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Abstract
Artificial intelligence and machine learning in orthopaedic surgery has gained 
mass interest over the last decade or so. In prior studies, researchers have 
demonstrated that machine learning in orthopaedics can be used for different 
applications such as fracture detection, bone tumor diagnosis, detecting hip 
implant mechanical loosening, and grading osteoarthritis. As time goes on, the 
utility of artificial intelligence and machine learning algorithms, such as deep 
learning, continues to grow and expand in orthopaedic surgery. The purpose of 
this review is to provide an understanding of the concepts of machine learning 
and a background of current and future orthopaedic applications of machine 
learning in risk assessment, outcomes assessment, imaging, and basic science 
fields. In most cases, machine learning has proven to be just as effective, if not 
more effective, than prior methods such as logistic regression in assessment and 
prediction. With the help of deep learning algorithms, such as artificial neural 
networks and convolutional neural networks, artificial intelligence in 
orthopaedics has been able to improve diagnostic accuracy and speed, flag the 
most critical and urgent patients for immediate attention, reduce the amount of 
human error, reduce the strain on medical professionals, and improve care. 
Because machine learning has shown diagnostic and prognostic uses in 
orthopaedic surgery, physicians should continue to research these techniques and 
be trained to use these methods effectively in order to improve orthopaedic 
treatment.
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Core Tip: With the mass interest artificial intelligence and machine learning have 
garnered in orthopaedic surgery, a literature review of recent studies is necessary. By 
demonstrating the utility of various machine learning algorithms across various subspe-
cialties of orthopaedic surgery, researchers should encourage physicians to understand 
the benefits of machine learning techniques and learn how to effectively incorporate 
these elements into their own practice to improve patient care. This clinical review 
outlines the concepts of machine learning and summarizes current and future 
orthopaedic applications of machine learning in risk assessment, outcomes assessment, 
imaging, and basic science fields.
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INTRODUCTION
The application of artificial intelligence (AI) has taken our world by storm. AI has been 
used in many aspects of modern life such as recommendation systems used by Netflix, 
YouTube, and Spotify, search engines like Google, and social-media feeds like 
Facebook and Twitter[1]. Additionally, AI has entered the realm of medicine. For 
example, there is substantial evidence that AI performs on par or better than humans 
in various tasks such as analyzing medical images as well as correlating symptoms 
and biomarkers from electronic medical records with the characterization and 
prognosis of disease[2]. Specifically in orthopaedic surgery, certain subfields of AI 
have been successfully implemented to improve clinical decision making and patient 
care[3].

To better understand the utility of AI in orthopaedic surgery, some terms must first 
be defined. AI started as a theory that computers could eventually learn to perform 
tasks through pattern recognition with minimal to no human involvement[1,4]. Today, 
the definition has been adapted to include the application of algorithms that provide 
machines the ability to solve problems that traditionally required human intelligence
[1,5]. AI, which is often used as an umbrella term, encompasses subfields such as 
machine learning (ML), which is defined as a series of mathematical algorithms that 
enable the machine to “learn” the relationship between the input and output data 
without being explicitly told how to do so[3]. Furthermore, machine learning contains 
the subfield of deep learning (DL) which can be used to find correlations without 
labelling, that are too complex to render using previous machine learning algorithms, 
by processing input data through artificial neural networks[6,7].

In the field of orthopaedic surgery, ML has been used for different applications such 
as fracture detection, bone tumor diagnosis, detecting hip implant mechanical 
loosening, and grading osteoarthritis (OA)[3]. As time goes on, the utility of AI and 
ML in orthopaedic surgery continues to grow and expand. The purpose of this review 
is to provide an understanding of the concepts of ML and a background of current and 
future orthopaedic applications of ML in risk assessment, outcomes assessment, 
imaging, and basic science fields.

WHAT IS ML?
ML focuses on developing automated computer systems that predict outputs through 
algorithms and mathematics[8,9]. Classic or conventional ML algorithms that are 
meant to extract knowledge from more tabulated data sets include decision trees, 
random forests, nearest neighbors, linear regression, support vector machine (SVM), 
and k-means clustering[3,10]. On the other hand, more recently developed DL 
algorithms and artificial neural networks (ANN) are used to extract knowledge from 
imaging data sets. Regardless of which algorithms are used, ML requires software to 
“learn” patterns or relationships from sets of empirical data. This “learning” can be 
achieved through three different means: supervised learning, unsupervised learning, 
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and reinforcement learning[11-13].

Types of ML
Supervised learning, also termed inductive learning, is the most prevalent type of ML 
and occurs when data is labeled to tell the machine exactly what patterns it should 
look for[14]. For example, if an ML algorithm is used to detect arthritis on a knee 
radiograph, the arthritic features must be manually identified and labeled by a human 
along with the label of whether the radiograph is an example of an arthritic or normal 
knee[1]. On the other hand, unsupervised learning, also termed deductive or analytic 
learning, occurs when the data is not labeled and the machine looks for patterns[14] 
(Figure 1). In continuing with the last example, the arthritic features in unsupervised 
learning would not be labeled and therefore the algorithm relies on self-organization
[1]. Lastly, reinforcement learning acts more like a reward or punishment system. 
Unlike supervised learning which makes data available at the beginning of the task, 
reinforcement learning uses feedback about the correctness after the task has been 
completed[15]. Usually, supervised learning is used because it requires the least 
amount of data and thus the least amount of time to learn.

DL and ANN
DL is modeled after the human brain’s neural connections via complex and layered 
algorithms termed ANN[1,14]. The complex layering allows the algorithm to learn 
more complex and subtle patterns compared to more simple one or two layer 
networks[5,16,17]. Two known models of deep learning within the ANN include 
convolutional neural network (CNN) and recurrent neural network. The main type, 
CNN, has two main functions: (1) to extract features from imaging; and (2) classi-
fication[3]. The CNN extraction feature relies on the idea that filters learned on a small 
subset of a larger image to detect certain features can also be applied to other parts of 
the larger image in order to detect the same feature at different locations[3]. The CNN 
starts by searching for simple features in an image and then pools these simple 
features together to extract more complicated high-level features[3,18] (Figure 2). For 
the classification feature, the CNN acts as a classic neural network that combines all 
the high-level feature maps (generated from the aforementioned filters) from the 
deepest convolution layer and uses them to output a classification score[3]. During 
training, the CNN is presented with a series of images that have known classifications; 
the CNN must make a classification decision for each image and then calculate the 
classification error by comparing its classification decision with the known classi-
fication of the image. Through this training process, the CNN is able to update its 
learnable parameters and make classification decisions on images never before seen[3].

DL algorithms have been successfully applied to complex problems to improve 
diagnostic accuracy and speed, flag the most critical and urgent patients for immediate 
attention, reduce the amount of human error, reduce the strain on medical profes-
sionals, and improve orthopaedic care[3]. Specifically in orthopaedic surgery, the 
greatest application of DL is in image classification.

RISK ASSESSMENT
While ML has traditionally been used in medicine for rule-based approaches such as 
safe drug prescription, recent use of ML and DL in orthopaedic surgery has focused on 
clinical decision support such as risk assessment[14,19]. Currently, logistic regression 
is one of the most commonly used methods for identifying risk factors predictive of 
developing complications; however, in comparison, ANN allows for the identification 
of nonlinear patterns that make predictions more accurate[20-22].

Throughout orthopaedic literature, the application of ML and DL in risk assessment 
for various complications has been studied extensively (Table 1). For example, in Kim 
et al[23], ML models were used to predict mortality, venous thromboembolism, cardiac 
complications, and wound complications following posterior lumbar fusion. The ML 
models outperformed the American Society of Anesthesiologists (ASA) scores proving 
that ML can be more effective at predicting complications. Similarly, in Harris et al
[24], ML was used to predict 30 day mortality and morbidity after total joint arthro-
plasty. While the ML model was found to be more accurate than standard models for 
cardiac complications and mortality, it was less effective for rarer complications such 
as re-operation and deep infection. More recently, Gowd et al[25] used supervised ML 
models to predict postoperative outcomes following total shoulder arthroplasty. ML 
algorithms outperformed the standard model for predicting adverse events, 
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Table 1 Summary of machine learning for orthopaedic surgery risk assessment

Ref. Conclusion

Bevevino et al
[26]

ANN capable of accurately estimating the likelihood of amputation

Gowd et al[25] Supervised ML outperformed ASA classification models in predicting adverse events, transfusion, extended length of stay, surgical site 
infection, return to operating room, and readmission

Harris et al[24] ML was moderately accurate in predicting 30-d mortality and cardiac complications after elective primary TJA

Kim et al[23] ANN more accurate than ASA in predicting mortality, VTE, cardiac and wound complications following posterior lumbar spine fusion

ML: Machine learning; ANN: Artificial neural network; ASA: American Society of Anesthesiologists; TJA: Total joint arthroplasty; VTE: Venous 
thromboembolism.

Figure 1 A visual illustration of an unsupervised algorithm[11]. Reused with permission. Citation: Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine 
learning in medicine: a practical introduction. BMC Med Res Methodol 2019; 19: 64.

Figure 2 Schematic diagram of a basic convolutional neural network architecture[18]. Reused with permission. Citation: Phung VH, Rhee EJ. A 
High-Accuracy Model Average Ensemble of Convolutional Neural Networks for Classification of Cloud Image Patches on Small Datasets. App Sci 2019; 9: 4500.

transfusion, extended length of stay, surgical site infection, return to the operating 
room, and readmission. Furthermore, in risk assessment related to orthopaedic 
trauma, Bevevino et al[26] used a DL model to predict the likelihood of amputation 
based on 155 combat-related open calcaneal fractures and compared it to a standard 
logistical regression model. Twenty-six features with a proven or theoretical 
association with successful or unsuccessful limb salvage were analyzed; some of the 
features included were various patient demographics, mechanism of injury, wound 
size and location, and fracture type. Once again, the DL method was 30% more 
accurate and better suited to clinical use than the standard logistical regression model.

The orthopaedic literature shows that ML continuously outperforms more 
traditional legacy risk-stratification measures such as ASA classification, Charlson 
Comorbidity Index, and modified 5-item frailty index, in predicting complications 
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following a variety of orthopaedic procedures as well as identifying safe candidates 
for specific orthopaedic procedures like anterior cervical fusion and discectomy[25,27-
29]. In all of the studies outlined above, the ML and DL algorithms outperformed the 
standard models indicating a higher level of accuracy for risk assessment[23-26]. 
Furthermore, comorbidity indices have previously been used to gauge perioperative 
risk, evaluate the need for postoperative admission, and determine prophylactic 
treatments[30-32]. With continued validation, ML algorithms may replace this 
paradigm. Whereas logistical regression models have typically been used for many 
years to predict risk, survival, mortality, and morbidity, the application of ML and DL, 
particularly in predicting the risk of complications following spine surgeries, joint 
surgeries, and orthopaedic trauma, shows much promise[14].

OUTCOMES ASSESSMENT
Over the last twenty years or so, the ability to predict outcomes has positively 
impacted medicine and patient care. From risk scores that guide anticoagulation 
(CHADS2) to the use of cholesterol medications (ASCVD), data-driven clinical 
predictions have become routine in medical practice[33]. Because ML has the ability to 
analyze large data sets, the accuracy of prediction significantly improves[33]. 
Specifically in orthopaedic surgery, recent literature has shown the utility of ML 
algorithms in outcomes assessment for orthopaedic oncology survival, patient-
reported outcome measures (PROMs), hospital length of stay, and cost (Table 2).

When compared to ML algorithms, current prognostication models for survival 
following metastatic spinal disease are not built for estimation of short-term survival 
(30 to 90 d) and some studies even suggest a lack of accuracy in classic models[34-37]. 
In Janssen et al[38], authors compared a boosting ML algorithm to a classic scoring 
system and nomogram at 30 d, 90 d, and 1 year to study survival estimates in patients 
with long bone metastases. In all training data sets, the boosting ML algorithm was 
found to be far superior at each time point[38]. Paulino Pereira et al[37] conducted a 
similar study where they compared the boosting ML algorithm, nomogram, and the 
classic scoring system to predict survival in metastatic spine disease. In this study, the 
boosting ML algorithm was comparable to nomogram in its predictive ability for 
testing data sets. Thio et al[39] and Bongers et al[40] used ML methods on patient 
demographics, tumor characteristics, treatment, and outcome data to create an ML 
algorithm that could predict 5 year survival rate in patients with chondrosarcoma[39,
40]. In the latter study, the authors found that the ML algorithm overestimated the 
survival rate in their data set, but when applied to a smaller data set, it overestimated 
survival to a lesser extent.

Within the last ten years, the concept of PROMs has gained rapid support in 
orthopaedic surgery as a way to measure healthcare quality and value[41]. The 
minimally clinically important difference (MCID) or the minimum change in PROM 
scores that patients perceive as clinically meaningful offers a threshold of score that 
portends clinical relevance[41-43]. Using predictive models to identify patients at risk 
of not achieving MCID is important for resource allocation as well as better monitoring 
especially for presurgical decision support[41]. Fontana et al[41] used three ML models 
to predict which patients would not achieve a MCID in four PROMs two years 
following total joint arthroplasty (TJA). When applied to presurgical registry data, the 
three ML models predicted 2-year postsurgical MCIDs with fair-to-good ability 
showing that ML has good predictive power in MCID following TJA. In another study, 
Menendez et al[44] used ML to understand sentiment by exploring the content of 
negative patient-experience comments after total shoulder arthroplasty (TSA). 
Through a ML based approach, they found that patient satisfaction was highly 
correlated to hospital environment, nontechnical skills, and delays. Menendez et al[44] 
showed the potential utility of AI and ML models to analyze post-surgical PROM 
surveys to determine quality and satisfaction after TSA.

A newer trend in orthopaedic surgery is using ML concepts to predict hospital 
length of stay as well as cost[45-47]. Today, ML models can be used to predict how 
long or how much a patient’s surgery will cost prior to the elective procedure[48,49]. 
Ramkumar et al[45,47] and Navarro et al[46] used ML techniques on preoperative big 
data to predict length of stay and patient-specific payments following total hip arthro-
plasty (THA) and total knee arthroplasty (TKA), respectively[45-47]. In both studies, 
the ML techniques showed excellent predictability in length of stay. As complexity of 
the case increased, accuracy for predicting payment decreased proportionately in 
THA. On the other hand, as complexity of the case increased in TKA, accuracy for 
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Table 2 Summary of machine learning for orthopaedic surgery outcomes assessment

Ref. Conclusion

Bongers et al[40] ML algorithm overestimated ability to predict 5-year survival in patients with chondrosarcoma 

Fontana et al[41] Used ML to demonstrate fair-to-good ability in predicting 2-year postsurgical MCID following TJA

Greenstein et al[51] Used EMR-integrated ANN to predict discharge disposition after TJA on small data set

Janssen et al[38] Boosting ML algorithm far superior in training data sets to classic scoring system and nomogram in predicting 
survival in patients with long bone metastases at 30 days, 90 days, and 1 year 

Karnuta et al[50] Bayes ML algorithm demonstrated excellent accuracy in prediction of length of stay and cost of an episode of care for 
hip fracture

Menendez et al[44] Used ML on patient-narrative analysis to show patient satisfaction after TSA is linked to hospital environment, 
nontechnical skills, and delays

Navarro et al[46] Created a valid ML algorithm that predicted length of stay and costs before primary TKA

Pereira et al[55] Boosting ML algorithm comparable to nomogram in its ability to predict survival in metastatic spine disease with 
testing data sets

Ramkumar et al[45] Created a valid and reliable ML algorithm that predicted length of stay and payment prior to primary THA

Ramkumar et al[47] Developed several ML based models for primary LEA that preoperatively predict cost, length of stay, and discharge 
disposition

Thio et al[39] Created a high performing ML algorithm that could predict 5-year survival in patients with chondrosarcoma

ML: Machine learning; MCID: Minimally clinically important difference; TJA: Total joint arthroplasty; EMR: Electronic medical record; ANN: Artificial 
neural network; TSA: Total shoulder arthroplasty; TKA: Total knee arthroplasty; THA: Total hip arthroplasty; LEA: Lower extremity arthroplasty.

predicting costs increased by 3%, 10%, and 15% for moderate, severe, and extreme risk 
populations[46]. Similarly, Karnuta et al[50] used an ML algorithm on preoperative 
patient data to predict length of stay and cost after hip fracture; they found their ML 
algorithm to be 76.5% accurate for predicting length of stay and 79% accurate for 
predicting cost. Furthermore, Greenstein et al[51] used ML to preoperatively predict 
the likelihood a patient will be discharged to a skilled nursing facility after TJA. This 
study served as proof of concept that ML could be used as a prediction tool not only 
for big data sets, but also for small data sets. Using ML techniques to predict length of 
stay and cost has led to monumental improvements in establishing value-based care in 
orthopaedic surgery.

In orthopaedic surgery, AI and ML based techniques have demonstrated utility in 
predicting outcomes related to orthopaedic oncology, PROMs, length of stay, and cost. 
While ML techniques for survival in orthopaedic oncology have not yet been 
perfected, ML has proven to be effective with PROMs as well as predicting length of 
stay and cost. By using ML methods to make better outcome predictions, orthopaedic 
surgeons can improve their decision-making ability, which not only leads to better 
patient care, but also more efficient utilization of healthcare resources[52].

IMAGING
Since orthopaedic surgery diagnosis and treatment heavily rely on radiologic 
modalities [e.g., computed tomography (CT), magnetic resonance imaging (MRI), and 
conventional radiographs], the vast majority of AI and ML based research has been 
applied to imaging. Recent advances in AI and ML have shown remarkable results 
with a few studies showing computers surpassing human test subjects at certain image 
interpretation tasks[53,54]. Within musculoskeletal medicine, DL has been shown to be 
useful for both text and image analysis[55-57]. ML and DL based techniques have the 
potential to assess earlier disease status and are currently the focus of significant 
orthopaedic research, particularly in the following subspecialties: Spine, joints/ 
arthritis, trauma, and oncology (Table 3).

Spine
In spine surgery, technology has risen with the use of computer assisted navigation, 
robotic surgery, and augmented reality, all of which require reconstructions of the 
spinal column from CT or MRI scans[58-61]. This can only be achieved via ANNs and 
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Table 3 Summary of machine learning for orthopaedic surgery imaging applications

Ref. Subspecialty Conclusion

Al-Helo et al[66] Spine Neural network (93.2% accurate) and k-means approach (98% accurate) used on CT scans for segmentation and 
prediction of lumbar wedge fractures

Forsberg et al[62] Spine Annotated MRIs with information labels for each spine vertebrae used to accurately detect (99.8%) and label (97%) 
cervical and lumbar vertebrae

Hetherington et al
[64]

Spine CNN successfully identified lumbar vertebral levels on ultrasound images of the sacrum

Jamaludin et al[65] Spine CNN model achieved 95.6% accuracy comparable to experienced radiologists in disc detection and labeling of T2 
weighted sagittal lumbar MRIs

Pesteie et al[63] Spine Used ML system to detect laminae and facet joints in ultrasound images to assist in epidural steroid injection and 
facet joint injection administration

Ashinsky et al[71] Joints/arthritis ML algorithm predicted clinically symptomatic OA on T2 weighted maps of central medial femoral condyle with 
75% accuracy

Liu et al[72] Joints/arthritis CNN performed rapid and accurate cartilage and bone segmentation within the knee joint

Shah et al[73] Joints/arthritis CNN used to automate the segmentation and measurement of cartilage thickness based on MRIs of healthy knees

Xue et al[70] Joints/arthritis CNN model trained to diagnose hip OA comparable to an attending physician with 10 years of experience in 
diagnosing hip OA

Kruse et al[75] Trauma ML improved hip fracture detection beyond logistic regression using dual x-ray absorptiometry

Olczak et al[74] Trauma DL networks identified fracture, laterality, body part, and exam view on orthopaedic trauma radiographs of the 
hand, wrist, and ankle

Oh et al[78] Oncology ML showed superior predictive accuracy in predicting pathological femoral fractures in metastatic lung cancer

ML: Machine learning; CNN: Convolutional neural network; OA: Osteoarthritis.

DL through automated segmentation and detection of vertebrae. Numerous studies in 
the orthopaedic spine literature have analyzed the accuracy of DL techniques, 
especially for labeling and detection. For example, in Forsberg et al[62], annotated 
MRIs with information labels for each spine vertebrae were used to detect and label 
cervical and lumbar vertebrae. The highest performance showed an accuracy of 99.8% 
for detection and 97% for labeling. Furthermore, Pesteie et al[63] and Hetherington et al
[64] used ANNs trained with ultrasound images to automatically detect optimal 
vertebra level and injection plane for percutaneous spinal needle injections; Pesteie et 
al[63] showed highest accuracy to be 95% and maximum precision to be 97%. ML and 
DL techniques have been shown to be useful in diagnosis as well. Jamaludin et al[65] 
used DL techniques to read T2 weighted sagittal lumbar MRI images, automate the 
identification of disc spaces, grade the degenerative changes such as spondylolisthesis 
and central canal stenosis, and compare them to what experienced radiologists would 
do (Figure 3). The DL model performed almost as well as experienced radiologists on 
test data with a best accuracy rate of 95% for the prediction of spondylolisthesis. 
Because this model did not require labeling and feature description, authors believe 
the model will gain more accuracy and reliability with the addition of coronal and 
axial views. Al-Helo et al[66] used ML techniques, specifically neural network and k-
means approach, to learn lumbar wedge fracture diagnoses from CT image labeling 
for segmentation and prediction. The neural network showed an accuracy of 93.2% for 
lumbar fracture detection, while the k-means clustering approach attained an accuracy 
of 98%. These studies prove that the automation of radiologic grading is now on par 
with human performance; this can be incredibly beneficial in aiding clinical diagnoses 
in terms of grading and speed of analysis.

Joints/arthritis
OA, a highly prevalent disease associated with articular cartilage degeneration, can be 
effectively diagnosed in a cost-effective manner with X-ray imaging and in a more 
sensitive manner with MRI which can detect subtle morphologic changes in articular 
cartilage[67-69]. Throughout orthopaedic literature, DL has been used for hip and knee 
diagnostic purposes based on medical images. For the hip, Xue et al[70] trained a CNN 
with 420 hip X-ray images to highlight saliency regions. These saliency regions allow 
the deep learning model to extract the necessary information in order to diagnose hip 
OA (Figure 4). The CNN model was able to achieve an accuracy of 92.8%, comparable 
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Figure 3 Input processing pipeline of T2 sagittal magnetic resonance imaging and output predictions of radiological features[65]. Reused 
with permission. Citation: Jamaludin A, Lootus M, Kadir T, Zisserman A, Urban J, Battié MC, Fairbank J, McCall I; Genodisc Consortium. ISSLS PRIZE IN 
BIOENGINEERING SCIENCE 2017: Automation of reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human 
intervention is comparable with an expert radiologist. Eur Spine J 2017; 26: 1374-1383.

Figure 4 Saliency images from left hip joint (1-5), right hip joint (6-8), and both hip joints (9,10)[70]. Reused with permission. Citation: Xue Y, 
Zhang R, Deng Y, Chen K, Jiang T. A preliminary examination of the diagnostic value of deep learning in hip osteoarthritis. PLoS One 2017; 12: e0178992.

to an attending physician with ten years of experience in diagnosing hip OA. For the 
knee, Ashinsky et al[71] used a ML algorithm on T2 weighted maps of the central 
medial femoral condyle in order to predict progression to clinically symptomatic OA; 
the ML algorithm was able to predict the onset of OA with 75% accuracy. Liu et al[72] 
applied a CNN to a knee image data set for bone and cartilage segmentation and 
labeling (Figure 5). Authors reported a performance accuracy of 75.3% for femoral 
cartilage labeling and 78.1% for patellar cartilage labeling. Similar to Liu et al[72], Shah 
et al[73] used a CNN to successfully automate cartilage segmentation methods and 
measurement of articular cartilage thickness. This study showed that ML can be used 
to analyze cartilage thickness in an automated and efficient manner. The results of the 
studies summarized above indicate that DL has promising potential in the field of 
intelligent medical image diagnosis practice, especially for hip and knee OA.

Trauma
For orthopaedic trauma, ML derived tools can be used on imaging techniques to assist 
in diagnostic ability, particularly for detection of fractures. Olczak et al[74] applied ML 
to 256000 orthopaedic trauma radiographs with good results compared to radiologists. 
In this study, a database of hand, wrist, and ankle radiographs were used and four 
outcomes - laterality, exam view, fracture, and body part - were identified (Figure 6). 
Five DL networks were used and reached 99% accuracy when identifying body part, 
90% on laterality, 95% on exam view, and 83% on detecting fractures[74]. Furthermore, 
Kruse et al[75] used ML to predict hip fractures from dual x-ray absorptiometry; they 
found that ML could improve hip fracture prediction beyond logistic regression. In 
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Figure 5 Convolutional neural network depiction of a knee image data set for bone and cartilage segmentation and labeling[72]. Reused 
with permission. Citation: Liu F, Zhou Z, Jang H, Samsonov A, Zhao G, Kijowski R. Deep convolutional neural network and 3D deformable approach for tissue 
segmentation in musculoskeletal magnetic resonance imaging. Magn Reson Med 2018; 79: 2379-2391.

Figure 6 Two images (left, wrist fracture; right, no fracture) from the dataset presented to the network[74]. Reused with permission. Citation: 
Olczak J, Fahlberg N, Maki A, Razavian AS, Jilert A, Stark A, Sköldenberg O, Gordon M. Artificial intelligence for analyzing orthopedic trauma radiographs. Acta 
Orthop 2017; 88: 581-586.

orthopaedic trauma, ML based techniques have immense utility in predicting 
fractures. AI and ML based methods could be beneficial in the future of orthopaedic 
trauma as they may enhance workflow in the emergency department[76].

Oncology
In orthopaedic oncology, management of metastatic bone disease is a major focus, 
especially with respect to fracture and impending fracture care[77]. Oh et al[78] used 
ML on CT imaging and clinical features to extract radiologic features and derive 
predictions for pathological femoral fractures in metastatic lung cancer and compared 
the ML model with one that used CT features alone. The ML model, which included 
clinical features, showed superior predictive accuracy compared to the model that 
used CT features alone. By using AI and ML to accurately predict impending skeletal-
related events, such as pathologic fracture, orthopaedic surgeons can prophylactically 
treat patients and thus improve patient outcomes[77].

BASIC SCIENCE APPLICATIONS
In the past, ML has been applied to basic science topics in medicine to predict chemical 
properties of drugs and proteins, predict vaccine immunogenicity, and identify 
promising drug targets[79-82]. In orthopaedic surgery, AI and ML has been applied to 
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Table 4 Summary of machine learning for orthopaedic surgery basic science applications

Ref. Application Conclusion

Begg et al[83] Gait analysis Used SVM to automate recognition of gait changes due to aging

Joyseeree et al
[84]

Gait analysis Used random forest, boosting, and SVM to identify disease on gait analysis data

Sikka et al[85] Wearable 
technology

Utilized ML analytics via wearable technology to improve sports performance and identify risk factors for injury in 
sports

Cilla et al[86] Implant design ML techniques used to optimize short stem hip prosthesis to reduce stress shielding effects and achieve better 
short-stemmed implant performance

ML: Machine learning; SVM: Support vector machine.

more translational basic science concepts such as kinetics and gait analysis, wearable 
technology, and implant design[83-86] (Table 4).

It is well established in orthopaedic literature that aging influences various gait 
measures, such as gait velocity, stride length, and stance and swing phase times[87]. 
By applying ML to automate recognition of gait pattern changes, researchers can 
identify key variables of gait degeneration that might be predictors of falling behavior. 
Begg et al[83] used SVM, a specific ML approach, to automate recognition of gait 
changes due to aging using three types of gait measures: basic temporal/spatial, 
kinetic, and kinematic. When comparing gaits of twelve young participants to twelve 
elderly participants, the ML technique showed an overall accuracy of 91.7%. 
Furthermore, gait recognition improved when features were selected from different 
gait data types with an effective potential of 100% accuracy. Similarly, Joyseeree et al
[84] applied ML algorithms, specifically random forest, boosting, and SVM, to gait 
analysis data for disease identification. Following a training and testing period, 
random forest and SVM had an accuracy of 100%, while boosting had an accuracy of 
96.4%.

Another basic science application where ML has shown great promise is wearable 
technology. With the increase in wearable and portable technology, the general public 
as well as professional athletes have the power to monitor basic human physical and 
physiologic function that can combine with health records for analysis. Sikka et al used 
ML analytics via wearable technology such as camera-based monitoring systems, heart 
rate monitoring devices, radio-frequency identification tracking systems, and accelero-
meters, to improve sports performance[85]. Additionally, the data collected can be 
used to identify risk factors for injury in sports and therefore can proactively prevent 
injuries and direct injury prevention programs[85]. In the future, healthcare providers 
could utilize this information not only to develop optimal training programs for elite 
athletes while minimizing risk of injury and loss of play time, but also to create more 
cost-efficient care that is individually tailored for the average patient.

While shape optimization algorithms, which are different from ML, have previously 
been used to assess stem performance, the potential to further optimize short stem 
implants using ML has only recently been addressed[88-91]. For example, Cilla et al
[86] used ANNs and SVMs to analyze four parameters with the end goal being to 
optimize short stem implant design, specifically for THA, to produce optimal 
performance, lack of bone resorption, and reduced stress shielding (Figure 7). They 
found that implants should be designed with a small stem length and a reduced length 
of the surface in contact with the bone to reduce stress shielding. The optimization 
approach using ML techniques can offer new and innovative possibilities in the design 
of hip implants and more. These analyses can be used to design new prostheses as well 
as aid orthopaedic surgeons in decision-making when choosing the most adequate 
implant.

CONCLUSION
In recent years, ML has garnered interest across various medical specialties and has 
proven its utility in orthopaedic surgery. Some studies even show that developed and 
validated ML models are capable of outperforming human specialists. Similarly, in 
orthopaedic surgery, ML has been incredibly useful in spine pathology detection, 
prosthesis control, gait classification, OA detection, and fracture detection. These 
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Figure 7 Graphic representation of the four parameters (L, total stem length; R1, radial circumference in the lateral side; R2, radial 
circumference in the medial; D, distance between the implant neck and the central stem surface)[86]. Reused with permission. Citation: Cilla M, 
Borgiani E, Martínez J, Duda GN, Checa S. Machine learning techniques for the optimization of joint replacements: Application to a short-stem hip implant. PLoS One 
2017; 12: e0183755.

results corroborate the information that computers can outperform physicians in 
numerous tasks, even in orthopaedics. By and large, ML has diagnostic and prognostic 
uses that with continued research can offer more implications regarding orthopaedic 
treatment. With its surging trend of interest, AI and ML is expected to see an increase 
in use with risk assessment, outcomes assessment, imaging, and basic science applic-
ations in orthopaedics. Furthermore, because ML provides physicians the unique 
opportunity to understand their patients better, physicians should be trained to use 
these methods effectively in order to improve orthopaedic patient care.
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