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A B S T R A C T   

Purpose: The aim of this study was to establish and evaluate a fully automatic deep learning system for the 
diagnosis of COVID-19 using thoracic computed tomography (CT). 
Materials and methods: In this retrospective study, a novel hybrid model (MTU-COVNet) was developed to extract 
visual features from volumetric thoracic CT scans for the detection of COVID-19. The collected dataset consisted 
of 3210 CT scans from 953 patients. Of the total 3210 scans in the final dataset, 1327 (41%) were obtained from 
the COVID-19 group, 929 (29%) from the CAP group, and 954 (30%) from the Normal CT group. Diagnostic 
performance was assessed with the area under the receiver operating characteristic (ROC) curve, sensitivity, and 
specificity. 
Results: The proposed approach with the optimized features from concatenated layers reached an overall accu
racy of 97.7% for the CT-MTU dataset. The rest of the total performance metrics, such as; specificity, sensitivity, 
precision, F1 score, and Matthew Correlation Coefficient were 98.8%, 97.6%, 97.8%, 97.7%, and 96.5%, 
respectively. This model showed high diagnostic performance in detecting COVID-19 pneumonia (specificity: 
98.0% and sensitivity: 98.2%) and CAP (specificity: 99.1% and sensitivity: 97.1%). The areas under the ROC 
curves for COVID-19 and CAP were 0.997 and 0.996, respectively. 
Conclusion: A deep learning–based AI system built on the CT imaging can detect COVID-19 pneumonia with high 
diagnostic efficiency and distinguish it from CAP and normal CT. AI applications can have beneficial effects in 
the fight against COVID-19.   

1. Introduction 

In the city of Wuhan in China, a pneumonia outbreak that developed 
due to a novel coronavirus was detected in December 2019. The 
outbreak could not be taken under control and it spread all around the 
world, resulting in a pandemic. The novel coronavirus was defined as 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the 
disease that resulted from the virus was defined as coronavirus disease 
2019 (COVID-19) by the World Health Organization.1 As of March 5, 
2021, approximately 116 million COVID-19 cases and higher than 2.5 
million deaths were reported all around the world.2 

Community-acquired pneumonia (CAP) is a pulmonary parenchymal 
infection acquired outside a healthcare setting. Despite bacterial in
fections are responsible for the majority of CAP, viral infections also are 
not uncommon.3,4 The clinical symptoms of CAP and COVID-19 

associated pneumonia are generally similar.5 The test used as standard 
to confirm the diagnosis of COVID-19 is reverse transcription polymer
ase chain reaction (RT-PCR). However, RT-PCR sensitivity may not be 
high enough for early diagnosis and treatment of patients. Several 
studies have shown that thoracic computed tomography (TCT), which 
can be easily accessed in many hospitals, is a useful test that can be used 
in the diagnosis of COVID-19 pneumonia under current pandemic con
ditions. In addition, RT-PCR gives false negative results while abnor
malities compatible with COVID-19 pneumonia may be observed in TCT 
when the viral load is insufficient. TCT has been shown to have a higher 
sensitivity in the diagnosis of COVID-19 compared to RT-PCR samples. 
Therefore, TCT may play a very important role in the early detection and 
treatment of COVID-19 pneumonia.6–8 

Artificial intelligence (AI) is one of the most recent topics in medical 
imaging and has led to major changes in diagnostic imaging systems. 
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The development of deep learning methods and especially the use of 
convolutional neural networks (CNNs) have led to significant perfor
mance gains compared to classical machine learning techniques. AI 
applications are currently used in areas such as evaluation of lung 
nodules, detection of diffuse lung diseases, diagnosis of tuberculosis and 
pneumonia in thoracic imaging.9 Recently, a number of articles have 
reported that deep learning techniques have promising results in 
increasing pulmonary nodule detection sensitivity and predicting ma
lignancy.10,11 In addition, AI applications were used to differentiate viral 
pneumonia from bacterial pneumonia on chest radiography in pediatric 
patients prior to the COVID-19 pandemic and successful results were 
obtained.12 Recently, the efficacy of AI applications in the diagnosis of 
COVID-19 pneumonia has been evaluated in some recent studies and has 
been shown to have high diagnostic performance in this field.13–17 

In this study, a private dataset (CT-MTU) of TCT images that can be 
used as an instance of imminent deep learning applications in the field of 
medical has been utilized. This retrospectively planned study aims to 
evaluate the effectiveness and diagnostic performance of artificial in
telligence applications in the diagnosis of COVID-19 pneumonia using 
TCT images. CAP and normal TCT images were also included in the 
study to test the robustness of the model. 

2. Materials and methods 

2.1. Patients 

Patients who applied to Malatya Turgut Ozal University Training and 
Research Hospital and met the study criteria were included in this 
retrospectively planned study. This study was conducted in a tertiary 
university hospital, the primary admission center for patients with 
COVID-19 in the region. This study was conducted in accordance with 
the Declaration of Helsinki and ethics committee approval was obtained 
from Fırat University Ethics Committee for the study (ethics committee 
number/date: 416900/08.10.2020). A search was made with the diag
nostic code “COVID-19” among the patients who applied to the hospital 
between April 01, 2020 and October 01, 2020 using the hospital auto
mation system for the COVID-19 group. Patients with negative RT-PCR 
results, no or normal TCT, and signs of non-pneumonia disease on TCT 
were excluded from the study. In conclusion, a total of 502 COVID-19 
pneumonia patients with confirmed positive RT-PCR results and TCT 
images for SARS-COV-2 were included in the study. A search was made 
with the diagnostic code “pneumonia” using the hospital automation 
system among the patients who applied to the chest diseases outpatient 
clinic between January 01, 2019 and September 01, 2019 for the CAP 
group. A total of 290 CAP patients were included in the study after 
exclusion of patients with no or normal TCT and signs of non-pneumonia 
disease on TCT. A search was made with the diagnostic code “pulmonary 
nodule” using the hospital automation system among the patients who 
applied to the chest diseases outpatient clinic between January 01, 2019 
and September 01, 2019 to determine the Normal control group. After 
excluding patients with no CT and pathological CT findings, a total of 
161 patients with normal TBT were included in the study as the Normal 
group. The Normal control group consisted of patients with completely 
normal CT findings. Patients with any pathology on CT including pul
monary nodules were excluded from this group. The demographic 
characteristics of the three groups is given in Table 1. 

As a result, the final cohort was formed as 502 COVID-19, 290 CAP, 
and 161 Normal. A total of 3210 TCT scans were selected from 953 
patients included in the study. Of the total 3210 scans in the final 
dataset, 1327 (41%) were obtained from the COVID-19 group, 929 
(29%) from the CAP group, and 954 (30%) from the Normal CT group. 
The diagram including the design of the study is provided in Fig. 1. 

2.2. CT protocol 

All the images were obtained via a 16-slice CT device (Philips 

Medical Systems, Shenyang, China) with patients at the end of inspira
tion and in the supine position. The axial images were obtained cra
niocaudally and included the body parts from the thoracic inlet to the 
diaphragm. No contrast media was used during the scans. The scans 
were performed with the following technical parameters: 120 kV, 250 
mA, 0.625 slice thickness, 512 × 512 matrix. The reconstructed images 
were also obtained and used in the current study. 

2.3. CT analysis 

CT images were analyzed by a radiologist and three pulmonologist 
with at least 8 years of experience (E.I., A.A.G., N.K.B. and M.S. with 15, 
11, 10 and 8 years of experiences in chest imaging interpretation, 
respectively). In CT, the lung was segmented manually to remove 
extrapulmonary sites. The entire dataset was pre-processed by adjusting 
the CT window width and lung window level. Lesion sections in COVID- 
19 or CAP patients were manually labeled and used as the reference 
standard to train the deep neural network. The representative images 
from CT-MTU dataset is demonstrated in Fig. 2. 

2.4. MTU-COVNet: deep CNN architecture for classifying CT images 

In this section, the evaluation of the proposed method is presented. 
The proposed approach includes the feature reduction with the Binary 
Harris Hawk Optimization (BHHO) method to execute the classification 
process on CT-MTU dataset by concatenating the deeper layers of pre- 
trained CNN models AlexNet, ResNet-50 and SqueezeNet. The Support 
Vector Machine Classifier (SVMC) was employed to label the test TCT 
images with their putative features and compare the performance of the 
classification via some evaluation metrics. Three pre-trained deep 
network models, ResNet-50, AlexNet, and SqueezeNet are preferred due 
to ease of use, training time consumption, and structural simplicity.18–20 

The input images were resized to 224 × 224 to be compatible with 
ResNet-50, 227 × 227 for AlexNet and SqueezeNet models. The number 
of the data was expanded by applying image augmentation methods as 
online throughout the learning period. The imbalance problem in the 
number of images for the classes may not be suitable for building a 
robust image classifier. Besides, image augmentation methods have 
been used to eliminate the overfitting problems in the literature. The 
image data augmentation library of MATLAB was used to perform the 
augmentation. The augmented image data store applies a combination 
of multiple transformations, such as; random rotation (in the range 
[− 1010] degrees), vertically and horizontally reflection, and shear (in 
the range of [− 0.7 0.7] horizontal and vertical) to the training data. The 
classification process proposed in this study consists of three stages: 
feature extraction using pre-trained deep network structures, reducing 
the size of the obtained feature vectors by the BHHO method, and finally 
determining the labels of the CT images by utilizing the SVMC. The deep 
CNN features were extracted from fc7, avg_pool and new_conv10 acti
vations from AlexNet, ResNet-50 and SqueezeNet, respectively. At first, 
four different feature sets were constructed by the output of the fc7, 
avg_pool and new_conv10 layers, such as AlexNet (fc7 3210 × 4096), 
ResNet-50 (avg_pool 3210 × 2048), SqueezeNet (new_conv10 3210 ×
588) and AlexNet (fc7) + ResNet-50 (avg_pool) + SqueezeNet 

Table 1 
Demographic characteristics of the three groups.   

COVID-19 CAP Normal p 

Patients, n(%) 502 (52.7) 290 (30.4) 161 (16.9)  
Exams, n(%) 1327 (41) 929 (29) 954 (30)  
Age, yrs     

Mean 66.3 ± 15.1 66.8 ± 16.7 42.3 ± 18.6 <0.001 
<40 31 (6.2) 24 (8.3) 87 (54)  
40–65 182 (36.3) 88 (30.3) 51 (31.7)  
>65 289 (57.6) 178 (61.4) 23 (14.3)  

Sex, male/female 289/213 174/116 81/80 >0.05  
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(new_conv10). Consequently, 3210 × 6732 dimensional concatenated 
feature vectors were obtained. Since the concatenated deep features 
contain many avoidable components in their structure, the necessity of 
feature selection methods arose. The feature selection method aims to 

obtain the best features that define the target class during the classifi
cation process by removing unrelated characteristics. In this way, clas
sification quality is improved, and temporal problems are eliminated.30 

In this study, the BHHO algorithm was used to achieve lower 

Fig. 1. Schematic view of study design.  

Fig. 2. Representative images from CT-MTU dataset.  
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computation costs and higher accuracy performance by reducing feature 
sizes. This technique is a metaheuristic optimization algorithm that is 
the preferred wrapper method for feature selection.21 The size of the 
total feature vector decreased from 3210 × 6732 to 3210 × 4247 after 
the optimization process. All the feature sets were normalized according 
to the zero mean. The SVMC was used in the classification stage with 
70% training and 30% testing data partition. SVMC aims to find the most 
appropriate separator plane that classifies the dataset as much as 
possible by determining the situation where the distance between the 
two classes is the greatest.22–24 The impact of the proposed method on its 
accuracy and evaluation metrics are discussed with the computational 
efficiency. All the experiments were performed in a MATLAB environ
ment running on a PC with AMD Ryzen 52,600 3.4GHz CPU, 64 GB 
memory, and 12 GB NVIDIA GeForce RTX 2080 TI GPU. The proposed 
approach is demonstrated in Fig. 3. 

2.5. Statistical analysis 

The evaluation metrics such as accuracy, sensitivity, specificity, 
precision, F1 score, and Matthew Correlation Coefficient (MCC) were 
statistically computed from the confusion matrix to evaluate the quan
titative performance of the proposed method. The confusion matrix 
consists of rows and columns for predicted classes and actual classes, 
respectively. The diagonal cells correspond to observations classified 
correctly, while other cells correspond to observations classified incor
rectly. The number of observations and the percentage of the total 
number of observations are given in each cell. The rightmost column of 
the chart shows the percentages of all samples estimated to belong to 
each class that were classified correctly (precision metrics) and incor
rectly (false discovery rate metrics). The row showing the percentages of 
all samples is at the bottom of the matrix for each class classified 
correctly (true positive rate metrics) and incorrectly (false negative rate 
metrics). The cell in the bottom right corner of the matrix shows the 
overall accuracy. Also, one of the most widely used metrics to evaluate 
the performance of machine learning algorithms is the Receiver Oper
ating Characteristic (ROC) curve, which provides the true-positive rate 

as a function of the false-positive rate. Statistical analyses were per
formed using MATLAB packages. The selected evaluation metrics are 
defined as: 

Accuracy =
NTP + NTN

NTP + NTN + NFP + NFN
(1)  

Sensitivity =
NTP

NTP + NFN
(2)  

Specificity =
NTN

NTN + NFP
(3)  

Precision =
NTP

NTP + NFP
(4)  

F1 =
2NTP

2NTP + NFP + NFN
(5)  

MCC =
NTPNTN − NFPNFN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(NTP + NFP)(NTP + NFN)(NTN + NFP)(NTN + NFN)

√ (6)  

3. Results 

3.1. Patient characteristics 

There was no statistical difference between the groups in terms of 
gender (p = 0.13, X2:4.07). The ages of the patients in the Normal group 
were statistically significantly lower compared to the other two groups 
(p < 0.001 in both groups) whereas there was no difference between 
COVID-19 and CAP patients in terms of age (p > 0.05) (Table 1). 

3.2. Performance of MTU-COVNet 

In this subsection, a performance comparison of the pre-trained 
models and the proposed architecture is given. Fig. 4 illustrates the 
convergence curve of BHHO methods for the most characteristic features 

Fig. 3. Illustration of the proposed approach.  
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from the concatenated deep features. The size of the total feature vector 
decreased from 3210 × 6732 to 3210 × 4247 after optimization, while 
the total accuracy value increased to 97.7%. The distribution of patients 
in the 3210 × 4247 dimensional feature space given in Fig. 5. Dimension 
reduction in the concatenated feature vector was completed by taking 
feedback from the KNN (K-Nearest Neighbors) objective function. Thus, 
a feature set with the highest accuracy could be identified. 

Fig. 6 demonstrates the multi-class confusion matrix of the SVMC 
that was fed by the optimized feature set. According to the confusion 
matrix, there are 22 misclassified samples among 963 test samples. The 
most misclassified samples were found to be in the CAP class, with 8 
samples. The detailed classification results of the SVMC for all feature 
sets from selected layers were given in Table 2. Here, we can see a 
remarkable performance enhancement in all classes and overall criteria. 

COVID-19 class achieved the best accuracy result, whereas the CAP 
and Normal classes have the performance of 97.13% and 97.55%, 
respectively. The obtained results show that the Normal class had higher 
values of specificity, precision, F1 score, and MCC as 99.26%, 98.24%, 
97.89%, and 97.01%, respectively. The ROC curves of the predicted 
classes with AUC values were given in Fig. 7. The area of the ROC curve 

was obtained as 0.997, 0.999, and 0.996 for COVID-19, Normal, and 
CAP classes, respectively. 

The general classification scores of the SVMC is given in Table 3. The 
results in the table indicate that, the best total metric values for the CT- 
MTU dataset were observed in the optimized network with 4247 fea
tures. The model with optimized features from concatenated layers 
reached an overall accuracy of 97.7% for the CT-MTU dataset. The rest 
of the total performance metrics specificity, sensitivity, precision, F1 
score, and MCC were 98.8%, 97.6%, 97.8%, 97.7%, and 96.5%, 
respectively. 

The radar chart in Fig. 8, plotted according to the data in Table 3, 
depicts a comparison of performances of the proposed method and other 
features set. The proposed method has ability to provide an improve
ment in MCC. Accuracy and F1 score computed on confusion matrices 
have been among the most popular metrics in classification tasks. These 
evaluation metrics can lead to inflated, overly optimistic results in 
imbalance dataset. An effective solution to the class imbalance issue 
comes from the highest MCC. The proposed method provided 3%, 5%, 
9% and 15% enhancements over Concatenated, ResNet-50, AlexNet and 
SqueezeNet, respectively. 

4. Discussion 

In this study, we proposed a novel hybrid methodology for diag
nosing the COVID-19 pneumonia with optimized features from multi 
pre-trained net. The feature selection method based on the metaheuristic 
optimization algorithm was used to achieve lower computation costs 
and higher accuracy performance by reducing the feature size. An 
example was illustrated where the feature selection with BHHO tech
nique can provide novel insight into medical research and test the model 
with the CT images of COVID-19, CAP and Normal situations. We found 
in an independent test dataset that this model showed high diagnostic 
performance in detecting COVID-19 pneumonia and CAP (diagnostic 
accuracy: 98.2% and 97.1, respectively). In addition, we determined the 
areas under the ROC curves for the COVID-19, CAP, and Normal groups 
as 0.997, 0.996, and 0.999, respectively. 

The number of COVID-19 cases and disease mortality are rapidly 

Fig. 4. The convergence curve of the BHHO method.  

Fig. 5. The scatter plot of the optimized features.  

Fig. 6. The multi-class confusion matrix of the SVMC with optimized features. 
(TPR: True positive rate, FNR: False negative rate, NTP: Observations classified 
correctly, NFN: Observations classified incorrectly. *The percentage of the total 
number of observations are given in each cell.) 
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increasing all over the world despite the measures taken.2 COVID-19 
often involves the lower respiratory tract and leads to pneumonia. 
CAP and COVID-19-associated pneumonia can be clinically confused. 
However, it is crucial to distinguish COVID-19 pneumonia from CAP and 
isolate these patients as it may cause significant public health problems 
in the current pandemic conditions. In addition, early recognition and 
hospitalization of severe forms of COVID-19 patients are vital due to 
different treatment approaches and high mortality rates.5,25 RT-PCR is 
considered the reference standard for the diagnosis of COVID-19. 
However, it has been reported that TCT can be used as a reliable and 
fast approach to COVID-19 screening.6–8 Typical CT results observed in 
COVID-19 pneumonia are bilateral, peripheral, scattered ground glass 
opacities and consolidations.26 It is important that radiologists are 

familiar with the typical CT features associated with this new infection 
and the imaging criteria for an alternative diagnosis, given the impor
tant role of TCT in the diagnosis of COVID-19. However, one of the most 
important problems in the pandemic process is the lack of sufficient 
number of radiologists to evaluate TBT images. In addition, these pa
tients have to be followed not only by chest disease specialists who are 
familiar with lung radiology but also by many physicians from different 
branches during the pandemic. Artificial intelligence applications have 
become very important for the diagnosis of COVID-19 in order to 
accelerate the diagnosis of the disease and to support clinicians in the 
pandemic conditions where a limited number of chest diseases doctors 
cannot handle the current patient burden. 

The efficacy of AI applications in differentiating COVID-19 pneu
monia from other pneumonia in TCT sections has also been analyzed in 
some studies so far. Diagnostic yield was found to be between 85% and 
99% in these studies.27 One of the first studies on this subject was 
conducted by Li et al..13 Li et al. developed a CT-based artificial intel
ligence software to detect patients with COVID-19 pneumonia and found 
the sensitivity and specificity of this software for the diagnosis of 
COVID-19 pneumonia to be 90% and 96%, respectively. Data including 
400 COVID-19, 1396 community-acquired pneumonia and 1173 non- 
pneumonia (normal or non-pneumonia disease) patients were trained 
on the network in this study. The network was tested and evaluated with 
data from 68 patients with COVID-19, 155 patients with community- 
acquired pneumonia, and 130 patients with non-pneumonia. Diag
nostic efficiency was found to be high in this study, which has a very 
large data set. 924 COVID-19 and 342 other pneumonia patients created 
an artificial intelligence software using an educational dataset including 
CT scans in a study by Wang et al..15 They used two data sets for testing 
in this study: the first data set included 102 COVID-19 cases and 124 
other pneumonia cases whereas the other data set included 92 COVID- 
19 cases and 69 other pneumonia cases. The sensitivity and specificity 
for the diagnosis of COVID-19 pneumonia were found to be 79% and 
81%, respectively, in this study. Similarly, Zheng et al.16 developed an 
artificial intelligence software using a total of 540 patients, 313 of whom 
had COVID-19 pneumonia. The AI program evaluated 540 patients by 
dividing them into a test dataset according to training/validation 

Table 2 
The performance comparison of the MTU-COVNet and the other CNN for each class.  

Deep CNN architectures Class Accuracy Specificity Sensitivity Precision F1 MCC 

SqueezeNet (new_conv10 layer) CAP 82.37% 96.50% 82.37% 90.51% 86.25% 81.21% 
COVID-19 88.44% 89.73% 88.44% 85.85% 87.13% 77.86% 
NORMAL 91.64% 94.53% 91.64% 87.67% 89.61% 85.10% 

AlexNet (fc7 layer) CAP 89.57% 97.08% 89.57% 92.57% 91.04% 87.51% 
COVID-19 91.48% 93.79% 91.48% 91.25% 91.36% 85.24% 
NORMAL 93.71% 96.16% 93.71% 91.16% 92.41% 89.16% 

ResNet-50 (avg_pool layer) CAP 91.37% 97.81% 91.37% 94.42% 92.87% 90.07% 
COVID-19 94.22% 95.22% 94.22% 93.28% 93.75% 89.31% 
NORMAL 96.52% 97.78% 96.52% 94.86% 95.68% 93.83% 

Concataned CAP 94.24% 98.54% 94.24% 96.32% 95.27% 93.39% 
COVID-19 96.48% 97.70% 96.48% 96.73% 96.60% 94.22% 
NORMAL 97.21% 97.78% 97.21% 94.90% 96.04% 94.35% 

Optimized CAP 97.13% 99.12% 97.13% 97.83% 97.48% 96.46% 
COVID-19 98.24% 98.05% 98.24% 97.26% 97.75% 96.16% 
NORMAL 97.55% 99.26% 97.55% 98.24% 97.89% 97.01%  

Fig. 7. The ROC curves of all classes for optimized features.  

Table 3 
The general classification scores of the SVMC for CT-MTU dataset.  

Net The general classification scores of the SVMC 

Acc. Spec. Sens. Prec. F1 MCC 

SqueezeNet 87.64% 93.59% 87.48% 88.01% 87.66% 81.39% 
AlexNet 91.59% 95.68% 91.58% 91.66% 91.61% 87.31% 
ResNet-50 94.08% 96.94% 94.03% 94.19% 94.10% 91.07% 
Concatenated 96.05% 98.01% 95.98% 95.98% 95.97% 93.99% 
Optimized 97.72% 98.81% 97.64% 97.78% 97.71% 96.54% 

The classification scores of the SVMC for CT-MTU dataset for optimized features are given in Table 3, on the last line. 
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datasets and different time periods, and the sensitivity and specificity of 
the test for COVID-19 pneumonia were found to be 90% and 91%, 
respectively, in this study. TBT has proven to be a very sensitive tech
nique in the diagnosis of COVID-19 pneumonia, but its specificity is 
relatively low. Although it is easy to distinguish COVID-19 pneumonia 
from bacterial pneumonia with CT, it may be difficult to differentiate, 
especially from viral interstitial pneumonias.6,28 In our study, all 
pneumonia cases including interstitial pneumonias were included in the 
community-acquired pneumonia group. Therefore, in our study, the 
effectiveness of artificial intelligence in distinguishing between CAP 
subgroups and COVID-19 pneumonia was not examined. Cordoba 
et al.29 evaluated whether artificial intelligence application is useful for 
differentiating COVID-19 pneumonia from non-COVID-19 interstitial 
pneumonia. In this study which included 115 patients, it was deter
mined that a machine learning model based on whole lung HRCT 
radiomic footprint could be useful in differentiating COVID-19 pneu
monia from non-COVID-19 interstitial pneumonia. 

This study by the authors reveals that the proposed approach that 
one conducted with the private dataset obtained from local patients 
appears to have a higher diagnostic performance in the diagnosis of 
COVID-19 than the studies in the literature. The CAP and normal CT 
images were also included in the study to test the robustness of the 
model. One of the main reasons for this achievement is the large-scale 
images in our dataset. A combination of layers from pre-trained deep 
networks is used to achieve more complex and detailed features. In 
addition, the best features that define the target class were obtained in 
the classification process by removing the unrelated features with the 
feature selection method. The untruthful accuracy improvement 
brought about by imbalanced data distribution has been resolved by 
eliminating the temporal problems in features. In this way, classification 
quality is improved. Accordingly, the diagnostic accuracy, sensitivity, 
and specificity of AI administration in the detection of COVID-19 
pneumonia were 98.2, 98.0, and 98.2, respectively. 

Although the proposed structure yields worthy performance 
compared to others, it has several limitations. It can take advantage of a 
larger cohort size in different locations to see how different patient 

groups impact our model's success. Besides, the prognosis of the disease 
supported by clinical findings may affect the outcomes of the decision 
mechanism. Different CT slices belonging to a patient were used under 
the same class. Some of these images should be extracted into a separate 
file, and it could be beneficial to use the model in the testing phase. Any 
of these factors could have influenced the performance measures in our 
study. 

In conclusion, the results of this study showed that MTU-COVNet, an 
up-to-date network, distinguishes COVID-19 pneumonia from CAP and 
normal CT with high diagnostic efficiency in TBT images. AI applica
tions can have beneficial effects in the fight against COVID-19 by 
accelerating the diagnostic process, increasing diagnostic efficiency, and 
reducing the workload of doctors working especially on the front lines. 
Real-time applications of AI will be on the agenda to help doctors detect 
COVID-19 infection in the near future. 
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