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Atmospheric methane removal (e.g. in situ methane oxidation to carbon dioxide) may be
needed to offset continued methane release and limit the global warming contribution of
this potent greenhouse gas. Because mitigating most anthropogenic emissions of methane is
uncertain this century, and sudden methane releases from the Arctic or elsewhere cannot be
excluded, technologies for methane removal or oxidation may be required. Carbon dioxide
removal has an increasingly well-established research agenda and technological foundation.
No similar framework exists for methane removal. We believe that a research agenda for
negative methane emissions—‘removal’ or atmospheric methane oxidation—is needed. We
outline some considerations for such an agenda here, including a proposed Methane Removal
Model Intercomparison Project (MR-MIP).

This article is part of a discussion meeting issue ’Rising methane: is warming feeding
warming? (part 1)’.

1. Introduction
The concentration (i.e. mole fraction) of methane (CH4) in the atmosphere continues to rise.
The 14.7 ppb average global increase observed in 2020 was the largest of the past four decades
[1]. Since 1750, its relative concentration has increased twice as fast as that of carbon dioxide
(CO2) and is now more than 2.5 times pre-industrial levels [1]. Methane is the second most
important anthropogenic greenhouse gas after CO2; the radiative forcings attributable to its direct
(0.64 W m−2) and direct-plus-indirect effects (0.97 W m−2) are 38% and 58%, respectively, of the
1.68 W m−2 for CO2 [2].

Global methane emissions approached a record 600 Tg CH4 yr−1 in 2017 (figure 1, precise
estimates and uncertainties shown in table 1), with anthropogenic sources contributing 61% of
the total (approx. 365 Tg CH4 yr−1; [5–7]). The global total for 2017 was 50 Tg CH4 yr−1 more
than the average for the period 2000–2006, primarily because anthropogenic emissions were
13% higher. Agriculture-related sources in 2017 contributed approximately two-thirds of global
anthropogenic methane emissions (227 Tg CH4 yr−1) and fossil fuels contributed the other third
(108 Tg CH4 yr−1), with a smaller contribution from biomass burning (28 Tg CH4 yr−1) [5].

As the dominant global source of anthropogenic methane, agricultural emissions are
attributable primarily to cattle, sheep, and other ruminants, rice farming, and managing manures
and waste. Methane emissions from agriculture continue to rise (figure 1), driven by global
increases in total and per capita meat consumption as global population and wealth grow [8]. A
number of technological and behavioural changes can, and likely will, reduce methane emissions
substantially [9,10].

Reaching zero methane emissions in global food production appears particularly unlikely
this century (figure 1). Dietary supplements such as essential oils and red algae can reduce
methane emissions from individual cattle and sheep, but they sometimes do so at the expense
of feed digestion and fermentation efficiency [11]. For rice farming, a meta-analysis of 52 studies
found that non-continuous flooding reduced methane emissions by 53% on average compared
to continuously flooded paddies; however, nitrous oxide (N2O) emissions increased by 105% and
yield decreased by 4% [12]. Agricultural activities also dominate anthropogenic emissions of N2O
[13] along with those of CH4 [14].

Methane emissions associated with the extraction, distribution, and use of fossil fuels grew
by one-sixth from the early 2000s to 2017 [5,7]. New satellite, drone and other image-based
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Figure 1. Global anthropogenic CH4 emissions (Mt CH4 yr−1) for the recent past and up to 2100 following the SSP emissions
scenarios. Black lines show historical estimates from Hoesly et al. [3]; coloured lines show future projected emissions under
the SSP marker scenarios [4]. Solid lines denote anthropogenic total emissions, whereas dashed lines show emissions from
agriculture alone. Data available from https://tntcat.iiasa.ac.at/SspDb (accessed 11 May 2021). (Online version in colour.)

Table 1. Global methane emissions in 2017. Values are given in Tg CH4 yr−1 withminimum andmaximum estimates in brackets
(from data in [5,7]).

total anthropogenic agriculture fossil fuels biomass burning

596 (572–614) 364 (340–381) 227 (205–246) 108 (91–121) 28 (25–32)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

approaches are helping to find and reduce fossil-fuel-related emissions (e.g. [15]). Although
perhaps not as intractable as eliminating agricultural emissions, eliminating all fugitive and
other emissions associated with energy extraction and use also seems difficult, unless fossil fuel
consumption were to end entirely [16].

Along with difficulties in reaching zero methane emissions from agriculture and fossil fuel use,
Earth-system feedbacks could rapidly increase methane emissions from natural systems [17,18].
Potential methane release from permafrost systems in the East Siberian Arctic Shelf (ESAS) is one
possibility. This concern arises from suggestions that rapid methane release 55 million years ago
at the boundary of the Paleocene and Eocene epochs triggered temperature increases of 5–8°C
globally [18]. A recent study in the nearshore environment of the ESAS showed that ice-bonded
permafrost had retreated 14 cm yr−1 over the past three decades [19]. Such subsea permafrost
degradation or loss of coastal methane clathrates could lead to bursts of methane reaching
the atmosphere, depending on water depth and other factors. Although recent shipborne and
latitudinal analyses of methane emissions do not suggest that increased emissions from Arctic
systems have begun [5,7,20], a future scenario of accelerated methane release is possible [21,22].

Atmospheric methane removal may be needed to offset continued methane release and limit
the global warming contribution of this potent greenhouse gas. Eliminating most anthropogenic
methane emissions is unlikely this century, and sudden methane release from the Arctic or
elsewhere cannot be excluded, so technologies for negative emissions of methane may be needed.
Carbon dioxide removal (CDR) has a well-established research agenda, technological foundation
and comparative modelling framework [23–28]. No such framework exists for methane removal.
We outline considerations for such an agenda here. We start by presenting the technological

https://tntcat.iiasa.ac.at/SspDb
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considerations for methane removal: energy requirements (§2a), specific proposed technologies
(§2b), and air processing and scaling requirements (§2c). We then outline the climate and air
quality impacts and feedbacks of methane removal (§3a) and argue for the creation of a Methane
Removal Model Intercomparison Project (§3b), a multi-model framework that would better
quantify the expected impacts of methane removal. In §4, we discuss some broader implications
of methane removal.

2. Technological aspects of methane removal

(a) Energy requirements of methane removal
We first compare and contrast aspects of CH4 and CO2 removal. In contrast to CO2, CH4
can be oxidized catalytically, without the need for capture, in a thermodynamically favourable
reaction: CH4 + 2O2 → CO2 + 2H2O (�Hr = −803 kJ mol−1), although such a reaction is difficult
at typical conditions of atmospheric temperature and pressure [29]. Because of methane’s potency
as a greenhouse gas (34 times higher Global Warming Potential (GWP) than CO2 on a century
timescale and 86 times higher on a 20-year timescale, [30]), considerably less methane removal is
needed to realize the same climate impact. In fact, methane concentrations could in principle
be restored to preindustrial levels (approx. 750 ppb) by removing approximately 3.2 of the
5.3 Gt CH4 currently found in the atmosphere [31], though methane could only be maintained
at preindustrial levels by continuous removal that at least balanced anthropogenic methane
emissions, currently 0.36 Gt CH4 yr−1 (table 1). This amount is orders of magnitude lower than
annual anthropogenic emissions of carbon dioxide, which are currently approximately 40 Gt CO2
[32]. Some disadvantages of removing CH4 compared with CO2 are its relative scarcity in the
atmosphere (200 times less abundant) and its lack of a quadrupole moment or weak acidity that,
in the case of CO2, can be exploited for concentration and capture.

This relative scarcity of methane in the atmosphere leads to a higher minimum energy
requirement for methane removal compared to CO2. The goal in a system meant to separate
methane from air is to isolate dilute methane from the ambient air and separate it into a higher
purity stream that can later be oxidized (forming CO2 and H2O) or used. We consider the absolute
minimum thermodynamic work to separate species that must be provided to a system, given that
it is reversible, isothermal and isobaric. This value depends on the inlet purity, outlet purity and
per cent capture of the system, resulting in a logarithmic rather than linear relationship with inlet
concentration. The empirical formula for this is given by Minimum Thermodynamic Work of
Separation [33,34]

Wmin = RT(nB,s ln(yB,s) + nB−s ln(yB−s)) + RT(nc,s ln(yC,s) + nC−s ln(nC−s))

− RT(nA,s ln(yA,s) + nA−s ln(yA−s)), (2.1)

where R is the ideal gas constant, T is the temperature in K, ni,s is the molar flow rate of a specific
species in a stream, i, which can be either A, B or C, representing the inlet, species-rich and exhaust
streams, respectively, ni−s is the molar flow rate of the stream not containing the specific species,
yi,s is the mole fraction of the specific species in a stream and yi−s is the mole fraction of the stream
not containing the specific species.

In the case of capturing CO2 from the atmosphere at an average concentration of 410 ppm with
a capture fraction of 70% and an outlet purity of 97% CO2, the minimum work is approximately
20.2 kJ mol−1 CO2 [34]. The energy requirement decreases as the concentration of CO2 increases.
For example, the CO2 concentration of a natural gas exhaust stream is often 3–5% (30 000–
50 000 ppm). Given the same capture fraction and outlet purity, the minimum work of CO2
capture would be 8–9 kJ mol−1 CO2 [34].

Here, we estimate the minimum work of separation for methane in a generic process. The inlet
concentration of CH4 is assumed to be the average atmospheric concentration, approximately
1.88 ppm [1], approximately 200 times more dilute than atmospheric CO2. The increased dilution
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results in a minimum work of separation of nearly 33.5 kJ mol−1 CH4, at the same capture fraction
of 70% and outlet purity of 97% CH4 that we used for CO2. This minimum work of separation
is 60% higher for methane than for CO2 in the atmosphere, meaning that the minimum energy
per mole removed for a methane removal system is 60% higher than for a CO2 removal system.
However, because of the higher radiative forcing of methane, removing one mole from the
atmosphere has a greater short-term climate impact than removing one mole of CO2.

To illustrate the higher radiative forcing associated with methane, the minimum work is
normalized to a measure of MJ per ton of CO2 equivalent (MJ/tCO2eq) using a global warming
potential over a 20-year time horizon (GWP20) of 86 and over a 100-year time horizon (GWP100)
of 34. With the same capture fraction of 70% and outlet purity of 97%, the minimum work of
methane capture is 24 MJ/tCO2eq and 62 MJ/tCO2eq using GWP20 and GWP100, respectively.
For CO2, the minimum work of capture is 459 MJ/tCO2, meaning that the minimum work of
capture for the same radiative forcing impact is 7 times lower using methane’s GWP20 and 19
times lower using GWP100. Figure 2 shows how the minimum work of atmospheric methane
capture varies with concentration and outlet purity, while holding capture fraction constant
at 70%.

As the concentration of methane increases, the minimum work of separation decreases. This
fact emphasizes that addressing higher concentration sources first is desirable, just as it is for CO2
removal, and that as more CH4 is captured directly from ambient air, further capture will require
more work per unit CH4 removed as the background concentration drops. However, this may
be remedied by strategically centring efforts of methane capture near regions where the methane
concentration is consistently higher than in ambient air, including those associated with oil or
natural gas extraction, abandoned coal mines, landfills and agriculture [35]. Technically, such
efforts would be better described as methane mitigation because they target oxidizing elevated
methane concentrations from known sources rather than methane at average concentrations in the
bulk atmosphere. A dairy farm, where methane concentrations can be as high as 1000 times the
average atmospheric concentration [36], is representative of a sector where methane emissions
may be relatively difficult to eliminate, and methane oxidation could be strategic to employ.
Avoiding methane emissions through local mitigation first—wherever possible—will almost
always be less expensive and energy-intensive than methane removal from the bulk atmosphere.

(b) Methane removal technologies
Atmospheric CO2 removal has a long history of research and a broad range of approaches studied
[25,26]. Biological approaches for CO2 removal include reforestation/afforestation, soil carbon
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Table 2. Summary table of some methods for extracting methane from the atmosphere.

method class medium air flow sample references

photocatalysts catalytic substrate in air active or passive [46] Nature
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

zeolites or PPNs metal catalysts substrate in air active or passive [31] Nature Sustain.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

iron-salt aerosols physical air passive [47] ESD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

biotrickling filters biological substrate in air active or passive [48] Ecol. Eng.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

soil amendments biological soil passive [44] Nutrient Cycling in Agroecosys.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sequestration, biomass energy with carbon capture and storage and ocean iron fertilization;
chemical or physical approaches include direct air capture of CO2 from ambient air, enhanced
mineral weathering and enhanced ocean alkalinity (e.g. [27,37]). Some degree and type of CDR
is included in all scenarios that keep average global surface warming below 1.5°C and most that
keep it below 2°C [38], with many analyses examining the feasibility of removing approximately
10 Gt CO2 yr−1 [39–41], roughly one quarter of current total anthropogenic emissions [32].

In contrast to a well-established research community around negative emissions of CO2, the
possibility of negative emissions for methane has been explored only relatively recently [31,42,43].
Soil-based agricultural approaches have a longer history of study (e.g. [44,45]), although often as
mitigation from known sources rather than removal of methane from bulk air.

Here, we describe broad classes of technologies for methane removal, including
photocatalysts, metal catalysts associated with zeolites and porous polymer networks, biological
methane removal, including industrial approaches and approaches for managing soils in
agricultural or other ecosystems, and iron-salt aerosol formation (table 2). For each of these
technologies, research is needed on its cost, technological efficiency, scaling and energy
requirements, social barriers to deployment, co-benefits and potential negative by-products.
Research is also needed broadly on methane sorption to concentrate methane from low-
concentration background air; having better sorbents would make methane removal technologies
more efficient generally.

Photocatalysts have the ability to oxidize methane and other hydrocarbons through
heterogeneous (multi-phase) catalysis. One such catalyst is solid titanium dioxide (TiO2), a
pigment used in paints and sunscreens. TiO2 is photocatalytically active when exposed to
ultraviolet (UV) radiation [49] and can catalyse the same reaction that occurs when a flare burns
methane:

CH4 + 2O2 → 2H2O + CO2. (2.2)

In general, the reaction products desorb or release after their formation [46,50], eliminating the
need for concentration and capture that occurs with geological carbon sequestration, but allowing
molecules of the less potent greenhouse gas CO2 to enter the atmosphere [43]. Photocatalysts such
as TiO2 can be applied in thin films to maximize surface contact with air. Silver-decorated zinc
oxide (Ag-ZnO) nanocatalysts are another class of methane photo-oxidants; Chen et al. [46] coated
ZnO semiconductors with Ag and documented a quantum yield of 8% at wavelengths less than
400 nm and greater than 0.1% at wavelengths of approximately 470 nm achieved for methane
oxidation on the Ag-ZnO nanostructures.

Cu- and Fe-zeolites and porous polymer networks (PPNs) are two families of methane-
oxidizing catalysts already of interest for converting methane to methanol (CH3OH), a partial
oxidation product compared with fully oxidized CO2. Methanol has a much shorter lifetime
than methane (weeks instead of years). Aluminosilicate zeolites have been well studied for the
adsorption of CO2 from the atmosphere. Methane can also be concentrated from the atmosphere,
but its interaction with the zeolite is weaker, on the order of approximately 5 kcal mol−1, as it relies
only on van der Waals interactions with the oxygen atoms in the walls of the zeolite lattice; by
contrast, CO2’s heat of adsorption can be as high as 14 kcal mol−1 given interactions with the CO2
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CH4 physisorption to zeolite lattice

CH4 physisorption into zeolite pocket

adsorbed CH4

adsorbed CH4

van der Waals

transition
state CH3 radical

difference in
apparent activation
barrier due to
difference in
physisorption of CH4
into different
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lattice

Figure 3. Comparison of two reaction coordinates for cleaving the strong H-C bond of CH4 (the first step inmethane oxidation).
The top (blue) reaction coordinate is for an H-atom abstraction of CH4 reacting with a CuII-O-CuII active site that is exposed on
the zeolite lattice. The bottom (red) reaction coordinate is for the same reaction as the top but with the CuII-O-CuII active site
located in a small pocket of a zeolite lattice. The strong physisorption of methane by the zeolite pocket (shown in the bottom
box) lowers the apparent activation barrier for the reaction (top right (green) arrow shows the decrease in the transition state
energy in red relative to blue reaction). (Online version in colour.)

quadrupole [51]. Scientists have screened more than 87 000 zeolite structures as potential methane
sorbents [52]. After methane molecules are weakly bound by oxygen groups on the zeolite, Cu,
Fe or other metal ions embedded on the lattice can oxidize the sorbed methane and release it as
CO2 [31]. For specific zeolite topologies, the physisorption interaction with a constricted pocket
in the lattice can contribute to lowering the apparent activation barrier in the catalysis of methane
oxidation (figure 3) [53]. Relatively low-temperature methane oxidation for producing methanol
has already been documented in zeolites such as Cu-ZSM-5 and Fe-ZSM-5, with Fe zeolites able
to oxidize methane at room temperature [52,54]. Metal or other catalysts can also be deposited on,
or embedded in, PPNs [55]. PPNs can be synthesized so that functional groups on the polymer
backbone interact with methane in the micropores of the network. Higher temperatures and
pressures lead to greater conversion efficiencies.

Microbes provide the second-largest natural sink for atmospheric methane of approximately
40 Tg methane annually [5]. At least two microbial groups, anaerobic archaea and aerobic
methanotrophic bacteria, possess enzymes that oxidize methane: methane monooxygenase and
methyl coenzyme M reductase [56]. These metalloenzymes also use Cu, Fe, or other metal sites
for catalysis and have interesting parallels with the metallozeolites [57]. Efforts are underway
to embed enzymes within three-dimensionally printed polymers that demonstrated promise in
maintaining their stability [58]. Consortia of microbes have also been shown to couple the direct,
anaerobic oxidation of methane to denitrification of nitrate, raising the potential of multi-gas
mitigation [59]. Biologically mediated methane-to-methanol conversions are of particular interest
in wastewater treatment systems where methanol is used to enhance denitrification rates [60].

Enhanced microbial oxidation of methane in agricultural and other soils or in artificial
substrates (e.g. biotrickling filters) is a microbially based approach for methane mitigation or
atmospheric removal (e.g. [44,45]). Han et al. [61] showed that amendments of biochar derived
from rice straw reduced methane emissions from paddy soils by 40% in microcosm experiments,
a case of methane mitigation from a known source (i.e. with elevated methane concentrations
in air). The decrease was attributable to both decreased activity of methanogens and increased
methane oxidation activity of methanotrophs. Sulfate additions have also been shown to reduce
methane emissions from rice paddies [62]. Miller et al. [63] demonstrated that iron and humic
acid amendments significantly suppressed in situ net methane fluxes by 26% in Arctic Alaska
peatland soils, likely by enhancing alternative electron acceptor availability. This example is more
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analogous to methane removal from the bulk air because it was not associated with a known
methane source.

Biotrickling filters have also been examined for methane removal from the atmosphere or
methane mitigation from point sources such as landfills. Yoon et al. [64] modelled the feasibility
of a biotrickling filtration system using methane-consuming bacteria to oxidize atmospheric
methane. Their model indicated that atmospheric methane removal would be ineffective because
the methane concentration is too low to enable cell survival. However, if concentrations were
increased to 500–6000 ppmv CH4, similar to concentrations found near some landfills and
concentrated animal feeding operations, 5 to 40 tons of methane could be mitigated per biofilter
per year, depending on parameter assumptions in the model. Biocovers and biofilters containing
methanotrophs are already used for methane mitigation from smaller or older landfills [48,65].
There is no a priori reason why biotrickling filters couldn’t in principle be optimized for
atmospheric removal more broadly.

Finally, researchers have proposed iron-salt aerosols (ISA) as a methane removal method
[47,66]. ISA approaches attempt to convert methane into CO2 in the lower troposphere by
enhancing natural sinks of the hydroxyl radical °OH (responsible for 90% of the natural methane
sink) and the chlorine atom Cl (3–4% of the natural methane sink) [47]. This method mimics
natural reactions associated with mineral dust particles in the atmosphere. Mineral dust contains
iron, a micronutrient that can enhance ocean primary productivity and withdraw atmospheric
CO2 [67,68]. Iron catalyses both °OH generation, through Fenton and photo-Fenton reactions
in clouds and rain droplets [69,70], and Cl generation in sea salt aerosols [71,72]. The proposed
method would enhance methane removal by releasing iron salt aerosols in the lower troposphere
[47,66], increasing the Cl sink four-to-six-fold during the day and continuing to enhance the
°OH sink at night. Cl atoms react with methane 16 times faster than °OH atoms do, and the
iron(III)/iron(II) present in catalytic amounts could increase densities of Cl atoms provided
by abundant sea-salt. ISAs have been invoked to explain why, just before the ice ages, the
concentrations of both CO2 and methane decreased simultaneously; ice cores extracted from both
Arctic and Antarctic poles show that there was 4–7 times more mineral dust during the glacial
periods compared to the warmer interglacials [73].

(c) Air processing and scaling requirements
Large volumes of air must be processed to realize Tg-scale conversion of methane to CO2. Air
handling could pass through an initial step of adsorption, concentrating methane before contact
with catalysts, radicals, or microbes (see above). Alternatively, active or passive systems could
be used to remove methane directly at atmospheric concentrations. Electric fans powered by
renewable fuels could be used to move the air in active systems [31,74], but research is needed to
optimize rates of methane conversion against pressure drop through the system (e.g. [6,7,75]). By
contrast, natural winds and air currents can provide air movement for passive removal systems;
wind-based passive systems have been proposed for capturing CO2 based on anion-exchange
and absorbent resins [76].

At larger scales, the generation of artificial wind for electricity generation has been proposed
using solar updraft chimneys (SUC). These possibilities range from small ventilation systems
for houses or buildings, inspired by Trombe walls [77], to full-scale 200–400 MW power plants
generating carbon-free renewable energy [78]. A SUC uses a solar collector to warm air by
the greenhouse effect; the hotter-than-ambient air then rises and a chimney enhances its speed
by stack effect, turning turbines to generate electricity [78]. SUCs coupled with photocatalysts
(activated by sunlight at ambient temperature) have been proposed as a removal method for
methane [43], N2O [79] and halocarbons [80]. Photocatalysts coating the solar collector do not
induce a pressure drop or energy loss, in contrast to active systems for CO2 capture or methane
removal that may induce a pressure drop of approximately 100 Pa and a reduction of 20–25% of
electricity output [81].
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Regardless of the technology deployed, the volumes of air needed to be processed are
substantial. At 15°C and 1013.25 hPa (abs), the density of air is 1.225 kg m−3. With a methane
concentration of 1.88 ppm and a hypothetical conversion efficiency of 50%, the mass of air
required to remove 1 Tg methane would be 2 × 106 Tg, or 0.04% of the mass of the Earth’s
atmosphere. Such volumes are comparable in magnitude to those for direct air capture of CO2,
where the scale of removal is Pg rather than Tg because the mass fraction of CO2 is 600 times
greater. Studies are needed to evaluate aspects of scaling for all negative-emission technologies.

3. Impacts of methane removal

(a) Climate impacts and feedbacks
We do not yet know whether or which methane removal technologies will prove commercially
feasible at scale; further research and development are required for all of the examples we
presented. We also argue that a better understanding of the climate and air quality benefits
of methane removal is needed to enable a more complete cost-benefit analysis of the potential
for methane removal. The potential atmospheric and Earth-system consequences of large-scale
methane removal have complex feedbacks that need better quantification.

Methane removal clearly lowers atmospheric concentrations of methane, but the broader
climate and air quality impacts of this removal will depend on methane’s lifetime and how
it is affected by changes in climate, methane concentration (e.g. the ‘methane-OH feedback
factor’; [82]), and concentrations of other ozone precursors, among other factors. The latter two
feedbacks are large, opposite in sign, and uncertain in pathways of rising methane and other
ozone precursors [83], and will be important to quantify in scenarios of methane removal. The
relationship between methane and tropospheric ozone is also uncertain and model-dependent
(e.g. [84–86]) and requires close study to determine potential benefits of methane removal to
surface air quality. Other Earth system feedbacks include the role of climate in accelerating the
methane cycle [87] and direct effects of CO2 on methane emissions from wetlands as biosphere
productivity is enhanced (e.g. [88]).

Modelling of methane interactions with climate, carbon cycle and air quality has to date
drawn on simplified models, such as stand-alone land-surface schemes (e.g. [89]) or reduced-
complexity models [90,91]. These results have shed light on important aspects of the system,
including quantifying uncertainties and feedbacks [92,93] and the influence of methane feedbacks
on climate targets [94]. Now that Earth System Models are emerging that combine fully
coupled General Circulation climate models with interactive representations of land and ocean
biogeochemistry, atmospheric chemistry and aerosols [85,87], coordinating the use of such models
is important to address new questions such as the role of methane removal.

For scale, the current best estimates of the expected relationship between methane and
temperature include: a 40% reduction in methane emissions by 2050 is predicted to cause a
temperature reduction of 0.3°C [95], whereas a 2% annual reduction in methane concentration
is predicted to reduce temperature by 0.5°C by 2100 [96]. More recently, Allen et al. [97] found
that reductions in methane concentration can lead to a climate benefit even with reductions
in aerosols resulting from strong air quality abatement measures. However, these studies were
for methane mitigation rather than removal. The first study of removal, made possible with a
methane emissions-driven model, found slightly larger temperature effects: a 40% reduction in
methane emissions by 2050, for example, caused a temperature reduction of 0.4°C [85]. For carbon
dioxide, positive emissions lead to a temperature response of slightly different magnitude than
for the same quantity of negative emissions [98]; whether the same holds true for methane is
unclear and will require emissions-driven modelling to address.

Climate and Earth-system impacts of methane removal extend beyond temperature
reductions, including potential improvements in air quality through reduced human-induced
changes in surface ozone concentrations (e.g. [84,85,97,99]). Surface ozone concentrations are
directly linked to hundreds of thousands of premature deaths annually [100], and previous
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studies of the impact of methane reduction on surface ozone estimated that the marginal cost-
effectiveness of each avoided premature mortality is approximately $US 400 000 [101]. Reduced
ozone levels also increase net primary productivity of vegetation and crop yields [102].

Atmospheric chemistry modelling and experimentation are also needed to explore the
potential consequences of unintended parallel reactions. Examples include the partial oxidation of
methane to carbon monoxide (CO), methanol (CH3OH), or, for iron-salt aerosols, chloromethane
(CH3Cl) instead of CO2.

(b) Methane removal model intercomparison project
Earth System Modelling and experiments can help to quantify the expected impacts of methane
removal, particularly through the development of methane emissions-driven models that include
interactive chemistry and carbon cycles. These would include the dependence of methane lifetime
on methane itself and on other ozone precursors and allow for climate change feedbacks on
methane lifetime and natural methane emissions from permafrost soils and wetlands. These
feedbacks could affect the climate benefits of methane removal compared to those of CDR.

We recommend a Methane Removal Model Intercomparison Project to provide structure for a
multimodel analysis. Similar to and inspired by previous analyses and intercomparisons for CO2
(e.g. [28,103]), a full investigation for methane removal is needed to examine:

(1) Scenarios of different timing and amounts of methane removal;
(2) Comparisons of the climate impacts and Earth-system feedbacks of methane removal in

different atmospheric and climate scenarios (e.g. low- and high-emission);
(3) Spatially explicit simulations of methane removal at prescribed locations and latitudes

(requiring models to have an ‘emissions-driven’ methane capability);
(4) Studies of how methane’s relatively short lifetime, in conjunction with climate feedbacks

on natural methane emissions, influences metrics of cumulative methane removal;
(5) Feedbacks with air quality, including tropospheric ozone (O3) concentrations, through

OH chemistry and/or secondary aerosol formation;
(6) Interactions of methane removal with other mitigation and CDR approaches.

Studies are also needed to examine the impacts of methane removal beyond temperature
and air quality by quantifying the consequences of different negative emissions technologies in
terms of their land, water, and energy requirements and investment costs, as done previously for
CO2 (e.g. [33,37,104]). Such an analysis would allow a more direct comparison between various
greenhouse gas removal technologies, which could then be evaluated using integrated assessment
models.

4. Discussion
Methane removal is a complement to, not a replacement for, mitigating methane and carbon
dioxide emissions. If methane removal proves feasible and deployable at scale, methane’s
relatively large GWP over the first few decades could provide advantages compared to CO2
mitigation in slowing the near-term rate of global warming [105]. Combined with stringent CO2
emissions reductions and removals resulting in a temperature ‘overshoot’ scenario, methane
removal could also prove valuable for reducing peak temperatures, if it can be scaled sufficiently
quickly.

Scenarios of methane removal should be evaluated formally, similar to research for CO2
removal, including experiments, modelling and technology development. These efforts should
include the Methane Removal Model Intercomparison Project proposed above to examine the
climate and Earth-system consequences of different methane removal amounts, locations and
timings. Along with regional and global temperature outputs, model outputs could also be
examined for changes in the number of extreme weather events, implications for air quality and
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other Earth-system feedbacks. Integrated assessment models could also be modified to include
policy or pricing scenarios of methane removal, similar to evaluations of carbon dioxide removal.

All negative-emission technologies, including those for methane removal, need to be examined
through the lens of social considerations that could limit research and deployment. Social
pressures contributed to legal restrictions on iron fertilization in the oceans and have curbed
deployment of geological carbon storage projects in Germany and the Netherlands [106].
Compared to CO2, one advantage of complementary methane removal technologies is that
capture and storage are unnecessary, avoiding long-term monitoring costs and potential storage
reversals. In California, for example, project operators are required to monitor a CO2 injection site
for a century after injection to document permanence—that the CO2 is retained on site, typically
in a geologic storage reservoir [107]. For purposes of verification, oxidizing CH4 to CO2 should be
relatively simple to quantify in input and output gas streams. The main measurements needed are
the flow rate of gas through the system and the changes in concentration for CH4 and CO2 (with
occasional monitoring of partial oxidation by-products such as carbon monoxide). The methane
offset can be verified in real time.

Another consideration for active methane-removal systems is the volume of air needed to be
processed to remove teragrams of methane. If air handling is to be undertaken at large scales, it
would make economic sense to convert other greenhouse gases simultaneously, particularly the
catalytic reduction of N2O to N2 [31]. Although our current paper emphasizes methane removal,
co-removal of other gases would reduce unit costs.

Currently, few financial incentives exist for large-scale methane or carbon dioxide removal
by the private sector. Projects for greenhouse gas capture may therefore require significant
public funding, policy mandates [106,108,109], or inclusion in a technology-neutral GHG
pricing scheme. Although demonstration projects (e.g. small-scale plants and component testing
facilities) can face ‘not in my backyard’ opposition locally [110], they can sometimes bolster public
support for greenhouse gas removal technologies. However, research is needed on the extent
to which demonstration-scale plants for greenhouse gas capture may result in perceived ‘moral
hazards’, inadvertently reducing support for greenhouse gas emission mitigation [111].

Avoiding methane emissions through local mitigation at point sources will typically be less
expensive and more efficient than removing methane from ambient air after emissions. However,
local mitigation efforts may be insufficient for meeting the target of the Paris Agreement in terms
of both scale and speed. Staying below the 1.5 or 2°C warming targets strongly depends on
the energy sector, which has considerable system inertia [112]. Energy infrastructure facilities
typically operate and are paid for over decades, which makes near-term substitutions of recently
deployed energy plants expensive and unlikely [113].

Although existing methane mitigation approaches are needed globally, temperature
stabilization by mid-century may also require new greenhouse gas removal technologies. As
stipulated in Article 10, paragraph 5, of the Paris Agreement, accelerating, encouraging and
enabling innovation is critical for an effective, long-term global response to climate change.
Developing these greenhouse gas capture technologies will require technology development,
including prototype testing in the laboratory and field. Just as importantly, new models for
accelerating innovation and closing knowledge gaps on public acceptance and demand-side
innovation are needed, including incentives for early adoption and developing niche markets
[114]. Negative emission technologies are expected to become a key tool for climate change
mitigation in the second half of the century and may help keep mitigation costs fairly low
[112,115].

Finally, research on methane removal is warranted for scenarios where potential temperature
increases rise above 2°C. Overshoot of 2°C global surface temperature appears increasingly likely
given recent rates of greenhouse gas emissions [5,13,32,116,117]. Such overshoot would require
greenhouse gas removal to bring atmospheric levels in line with a given temperature threshold.
Beyond anthropogenic emissions, we also cannot ignore the possibility of accelerated methane
release from natural systems, such as widespread permafrost thaw or release of methane hydrates
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from coastal systems in the Arctic. Such Earth-system feedbacks could require methane removal
to offset releases even if anthropogenic emissions are reduced substantially.

For many reasons, then, we believe a systematic research program for methane removal is
needed today that includes experiments, technology development and modelling. The Methane
Removal Model Intercomparison Project proposed here can quantify the global and local impacts
of methane removal, and allow for comparisons with carbon dioxide removal, potentially
informing policy decisions. Testing of various methane removal technologies and validation at
scale will clarify which approaches are most effective, acknowledging the priority of emissions
reductions for methane and carbon dioxide.
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