hartmann
Dermaplast, Chatenois, France) secured on the skin with a bio-occlusive, waterproof trans-
parent dressing (Systagenix Bioclusive, San Antonio, Texas, USA) and a Band-Aid (Mefix,
Wasquehal, France). Mice were challenged intranasally under isoflurane anaesthesia on
day 30 with 100 µg of Af diluted in 0.9% NaCl and euthanatised on day 32. It is important
to note that our models do not involve tape stripping or other methods of skin abrasion.
The clipping and isopropanol skin preparation have been shown, by us and others, to be
enough in adult mice to induce systemic sensitisation with Af, house dust mite extract, and
beta-lactoglobulin (BLG) ([19,20,30] and data not shown).

2.2. Nutritional Intervention

Neonate mice were fed from the first day of life to their 11th day with supplementation
of 10 to 100 µL of IF (Beba Optipro1, NWSB003, Nestlé, Switzerland); pHF-W (Beba-HA1,
NWHSB 228, Nestlé Switzerland), hydrolysate, or lipid blend (Nestlé Factory, Bissenhofen,
Germany), or plain water (control groups N.S. and S.), daily. The hydrolysate and lipid
blend were composed of the exact ingredients used in the preparation of the pHF-W infant
formula. Ingredients were prepared in water and based on the protein content and lipid
content of pHF-W. This was in addition to the mother’s breast milk. On day 11, the pups
received the formula ad libitum. At weaning, the pups were separated from their mothers,
and formulas were given in a drinking bottle and changed every day. Formulas (IF and
pHF-W) were prepared according to the manufacturer’s recommended reconstitution dose
(at the concentration of 146 mg/mL). The mothers were fed a milk-free diet.

2.3. Transepidermal Water Loss (TEWL)

TEWL was measured in the patch area once a day, 1 to 3 h after patch removal with
a DermaLab Combo (Cortex Technology, Hadsund, Denmark) on day 14 to 17, day 21 to
24, and 28 to 32 for the neonate mice model (Figure 1). TEWL is used to characterise skin
barrier function. It is the amount of water that passively evaporates through the skin due
to the water vapor pressure gradient on both sides of the skin barrier [31].
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2.4. Broncho-Alveolar Lavage (BAL)

BAL fluids were collected in 1 mL of phosphate-buffered saline solution (PBS) (Merck
& Cie, Schaffaussen, Switzerland) containing 0.2% Bovine Serum Albumin (BSA) (Merck &
Cie Schaffaussen, Switzerland). BAL fluids were centrifuged for 10 min at 2000 rpm at 4 ◦C.
Cell pellets were suspended in 150 µL of PBS and 0.2% BSA and transferred on slides by
cytospin for 5 min at 500 g. Cells were stained using the DIFF Quick staining kit (Medion
Diagnostics, Miami, FL, USA) following the manufacturer’s instructions to differentiate
cell types and quantified.

2.5. Total and Af-Specific IgE and IgG1

Total IgE levels were quantified by ELISA (BD Biosciences, Allschwil, Switzerland)
following the manufacturer’s protocol. Specific IgE and IgG1 levels were quantified as
previously described [30].

2.6. Human Keratinocytes Cell Culture

A pool of 4 x 104 primary human epidermal keratinocytes (CELLnTec, Bern, Switzer-
land) were seeded in a 48-well plate (Corning, VWR, Nyon, Switzerland) in CnT57 medium
(CELLnTec, Bern, Switzerland) supplemented with 10% serum. When keratinocytes
reached 90% confluence, cells were treated with the hydrolysate at 1 µg protein/mL.
One hour after the addition of the ingredient, 50 ng/mL of interleukin-13 (IL-13) (Pepro-
tech, London, UK) was added and incubated at 37 ◦C with 5% CO2 for 48 h. An identical
volume of medium was added to the non-IL-13 primed cultures.

2.7. Quantitative Gene Expression Levels by Real-Time PCR

Total RNA was extracted from mouse skin (epidermis, dermis, adipose and muscle
layers) and in vitro stimulated keratinocytes with the RNeasy mini kit (Qiagen, Hom-
brechtikon Switzerland) according to the manufacturer’s instructions. Reverse transcrip-
tion was performed on 0.5 µg of total RNA by using the Qscript CDNA supermix kit
(Quantabio, VWR, Nyon Switzerland) according to the manufacturer’s protocol. Taq-
man probes from Applied Biosystem (Basel, Switzerland) were used to quantify Mouse
aquaporin-3 (Mm01208559_m1), Human Filaggrin (Hs00856927_g1), Human Aquaporin-
11 (AQP11: Hs00542681_m1), Human Involucrin (Hs00846307_s1), Human Calpain-14
(Hs00871882_m1), Human Desmoglein-1 (Hs00355084_m1) and Human Eotaxin-3 (CCL-26;
Hs00171146_m1). Quantification was normalised with the mean of 2 housekeeping genes
(β-actin (Hs01060665_m1) and Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
(Hs02758991_m1)) for human keratinocytes, and 3 housekeeping genes (hypoxanthine
phosphoribosyl-transferase (Hprt, Mm01545399_m1), Gapdh (Mm99999915_g1) and β-actin
(Mm00607939_s1) (Applied Biosystem)) for mouse skin experiments. Real-time PCR was
performed on ABI PRISM 7900HT (Applied Biosystem). Calculations were performed on
the cycle threshold (Ct) values. The Ct value for each gene was corrected by the Ct mean of
the two or three housekeeping genes. The results were calculated as a relative expression
and expressed as arbitrary units using the formula 2−∆Ct × K where K is a 103 factor.

2.8. Statistics

Preclinical parameters were described by the median (interquartile range) or median
+ standard error (Rouseeuw robust estimator) and were analysed using non-parametric
statistics. The exact Wilcoxon rank-sum test was applied to determine whether the specified
comparisons were statistically significantly different. One-sided p-values were provided
when Af-exposed (S.) mice were compared to non-exposed mice (i.e., sensitisation model:
S. > N.S.). Otherwise, two-sided p-values were provided. Probability values of less than
5% were considered statistically significant (p < 0.05). The analyses were performed using
GraphPad Prism (GraphPad Software, San Diego, CA, USA) and R 3.4.1 or higher (R
core Team, Vienna, Austria). Values from in vitro data are expressed as mean ± SD and
statistical analyses were performed using Welch’s t-test.
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3. Results
3.1. pHF-W Reduces TEWL and Total IgE Levels Following Af Skin Exposure in Neonatal Mice

To test whether pHF-W could modulate skin barrier function, we examined the effect
of pHF-W in the Af-exposure model. TEWL showed significant differences in the Af -
exposed (S.) group as compared to the N.S. group receiving a patch with saline (17 (13–22)
vs. 11 (7–15) g/m2/h; p = 0.010) after the third patch (Figure 2a).
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Figure 2. Effect of pHF-W and IF on TEWL and total IgE levels and lung inflammation in neonatal mice following exposure
to Af: (a) TEWL, (b) total IgE, and (c) the numbers of neutrophils and eosinophils in the bronchoalveolar lavage (BAL)
following an Af challenge are shown. Data are expressed as median ± (interquartile range). N = 8 for the N.S. group of
mice non-exposed to Af (open circle) and S. group exposed to Af (black square), n = 6 for S.-IF group exposed to Af and
supplemented with IF (black circle) and n = 8 for S. −pHF-W group exposed to Af and supplemented with pHF-W (black
triangle). N.S., Non-sensitised, S., Sensitised, S.−IF, Sensitised supplemented with intact protein infant formula, S. −PHF-W,
sensitised supplemented with partially hydrolyzed formula.

In this context, pHF-W significantly reduced TEWL compared to the non-supplemented
sensitised (S.) mice (17 (13–22) vs. 10 (9–14) g/m2/h; p = 0.010) (Figure 2a). Importantly,
over the entire time course of the experiments, the neonatal mice did not develop any
visible skin symptoms across all groups. Total IgE was significantly increased in the group
exposed to Af as compared to the N.S. group (1.876 (1.278–3.562) vs. 0.483 (0.375–0.592)
µg/mL; p < 0.001) (Figure 2b). Oral pHF-W administration significantly reduced the total
IgE levels (0.636 (0.454–1.307) vs. 1.876 (1.278–3.562) µg/mL; p = 0.007) when compared to
the non-supplemented S. group (Figure 2b). The anti-Af -specific IgE were mostly below
quantifiable levels in this model. The Af -specific IgG1 levels were increased in the model,
supporting some level of specific sensitisation, but were not significantly decreased by the
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formulas (data not shown). None of the formulas were not able to decrease the Af -induced
allergic airway cell infiltrates in this model (Figure 2c) based on eosinophil numbers in
the lungs. Interestingly, a slight decrease in TEWL and total IgE was observed with IF, but
the effect was consistently not significant in the different experiments and the effect-size
was always smaller than the one of pHF-W, suggesting that pHF-W significantly decreases
TEWL and the total IgE, while IF does not. Taken together, these data suggest that, in this
model, oral pHF-W administration has a significant effect on skin barrier function.

3.2. TEWL Reduction Occurs following Oral Hydrolysate Supplementation in Neonatal Mice

Since we were able to identify that pHF-W could decrease TEWL, we investigated
which components in the formula were sufficient to provide this benefit. The lipid blend
and the hydrolysed proteins (hydrolysate) are the two main differences between IF and
pHF-W that could explain this observation. Therefore, we tested whether supplementation
with only the hydrolysate or the lipid blend could influence TEWL in the neonatal mice.
The mice supplemented with the hydrolysate had significantly lower TEWL than the S.
group (11 (9–12) vs. 18 (16–20) g/m2/h; p = 0.007) and the oral lipid blend exposed group
(11 (9–12) vs. 15. (13–18) g/m2/h; p = 0.027) (Figure 3a).
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Figure 3. Effect of supplementation with hydrolysate and lipid blend on TEWL in neonatal mice
following Af-exposure. (a) TEWL was assessed at day 30 and (b) total IgE was quantified. Data
are expressed as median ± interquartile ranges. Af -exposed animals (S.) received hydrolysate
(empty diamond) or the lipid blend (empty triangle), from birth to day 32. N = 7 for S., n = 10 for
S.—hydrolysate, and n = 8 for S.—lipid blend.

The hydrolysate supplementation (S.—hydrolysate) also led to significantly lower
total IgE than in the S. group (1.2 (0.5–1.9) vs. 0.7 (0.4–0.9) ug/mL; p = 0.035) (Figure 3b).
Even though the lipid blend was sufficient to decrease the total IgE, the effect was not
significant. These results imply that the partially hydrolysed whey hydrolysate is an active
component in pHF-W that beneficially modulates the skin barrier function in neonatal
mice.

3.3. The Expression of Aquaporin-3 Gene Is Modulated by Oral Hydrolysate Supplementation

The increased expression of murine aquaporin 3 (Aqp3) has been previously associated
with increased TEWL and skin hydration [32]. In our neonatal mouse model, Aqp3 was
significantly decreased in the group supplemented with hydrolysate compared to the
non-supplemented Af-exposed mice (Figure 4). Taken together, these results suggest that
the pHF-W and the hydrolysate may contribute to the skin barrier function and water
transport in vivo by specifically and differentially regulating the aquaporin-3 gene.
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Figure 4. Effect of supplementation with the hydrolysate on aquaporin-3 gene expression in the
skin. Murine aquaporin-3 mRNA expression level was measured at the site of Af -exposure. Data are
expressed as median ± interquartile range with n= 8 for non-supplemented mice (S.) and n = 7 for
the mice supplemented the hydrolysate (S.—hydrolysate).

3.4. The Expression of Aquaporin Genes Is Modulated by the Hydrolysate In Vitro

The direct effect of the hydrolysate on primary human skin keratinocytes was then
investigated. AQP3 and AQP11, filaggrin (FLG), involucrin, desmoglein, calpain-14,
small proline-rich protein (SPRR), thymic stromal lymphopoietin (TSLP), and C-C Motif
Chemokine Ligand 26 (CCL26) mRNA expression were measured in human primary skin
keratinocytes in the presence or absence of IL-13 stimulation in vitro. We observed that
the two members of the Aquaporin gene family were differentially decreased when non-
stimulated cells were exposed to the hydrolysate (Figure 5a,b). For AQP3, this decrease was
only observed in non-stimulated keratinocytes following exposure with the hydrolysate
(Figure 5a) (p = 0.042).

In IL-13-stimulated keratinocytes, the AQP11 mRNA levels increased (7-fold) and
a significant decrease following exposure to the hydrolysate (p = 0.034) as compared to
medium alone (Figure 5b) was observed. Even though filaggrin and SPRR mRNA expres-
sion was consistently lower (Figure 5c), and CCL26 and Calpain-14 mRNA expression was
consistently greater in the IL-13-stimulated cells, it was not possible to identify consistent
effects of the hydrolysate on these genes (data not shown). These results suggest that the
hydrolysate may have a direct effect on aquaporin 3 and 11 gene expressions.
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Figure 5. Effect of supplementation with IF, pHF-W, and the hydrolysate on skin barrier gene expression in vitro in primary
human keratinocytes. Human (a) aquaporin-3, (b) aquaporin-11 (c) filaggrin mRNA levels were measured in primary
human keratinocytes stimulated or not with IL-13. Bar charts represent the mean of 3 triplicates with SD. In vitro effects
were repeated in 3 separate experiments.

4. Discussion

Historically, the decreased exposure to intact protein antigens in milk through protein
hydrolysation and the induction of oral tolerance are the two accepted mechanisms by
which pHF-W reduces the risk of developing AD [3,33]. Prior studies suggest that reduced
allergenicity may be a driver for the pHF-W effect in reducing the risk of AD [34] compared
to IF. Nonetheless, the observation that some extensively hydrolysed formulas [35] or
formula manufactured with another protein source such as soy [36] are not efficacious
at reducing AD risk suggests that the avoidance of milk allergens is not sufficient to
prevent AD. Secondly, it has been demonstrated that this pHF-W induces oral tolerance
to the allergen BLG in milk sensitisation models [3,18], and prevents secondary allergic
inflammation. However, intact protein (and thus the IF tested here) can induce oral
tolerance to BLG using in vivo models; yet, in clinical settings, IF does not prevent the
development of AD in infants [29,35,37]. The specific mode of action of pHF-W on skin
barrier protection, in a model not dependent on a milk allergen, was thus the next logical
hypothesis to test.

While the etiology of AD is still largely unknown, the evidence is mounting that a
skin barrier defect precedes AD symptoms [5,9,10,12], and consecutively precedes food
allergy development [38]. Both dry skin and increased TEWL in infants are associated with
an increased risk of AD [14,39,40]. Since TEWL is a well-accepted indicator of skin barrier
function in adults and babies and a marker for skin dehydration, it was selected as the
most meaningful parameter for barrier status. The consistency of the data over multiple
experiments confirmed the relevance of TEWL as the chosen marker. The effect of pHF-W
or the hydrolysate on TEWL was not large but was consistently reproduced and significant.
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To our knowledge, this is the first demonstration of a novel mechanism, unrelated
to milk-specific oral tolerance induction, linking in vivo pHF-W to a skin benefit. Both
pHF-W and its hydrolysate were able to reduce TEWL in this Af model. The beneficial
modulation of the skin barrier seems to be attributable to the whey hydrolysate and
potentially the peptides that compose it. It should be stressed that while our data suggest
that this model is relevant for a reduction in risk markers such as TEWL, our model was
not optimised for studying the prevention of allergic skin inflammation. Indeed, we were
unable to develop a neonatal model in which skin symptoms of AD were prevented as
a secondary effect following improved skin barrier function. Employing these models,
AD symptoms were either too severe to be modulated in adult mice (data not shown) or
TEWL dysregulation was insufficient to induce allergic skin inflammation in neonatal mice
even with an additional Af skin exposure. The immature immune system in the neonatal
mice [41] at the beginning of the experiment may explain why only low levels of Af -specific
IgE were seen in our model. Altogether, our results with Af allergen confirm that Af has
no predictive cross-reactivity with milk and that the benefit of the hydrolysed formula on
the skin is distinct from an oral tolerance mechanism. Finally, the absence of association
with a decrease in Af -specific sensitisation is in line with some of the human clinical data
evidencing a reduction in AD risk but no change in milk sensitisation, allergic sensitisation,
or food allergy prevalence [4].

Abnormal skin barrier function has been associated with the modulation of multiple
genes [42]. Given the relationship between Th2 inflammation and skin barrier response, and
the observation that IL-13 acts on keratinocytes in culture and skin to modify the expression
of a number of these genes [43], we assessed the effect of formula on the expression of
several barrier-related proteins in keratinocyte cultures in the presence and absence of
IL-13 priming. Since filaggrin loss-of-function mutations were first described by Palmer
et al. [5] as a major predisposing factor for AD, filaggrin has probably received the most
attention for its contributions to skin barrier function, dysfunction, and TEWL [44–51]. As
reported previously [43,52] and confirmed here, filaggrin expression is down-regulated in
human IL-13 primed keratinocytes. However, in the present experiments, we were unable
to discern the role for pHF-W or protein hydrolysate in modulating filaggrin expression.
Additional analysis of filaggrin in the mouse experiments was not pursued as it is down-
regulated in the atopic condition in humans but it is generally overexpressed in diseased
mice [43,53]. This leads to difficulties in interpreting the murine data on filaggrin in the
context of human skin diseases or skin barrier function.

Of the genes studied, aquaporins were likely candidates linked to TEWL as they
facilitate the transfer of water. AQP3 is the main aquaporin in the skin, and functions as
a water/glycerol channel [54]. AQP3 knockout mice exhibit reduced glycerol and water-
holding content of the epidermis and delayed barrier recovery following the disruption of
the stratum corneum [55]. In rats, the distribution of AQP3 expression has been associated
with water loss changes occurring during skin maturation [32] and in two AD mouse
models, increased AQP3 and TEWL were observed [55,56]. Furthermore, in both AD [57]
and psoriasis [58], the disturbed regulation of AQP3 has been noted and is possibly related
to skin dryness and increased TEWL in these diseases. The murine Aqp3 mRNA expression
was modulated in mice following hydrolysate supplementation. A reduction in human
AQP3 mRNA expression was also observed in vitro following pHF-W or hydrolysate
stimulation. AQP11 is essential for the proximal tubular function and has been described
to maintain a slow but constant water movement across the membrane [59]. The skin
and kidney are both involved in body water regulation. AQP11 mRNA expression was
previously identified in primary keratinocytes [43]. Here, we show for the first time that
AQP11 is up-regulated (7-fold) by IL-13 and its expression is significantly decreased by the
hydrolysate tested in vitro. The suppression of the increase in AQP11 in IL-13 stimulated
keratinocytes suggests that regulation of aquaporin channels may differently modulate
water exchange during inflammation and upon hydrolysate supplementation. Of course,
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the in vitro results must be taken with caution considering that hydrolysate components
were exposed directly onto primary human keratinocytes.

Most prevention studies with pHF-W have been performed in infants at increased
allergy risk who had at least one first-degree relative with a history of allergy or atopic
dermatitis [2]. Data generated in unselected, general-population infants show a similar ef-
fect size for decreased risk of developing AD following supplementation with pHF-W [29].
The allergic family history is thus not required for the effect, suggesting that nutritional
intervention with pHF-W may counteract environmental factors. Interestingly, similar
effects have been shown using skin ointment to hydrate and protect the skin from envi-
ronmental exposure and dehydration [60]. As such, strategies aiming at reinforcing skin
barrier function may be effective and our data suggest that nutritional intervention with
pHF-W may be a viable alternative for strengthening the skin barrier by reducing TEWL.
Further support for beneficial cutaneous effects by oral supplementation with hydrolysed
protein can be found in the skincare field [61–63]. Several clinical trials have shown that
oral supplementations with peptides from collagen were able to improve skin quality and
hydration in adults based on biophysical measurement methods, including corneometry
(skin conductance), elasticity, and TEWL, among others [61,62]. The in vivo improvement
in the quality and quantity of collagen and improved skin hydration was underscored by a
direct effect of collagen peptides on the glycosaminoglycan levels and collagen content in
human skin explants [61]. Additionally, in a skin Ultraviolet B (UVB) irradiation model
in vivo, whey peptides were shown to prevent type IV collagen degradation, angiogenesis,
proliferation, and DNA damage [64]. Taken together, these results on the oral supplementa-
tion of hydrolysed collagen from multiple sources, including cattle, pigs, and fish, and our
preclinical model results with partially hydrolysed whey protein suggest the possibility
that specific or non-specific bioactive peptides provided orally can influence skin barrier
and hydration properties. Yet, the mechanisms behind the benefit of oral peptides for
the skin are largely unknown and the anti-inflammatory and anti-oxidative properties of
whey peptides and their influence on inflammatory mediators [65], or their effect on the
microbiota may also play a role in lessening barrier damage due to external stimuli.

5. Conclusions

In conclusion, the partially hydrolysed whey formula examined in this study has been
shown to have reduced allergenicity [3], and to induce oral tolerance [3] in rodents. Here,
we demonstrated a novel mechanism by which partially hydrolysed whey formula and its
hydrolysate can reduce TEWL, modulate barrier-related gene expression notably AQP3
gene, and thus possibly improve skin barrier function in an Af model. We showed that
the hydrolysate was responsible for the effect in vivo and that the direct regulation of gene
expression by the whey hydrolysate on primary epithelial cells is possible. Further studies
are warranted to better understand the cellular and molecular mechanisms involved in the
protection of skin barrier dysfunction and AD development.
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