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Abstract
The gut microbiota (GM) plays a role in the development and progression of type 
1 and type 2 diabetes mellitus (DM) and its complications. Gut dysbiosis 
contributes to the pathogenesis of DM. The GM has been shown to influence the 
efficacy of different antidiabetic medications. Intake of gut biotics, like prebiotics, 
probiotics and synbiotics, can improve the glucose control as well as the metabolic 
profile associated with DM. There is some preliminary evidence that it might even 
help with the cardiovascular, ophthalmic, nervous, and renal complications of 
DM and even contribute to the prevention of DM. More large-scale research 
studies are needed before wide spread use of gut biotics in clinical practice as an 
adjuvant therapy to the current management of DM.

Key Words: Probiotics; Prebiotics; Synbiotics; Diabetes mellitus; Microbial dysbiosis; 
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Core Tip: The emerging role of the gut microbiome on diabetes development, 
progression as well as prevention has been discussed in this manuscript. The 
significance of gut dysbiosis in the aetiopathogenesis of diabetes mellitus and its 
complications has been reviewed. A bidirectional relationship exists between the 
antidiabetic drugs and the gut microbiome. Faecal transplantation, and bariatric 
surgery, typically used to treat morbid obesity, have also been shown to improve 
commensal gut microbiota changes. Diabetic outcomes and management can improve 
with better understanding of the drug-gut microbiome interactions. There is emerging 
evidence pointing out that gut biotics can be an add-on therapy with the antidiabetic 
management. To our knowledge, there is no evidence about the role of gut microbes of 
diabetic patients who had pancreatic cell transplantation, as well as the role of gut 
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INTRODUCTION
Globally diabetes mellitus (DM) is a common medical disorder and is seen in 
pandemic proportions[1] with the global prevalence in adult subjects is roughly 10%
[2]. The International Diabetes Federation projected by 2035, there will be 592 million 
cases of diabetes in the world[3]. DM type 1 is secondary to auto-immune- mediated 
loss of beta-cell function and is seen in 5% of the diabetic population. DM type 2 is 
mainly due to insulin resistance and is seen in 95% of diabetic subjects[4]. The 2016 US 
National Health Interview Survey data showed roughly 8.58% of the population had 
type 2 DM and 0.55% had type 1 DM[5].

Various research has been done in the last decade since the study of the human 
microbiome in 2012[6,7]. Microbes contribute to 2% of human body weight and the 
bacterial genomes exceeds human genes by a factor of 150[8,9]. Gut microbiota (GM) 
varies with age, diet, geographical location, life style, and the use of xenobiotics[10-
12]. In the recent years there have been more focus on the GM in the development, 
progression, and distant organ complications due to DM[13]. Many studies have 
shown the role of the gut microbiome in DM[14-17].

The gut microbiome starts to develop with the mode of birth and it is influenced by 
environmental factors, diet, as well as certain medications, including antibiotics[18]. 
There are differences between the gut microbes seen between non-diabetic and 
diabetic subjects[20] (Table 1). Gut dysbiosis plays a role in numerous diseases 
including DM. Both altered GM and endocrine disrupters can influence the 
development of DM[21]. In this literature review, we analyzed the evidence for the 
role of GM in the development, pathogenesis, complications, management, and 
prevention of DM.

LITERATURE SEARCH
A literature search was performed using the electronic databases MEDLINE 
(1966–February 2021), EMBASE and SCOPUS (1965–February 2021), and DARE 
(1966–February 2021). The main search items were gut bacteria, GM, intestinal flora, 
gut dysbiosis, type 1 DM, type 2 DM, diabetic retinopathy, diabetic neuropathy, 
diabetic nephropathy, probiotics, prebiotics, synbiotics, bariatric surgery, and faecal 
transplantation. Non-English articles were excluded.

GM IN TYPE 1 DM
Studies have shown that Firmicutes/Bacteroides ratio is altered in type 1 DM[22]. In 
the study by Huang et al[23] (2018) negative association was seen with gut microbe 
Faecalibacterium and Ruminococcacea and hemoglobin A1c (HbA1c), whereas in the 
study by Fassatoui et al[24]. (2019) a negative association was seen between HbA1c 
and Akkermansia muciciniphia. A systematic review of studies done in Hispanic 
populations showed that patients with newly diagnosed type 1 DM have high levels of 
Bacteroides with a reduced proportion of Prevotella, Megamonas, and Acidaminococcus. 
With the initiation of insulin treatment these subjects showed an increase of Prevotella 
levels. Prior to the development of type 1 DM, inverse relationship of Firmicutes/ 
Bacteroidetes ratio has been reported[25].

https://www.wjgnet.com/1948-9358/full/v12/i9/1463.htm
https://dx.doi.org/10.4239/wjd.v12.i9.1463


Alagiakrishnan K et al. Gut microbiota in DM

WJD https://www.wjgnet.com 1465 September 15, 2021 Volume 12 Issue 9

Table 1 Changes in the microbiome in type 1 and type 2 diabetes mellitus

Location Change in microbiome Ref.

Type 1 diabetes

Gastrointestinal 
tract

(1) Decreased:  Prevotella; Megamona; Acidaminococcus; and (2) Increased: Bacteriodes Elena et al[25], 
2019

Gastrointestinal 
tract

(1) Decreased: Bifidobacterium adolescentis; Bifidobacteria; and (2) Increased:  Clostridium perfingens; Bacteroides De Goffau et al
[122], 2013

Gastrointestinal 
tract

Increased: Leptotrichia goodfellowii; Bacillus cerus; Enterobacter mori LMG 25706 Tai et al[123], 
2016

Gastrointestinal 
tract

Increased: Bacteroidetes/Firmicutes Giongo et al[124], 
2011

Gastrointestinal 
tract

(1) Decreased: Faecalibacterium prausnitzii; and (2) Increased: Bacteroides dorei; Bacteroides vulgatus De Goffa et al
[125], 2014

Gastrointestinal 
tract

(1) Decreased: Prevotella; Akkermansia; Bifidobacterium adolescentis; Roseburia faecis; Faecalibacterium prausnitzii; and 
(2) Increased: Dialister invisus; Gemella sanguinis; Difidobacterium longum

Brown et al[126], 
2011

Type 2 diabetes

Gastrointestinal 
tract

(1) Decreased: Clostridium coccoides; Clostridium leptum; and (2) Increased: Lactobacillus Chen et al[28], 
2019

Gastrointestinal 
tract

(1) Decreased: Bifidobacterium; Bacteroides; Faecalibacterium; Akkermansia; Roseburia; and (2) Increased: Ruminococcus; 
Fusobacterium; Blautia

Gurung et al[30], 
2020

Gastrointestinal 
tract

(1) Decreased: Bifidobacterium; Akkermansia; and (2) Increased: Dorea Li et al[127], 2020 

Gastrointestinal 
tract

(1) Decreased: Bifdobacterium; and (2) Increased: Lactobacillus Sedighi et al[31], 
2017

Blood (1) Decreased: Aquabacterium; Xanthomonas; Pseudonocardia; and (2) Increased: Actinotalea; Alishewanella; 
Seiminibacterium; Pseudoclavibacter

Qiu et al[38], 2019

GM IN TYPE 2 DM
The type of gut microbes and the changes seen with them influence the development 
of DM. The prominent GM seen in the intestine are the gram-positive Firmicutes and 
gram-negative Bacteroidetes and it is influenced by dietary changes[26]. A change in 
the ratio of Bacteroidetes to Firmicutes is associated with DM[27]. A case-control study 
done by Chen et al[28] (2019) in newly diagnosed type 2 DM subjects, Lactobacillus 
faecal count was significantly higher whereas Clostridium coccoides and Clostridium 
leptum was lower, and these changes in the microbes was positively correlated with 
glycated hemoglobin with higher Lactobacillus count subjects, and negatively 
correlated with decreased Clostridium count subjects when compared with healthy 
controls. Another study found that patients with DM showed an affiliation with the 
following phyla of bacteria: Firmicutes, Bacteroidetes, Proteobacteria and 
Actinobacteria[29]. Alterations in the gut microbe population may be related to DM, 
and gut microbes Ruminococcus and Fusobacterium has been shown with the 
development of type 2 DM, when compared to healthy adults[30]. A study by Sedighi 
et al[31] (2017) found that patients with type 2 DM has increased levels of Lactobacillus, 
while healthy controls showed increased Bifidobacterium. With respect to the Lactoba-
cillus genus, there are various mixed results suggesting its association with type 2 DM. 
Certain strain such as L. acidophilus, L. gasseri, and L. salivarius have been increased 
where as L. amyloyorus has been decreased[30]. However, many species from this 
genus, such as L. plantarum, L. casei, and L. rhamnosus are often involved in probiotic 
preparation and have shown to be beneficial in diabetic mice models[30]. Overall, it 
looks that there may be a strain-specific association with DM.

Further changes in the microbiome in patients with DM are listed in Table 1. 
Nutrient imbalance by affecting the GM can influence the development of type 2 DM. 
With newly diagnosed type 2 DM different measurement parameters like age, blood 
lipids, body-mass index, blood pressure, and dietary nutrient intake was related to the 
gut microbiome composition[32].
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RELATIONSHIP BETWEEN GUT AND BLOOD MICROBIOME AND ITS 
ASSOCIATION WITH TYPE 2 DM
Cani et al[33] (2008) in their animal study showed lipopolysaccharide produced by 
gram negative intestinal bacteria can translocate into systemic circulation through a 
leaky gut and can result in endotoxemia causing metabolic dysfunction and obesity. 
Recent evidence points out in addition to gut microbiome, the blood microbiome plays 
a role in DM. Blood is usually considered to be sterile, but the research suggests the 
presence of a microbe or microbial component in healthy humans is known as a blood 
microbiome. The evidence for blood human microbiome is slowly growing[34-36].

In a study by Sato et al[37] (2014) with Japanese type 2 DM subjects, blood micro-
biome translocation from gut microbiome was detected at a higher rate (28%) in type 2 
diabetic subjects when compared with healthy controls (4%) (P < 0.01). A recent nested 
case control study by Qiu et al[38] (2019) showed the blood microbe Sediminibacterium 
is associated with increased risk of type 2 DM [Odd ratio (OR) = 14.098, 95%CI: 1.358- 
146.330] where as the microbe Bacteroides in blood have a reduced risk for type 2 DM 
(OR = 0.367, 95%CI: 0.151- 0.894).

GM AS A COMPLEX ENDOCRINE ORGAN
The regulation of the GI system is done by short-chain fatty acids (SCFA) derived from 
the metabolism of carbohydrates, and GM plays a role in this function. In addition, the 
gut microbes produce hormone like chemicals that can act at distant targets. 
Neuroactive compounds like tryptophan and neurotransmitters like serotonin, 
dopamine, noradrenaline, GABA, and hormones like leptin, ghrelin and glucagon-like 
peptide 1 (GLP-1) are indirectly regulated by SCFAs via enteroendocrine cells. Overall, 
the gut microbes produce several substances of a hormonal nature into the circulation 
which act as distant sites. Because of the GM’s ability to influence distant organs and 
systems as mentioned above it is considered as an endocrine organ. Overall GM 
functions as an autonomous endocrine organ and plays a role in bodily endocrine 
actions including neuroendocrine and immunoendocrine regulations[39-42].

DM AND GUT DYSBIOSIS
Gut dysbiosis, is a state of increased or altered prevalence of gut bacteria which might 
in turn result in many disorders such as gastrointestinal, obesity, DM, immunological, 
and neurobehavioral diseases[43]. Shifts in the GM’s composition with more 
pathogenic species and phyla can contribute to the above-mentioned diseases. 
Hyperglycemia was associated with changes of microbiota composition, preferring the 
non-commensal ones, on the detriment of beneficial phyla such as Bacteroidetes, 
Proteobacteria, and Actinobacteria. The ratio of Firmicutes/Bacteroidetes has been 
found to be correlated with plasma glucose concentration. Microbiota are capable to 
ferment undigested carbohydrates, fiber, and other dietary and xenobiotic compounds 
to produce SCFAs, which through their ubiquitous receptor play an important role in 
host glucose metabolism[37,44,45]. The Human Microbiome plays a role in gut 
permeability, modification of bile acids, glucose breakdown and in the absorption of 
nutrients[46,47].

Normal commensal bacteria are helpful in maintaining the gut wall integrity, innate 
immunity, insulin sensitivity, metabolism, and in communication with the brain 
functions, as well as help to prevent the penetration of harmful microorganisms in the 
bowel. Bidirectional relationship exists between the GM and the brain. This chain of 
communication depends on the interaction of gut microbe through immune and 
neuroendocrine system with the central nervous system. Short-chain fatty acids, such 
as butyrates, acetates and propionates, produced by the GM are beneficial to different 
metabolic processes. The imbalance between the microbiome and host organism lead 
to dysbiosis. Gut microbiome dysbiosis through inflammation and metabolic dysregu-
lation increases insulin resistance and influence the development of type 2 DM[48] 
(Figure 1).

Microbial dysbiosis can also be the result of nutritional imbalance which can lead to 
a low-grade inflammatory state, obesity, and other metabolic disorders[49]. Gut 
microbes affect gut permeability, glucose and lipid metabolism, energy homeostasis, 
and insulin sensitivity. Like any other medical conditions, gut microbes play a role in 
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Figure 1 The role of gut dysbiosis in diabetes mellitus. The ingestion of a diet rich in carbohydrates and fats along with certain xenobiotics can lead to a 
disruption of the gut microbiome (dysbiosis). Under normal conditions, the gut bacteria produce metabolic products such as short chain fatty acids (SCFA) 
(Hexagons) that act locally and have a positive benefit on metabolism. Under conditions of dysbiosis there can be a disruption to the enteroendocrine cells and lead 
to gut permeability. This can lead to an increase in these metabolic products as well as bacterial translocation to the bloodstream, leading to endotoxemia resulting in 
metabolic dysfunction and insulin resistance contributing to type 2 diabetes. Gut dysbiosis also results in altered production of SCFA and release of 
lipopolysaccharides (LPS) (Triangles) and an increase production of other metabolites such as imidazole propionate and bacteria derived amino acids. These 
metabolites can act directly to affect insulin resistance. Excess SCFA and LPS can act on hepatic, skeletal, adipose, and pancreatic cells leading to metabolic 
dysfunction, altered inflammation and immune response which can influence insulin resistance. These factors can contribute to the development of type 1 and type 2 
diabetes. SCFA: Short chain fatty acids; EEC: Enteroendocrine cells; LPS: Lipopolysaccharides; BCAA: Bacteria derived amino acids; IMP: Imidazole propionate; 
GM: Gut microbiota.

inflammation and immunity[50]. A diet rich in fat and sugar may lead to an 
abundance of lipopolysaccharide (LPS) release from GM and this LPS, by entering into 
systemic circulation, can affect β-cells, leading to decreased insulin release, and 
thereby altering systemic insulin sensitivity, resulting in insulin resistance, and 
potentially leading to DM[51].

Diets rich in carbohydrates and fat as well as xenobiotics (medications affecting the 
gut microbes) can cause gut dysbiosis. Normally GM produces metabolic products like 
SCFA, acetate, butyrate and propionate which acts locally leading to beneficial effects 
on different metabolic process. When there is gut dysbiosis, it can affect the enteroen-
docrine L-type cells in the intestinal epithelium and increase the gut permeability 
(leaky gut) causing these metabolic products to enter into the systemic circulation, as 
well as translocation of the gut microbiome into the circulation leading to the 
formation of the blood microbiome. This blood microbiome can cause endotoxemia 
and affect both metabolic dysfunction and insulin resistance. Gut dysbiosis results in 
excessive production of SCFA and LPS, as well as additional GM metabolites like 
imidazole propionate (IMP), derived from histidine, and bacteria derived amino acids. 
Excessive SCFA and LPS by acting on hepatic, adipose, skeletal and pancreatic cells 
causes metabolic dysfunction, inflammation and altered immune response. When 
there is a metabolic dysfunction due to gut dysbiosis combined with inflammatory and 
altered immune response it can cause type 1 DM, and when combined with insulin 
resistance due to gut dysbiosis as well as the effect of blood microbiome it can lead to 
the development of type 2 DM (Figure 1).
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GUT MICROBES AND METABOLIC NETWORKS
The human gut contains a wide variety of microbial communities that carry out a wide 
range of biochemical functions that can influence the human body through metabolite 
production, physiological regulation, and interacting with the host’s cellular response 
and immunity[52]. It has also been found that the host’s own genetics can influence the 
composition of their gut microbiome, making each host a unique ecosystem[53]. 
Dynamic changes in the gut microbiome have been seen within individuals often in 
various disease states, such as obesity, and DM[19,54-56]. The GM has been found to 
cause enhanced transcriptional changes in the intestinal cells and protein biosynthesis 
in the crypts within the intestine[57].

SCFAs produced by GM can serve as signaling molecules that can influence the 
host’s lipid and glucose levels, liver, skeletal muscle, and even immunity[52]. When 
there is a disruption of the gut microbiome, the altered mixture of SCFA may influence 
obesity, insulin sensitivity, weight gain and other comorbidities[58,59]. Obese 
individuals with type 2 DM have shown changes in the GM that are distinct, from 
non-diabetic subjects. It was found that individuals with type 2 DM showed an 
increase level of Proteobacteria and Bacteroides with a decreased level of Firmicutes[19]. 

The GM has been found to influence the host’s metabolism and show great 
adaptability to the changing environment within the intestines based on diet, genetics, 
and various physiological cues from the host[52]. The human gut microbiome can 
modulate absorption as well as nutrient availability within the host. This can be 
achieved through gene expression changes, alteration of hormones and immunity[52].

ASSOCIATION BETWEEN MICROBIOME, OBESITY AND DM
Microbial diversity and the production of SCFA as well as products such as butyrate, 
propionate, and acetate have been found to have a protective role against obesity and 
insulin resistance[60,61]. SCFAs are able to act as signaling molecule that can activate a 
variety of pathways that are involved in cholesterol, lipid, and glucose metabolism
[58]. Modifications of the microbiome can influence metabolic parameters, in 
particular when there is a higher abundance of Firmicutes leading to a higher 
Firmicutes/Bacteroidetes ratio that may be linked to obesity[62]. This may in part be 
due to the fact that Firmicutes are more efficient at promoting the nutrient absorption 
leading to subsequent weight gain compared to Bacteroidetes[63].

A study showed the GM composition is different in obese subjects with and without 
type 2 DM[20]. A recent study also showed for the first time in subjects with type 2 
DM the relationship between body composition and GM[64]. Faecal microbiota of 
obese subjects without DM had increased numbers of SCFA producing microbes, 
whereas obese subjects with type 2 DM had less beneficial SCFA butyrate producing 
microbes[65].

ROLE OF GUT MICROBES IN THE PROGRESSION OF DM
The progression of DM is seen as macrovascular[66] and microvascular complications 
like retinopathy, nephropathy, and neuropathy[67]. Gut microbes seem to play a role 
in the progression of DM and also shown to play a role in these complications. Diet 
induced diabetic animal models helps to study these complications[68]. Studies have 
shown that subjects with DM and eye complications have higher bacterial conjunctival 
flora when compared to subjects without DM[69-72]. Beli et al[73] (2018) in their 
animal study showed the association between the GM and diabetic retinopathy 
(Table 2). More research is needed to understand the mechanism how GM causes 
diabetic retinopathy[74].

Diabetic neuropathy is seen as autonomic neuropathy as well as distal sensory and 
motor neuropathy and correlate with diabetic control, and GM also seems to play a 
role[75]. In a human study with early diabetic nephropathy, Barrios et al[76] (2015) 
showed an increase in colonic GM, whereas with end-stage renal disease patients 
microbes producing urease, uricase, p-cresol and indole-forming enzymes were seen
[77]. The proposed mechanisms for progression of kidney disease could be due to GM 
imbalance, metabolic shifts, immunosuppression, inflammation, as well as accumu-
lation of uremic toxins[78].
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Table 2 Selected animal studies showing the effect of various interventions on the gut microbiome and the role of gut microbiota in 
diabetes mellitus management

Intervention Organism Health benefit Change in microbiome Ref.

Intermittent fasting Mice Protection from diabetic retinopathy by increasing 
Tauroursodeoxycholate (a neuroprotective bile acid) 
producing microbes

Increased Firmicutes and decreased 
Bacteroidetes and Verrucomicrobia in 
diabetic mice undergoing intermittent 
fasting

Beli et al
[73], 2018

Antibiotic treatment 
(ampicillin, metronidazole, 
neomycin, vancomycin, or 
their cocktail)

Mice Reduction in fasting glucose. Change in glucose 
tolerance (seen with ampicillin, vancomycin, or 
cocktail)

Alterations in the α- and β- diversity. 
An association with Akkermansia 
mucinipjila with decrease fasting 
glucose. The effect is mediated through 
systemic changes in glucose 
metabolism

Rodrigues 
et al[94], 
2017

Prebiotic: Acorn and sago Mice Mice fed acorn and sago derived prebiotics had an 
amelioration of the glucose intolerance and insulin 
resistance induced by a high-fat diet feeding. Intake 
of both novel prebiotics as well as inulin increases 
SCFAs levels in the mouse gut

Ahmadi et 
al[103], 2019

Combination of a functional 
fibre [PolyGlycopleX (PGX) 
with metformin (MET) or 
sitagliptin and metformin 
(S/MET)]

Mice PGX + MET and PGX + S/MET showed reduced 
glycemia compared to controls and single treatment 
(P = 0.001). HbA1c was lower in PGX + S/MET 
compared to all other treatments (P = 0.001)

Reimer et al
[93], 2014

Artificial sweetener 
(Neotame)

Mice Decreased butyrate synthetic genes in Neotame 
group. Higher concentrations of cholesterol (P < 
0.05) and fatty acids (P < 0.05) in Neotame treated 
mice feces

Reduction in α-diversity and altered β-
diversity. Reduced Firmicutes (P < 
0.01) and increased Bacteroides (P < 
0.01)

Chi et al
[85], 2018

Combination of metformin 
and a prebiotic [konjac 
mannan-oligosaccharides 
(MOS)]

Mice Combination of metformin and MOS help 
ameliorate insulin resistance and improved glycemic 
control (P < 0.05) and repair islet and hepatic 
histology

Metformin and MOS change the 
microbiome (P < 0.0001) with: 
Decreased: Rikenellaceae and 
Clostridiales; Increased: Akkermansia 
muciniphila and Bifidobacterium 
pseudolongum

Zheng et al
[96], 2018

MANAGEMENT
In DM, normal GM can be restored using diet, gut biotics, faecal transplantation, and 
bariatric surgery, which may help with the proper management of DM.

Faecal transplant, bariatric surgery
There is some evidence from human studies, that both faecal transplant and bariatric 
surgery improved the glucose and metabolic parameters by altering the GM[48]. A 
meta-analysis done by Magouliotis et al[79] (2017) showed some discrepancy between 
the human studies and the benefits witnessed from bariatric surgery. Another study 
looking at obese insulin resistant subjects who received allogenic faecal transplants 
from a lean insulin sensitive donor show improved insulin sensitivity for a short 
period of 6 weeks, however the benefit was not seen past 12 weeks[80] (Table 3).

Nutritional therapy
Diet can modulate the GM and play a role in the management of DM by preventing 
gut dysbiosis[81] (Table 2). Fruits and vegetables contain polyphenols which can 
increase beneficial GM like A. muciniphila, Lactobacilli and Bifidobacteria[82]. 
Unbalanced dietary intake can affect the structure and abundance of GM which can 
play a role in the development of DM[83].

Artificial sweeteners
Artificial sweeteners are no-calorie sugar substitutes, may induce glucose intolerance 
by affecting the gut microbes. In an animal study with saccharin-fed mice showed an 
increase in Bacteroides and a reduction in Lactobacillus reuteri leading to GM dysbiosis 
and glucose intolerance[84]. Similar effects were seen in another study by Chi et al[85] 
(2018) using the artificial sweetener, Neotame. In a cross-sectional human study by 
Frankenfeld et al[86] (2015), showed sweeteners like aspartame or acesulfame-K found 
no effect on gut bacterial abundance. A recent randomized-blinded crossover study in 
healthy participants did not demonstrate measurable changes in the GM or in SCFAs 
after 14 d daily intake of aspartame and sucralose[87]. These preliminary observations 
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Table 3 Selected human studies showing the effect of diet, gut biotics, faecal transplantation and bariatric surgery on gut microbiome 
and the role of gut microbiota in diabetes mellitus management

Intervention Organism Health benefit Change in microbiome Ref.

Probiotics Human Decreased fasting blood glucose and HbA1c levels. 
Increased HDL levels, however no significant effect on 
BMI and LDL levels were found

Kocsis et al[112], 
2020

Artificial 
sweeteners 
(aspartame and 
acesulfame-K)

Human Compared to controls, aspartame and 
acesulfame-K had different bacterial 
diversity (P < 0.01, P = 0.03 
respectively), compared to controls

Frankenfeld et al
[86], 2015

Probiotics, 
Prebiotics, or 
synbiotics

Human 
(meta-
analysis)

The use of probiotics, prebiotics, or synbiotics showed a 
decrease in FBG (P < 0.01), total cholesterol (P = 0.02), 
triacylglycerols (P = 0.01) and insulinaemia (P < 0.01), as 
well as increased HDL-cholesterol levels (P < 0.01. Even 
though HbA1c reduction is seen it is not statistically 
significant. No effect on LDL-cholesterol was seen

Bock et al[115], 
2020

Laparoscopic 
sleeve gastrectomy

Human Decreased weight and BMI. Restored insulin tolerance and 
type 2 DM remission

Increased: Bacteroidetes/Firmicutes ratio 
at 1- and 3-months post surgery. 
Lactobacillales

Kikuchi et al
[128], 2018;Li et 
al[129],  2013

Roux-en-Y gastric 
bypass

Human Type 2 DM remission and improved BMI and weight loss. 
Improved gastric emptying and bile acid metabolism

Decreased: Bacteroidetes/Firmicutes 
ratio. Improved probiotic 
supplementation effects due to 
lowered pH environment

Selber-Hnatiw et 
al[52], 2020; Li et 
al[129],  2013

BMI: Body mass index; HbA1c: Hemoglobin A1c; FBG: Fasting blood glucose; HDL: High-density lipoprotein; LDL: Low-density lipoprotein.

needed to be established in future human research studies.

ALTERATION OF GM BY ANTIDIABETIC DRUGS AND ITS ROLE IN DM 
MANAGEMENT
Antidiabetic drugs can influence the gut microbiome by affecting the drug microbiome 
interface, whereas the gut microbiome also influences the metabolism and play a role 
in the efficacy of antidiabetic drugs. The interactions of antidiabetic drugs and 
microbiota is getting more attention as it may play a role in the management of DM
[88]. Antidiabetic agents cause alteration of the specific gut microbes. Metformin 
increases the population of Akkermansia muciniphila by 18-fold, enhancing the digestion 
of mucin and increasing SCFA[89]. Metformin, in addition to Akkermasia, causes 
increase in Lactobacillus and Bifidobacterium, whereas insulin increase Fusobacterium
[90]. This first line antidiabetic agent in type 2 DM modifies the GM, alter the bile acid 
circulation and thereby a possibility that primary site of action may be gut and the GM
[91].

Understanding the pharmacokinetics, pharmacodynamics and pharmacomicro-
biomics of antidiabetic medications and gut microbes can help to understand drug- 
gut microbiome and its potential benefit with antidiabetic drugs. Overall, it may help 
to better manage the DM management[92].

Antidiabetic drugs have been shown to affect the different gut microbes and their 
metabolic effects through the medication-microbiome-metabolism axis. GM can 
influence the pharmacokinetics of various antidiabetic drugs such as drug absorption, 
drug metabolism which can affect the potency of these medications. Overall, there is a 
bidirectional relationship exist between antidiabetic drugs and gut microbes[88].

Different combinations of antidiabetic drugs are used to better control DM. The 
commonly used combination is metformin with sulphonylureas, thiazolidinediones, 
DPP-4 inhibitors and insulin. One animal study showed some delay in the progression 
of DM when sitagliptin/metformin combination given with a prebiotic fibre[93]. 
Currently, there is a need for more research of different combination therapies on GM.
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GUT BIOTICS AND DM
Animal studies
Several animal studies have showed that gut biotics, like prebiotics and probiotics, can 
improve the efficacy of antidiabetic drugs. Treatment with individual or a cocktail of 
antibiotics reduced dysbiosis and decrease fasting glucose but did not affect body 
weight, as well as antibiotic treatment also changed gene expression in the ileum and 
liver, and shifted the alpha (α) and beta (β) diversities of GM[94]. In an animal study 
with mice, combining probiotics and/or prebiotics with antidiabetic medications 
showed an improvement in glycemic control and insulin sensitivity[95]. A study by 
Reimer et al[93] (2014) found that using a combination of sitagliptin and metformin 
with a functional fiber can delay DM progression. In an animal study usage of 
mannan-oligosaccharides by altering the GM increased the hypoglycemic effects of 
metformin[96]. Yang et al[97] (2020) found that Genistein found in soybeans and soy 
derived foods (prebiotic) helped to improve glucose and lipid metabolism by altering 
GM composition[97]. In another animal study, certain GM like Bacteroides fragilis, A. 
muciniphila, L. plantarum, L. casei can induce interleukin 10 (IL-10), which has been 
shown to improve both insulin resistance and glucose metabolism[98] (Table 2).

Human studies
Many gut microbes have been shown to have antidiabetic effect in humans by 
different mechanisms including effect on insulin sensitivity[99]. Roseburia intestinalis 
can improve insulin sensitivity by increasing IL-22 production[100]. Some strains of 
Lactobacilli act like acarbose and have been shown to inhibit alpha glucosidase[101]. 
Prebiotics can feed the gut microbiome and increase the population of L-cells in the 
intestine and thereby increase the amount of GLP-1[102] and prevent high fat diet 
induced insulin resistance[103]. In the recent PREMOTE randomized control trial 
(RTC) study, probiotics showed antidiabetic effect by altering metabolic homeostasis
[104]. Thus, GM may be useful in the management of DM[105]. Jafarnejad et al[106] 
(2015) and Asemi et al[107] (2014), in their two studies showed multi-probiotic 
supplement as well as synbiotic (L. sporogenes plus inulin) product helps to reduce 
glucose and other metabolic parameters. Tonucci et al[108] (2015) in their double-blind 
RCT study comparing fermented milk containing L. acidophilus (LA-5) plus B. animalis 
(Lactis BB-12) with plain fermented milk in 45 type 2 DM subjects showed decreased in 
HbA1c as well as low-density lipoproteins cholesterol and inflammatory cytokines. 
Multiple RTCs and the meta-analysis of these RCT’s with different gut microbes 
demonstrated antidiabetic effect as well as effect on different metabolic parameters
[109-111] (Table 3).

A recent meta-analysis of 14 RCTs showed significant decrease in HbA1c in the 
probiotic group compared to placebo controls, weighted mean difference (WMD) is - 
0.33%, 95%CI -0.53 to –0.13, P = 0.001. In this meta-analysis, probiotics significantly 
reduced fasting blood glucose, insulin, lipid profile and inflammatory marker in 
addition to blood pressure levels[112]. Another meta-analysis showed similar result 
with reduction in HbA1c% (WMD = - 0.24, 95%CI: - 0.44 to - 0.04, P = 0.02), fasting 
blood glucose (WMD = - 0.44 mmol/L, 95%CI: - 0.74 to - 0.15, P = 0.003)[113,114]. A 
meta-analysis study done in 2021 with probiotics, prebiotics or synbiotics on type 2 
DM also showed significant improvement in glucose and other metabolic parameters
[115]. Prebiotic inulin improves glycemic control in young adults with type 1 DM
[116]. Certain specific species of probiotic microbes as well as certain prebiotics by 
altering the GM was shown to improve the auto-immune condition, which plays a 
major role in the pathogenesis of type 1 DM[117].

A study by Didari et al[118] (2014) looked at the safety of probiotics and synbiotics 
and found that certain populations, such as patients who are immunocompromised, 
with cardiac valvular disease, having a central venous catheter, or those with short-
bowel syndrome may have an increased risk for systemic infections. Thus, caution 
may be warranted when using these products in diabetic patients and a risk-benefit 
analysis should be considered.

GUT MICROBES AND THE PREVENTION OF DM
Some preliminary evidence in animal studies indicates altering GM may help to 
prevent DM[119,120]. A recent study by Gurung et al[30] (2020) showed with certain 
gut microbes l ike Bifidobacterium, Bacteroides, Faecalibacterium, Akkermansia  and 
Roseburia have a negative association with DM and appears to be protective. In 42 
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healthy adults, GM Lactobacillus johnsonii seems to reduce the risk of type 1 DM[121].

CONCLUSION
Gut dysbiosis plays a role in the development and progression of DM. The current 
evidence also points out that the GM can play a role in DM related complications. 
Modulation of the gut bacteria or dysbiosis can be corrected by fibre, diet, antidiabetic 
medications, and by using gut biotics like prebiotics, probiotics, and synbiotics as well 
as by bariatric surgery and faecal transplantation. The interaction between gut 
microbes and antidiabetic agents is a promising field that may change the landscape of 
DM management in the future. There is some preliminary evidence to show that GM 
may play a role in the prevention of DM. More research is needed on a large scale to 
confirm these findings.
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