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Abstract

An open-source library of implementations for deep-learning based image segmentation and 

radiotherapy outcomes models is presented in this work. As oncology treatment planning becomes 

increasingly driven by automation, such a library of model implementations is crucial to (i) 

validate existing models on datasets collected at different institutions, (ii) automate segmentation, 

(iii) create ensembles for improving performance and (iv) incorporate validated models in 

the clinical workflow. The library was developed with the Computational Environment for 

Radiological Research (CERR) software platform. Centralizing model implementations in CERR 

builds upon its rich set of radiotherapy and radiomics tools and caters to the world-wide user 

base. CERR provides well-validated feature extraction pipelines for radiotherapy dosimetry and 

radiomics with fine control over the calculation settings, allowing users to select the appropriate 

parameters used in model derivation. Models for automatic image segmentation are distributed 

via containers, with seamless i/o to and from CERR. Container technology allow segmentation 

models to be deployed with a variety of scientific computing architectures. The library includes 

implementations of popular radiotherapy models outlined in the Quantitative Analysis of Normal 

Tissue Effects in the Clinic effort and recently published literature. Radiomics models include 

features from the Image Biomarker Standardization Initiative and application-specific features 

found to be relevant across multiple sites and image modalities. Deep learning-based image 

segmentation models include state-of-the-art networks such as DeepLab and other problem­

specific architectures. The source code is distributed at https://www.github.com/cerr/CERR under 

the GNU-GPL copyleft with additional restrictions on clinical and commercial use and provision 

to dual license in future.
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Introduction:

Oncology is increasingly driven by automation in advanced image analysis and prognostic 

modeling. In radiotherapy treatment planning automation is crucial for segmenting lesions 

and organs at risk. Segmentations, along with images and radiotherapy plans, are fed into 

prediction models to estimate prognosis resulting from the planned treatment. The treatment, 

in turn, can then be tailored based on the estimated prognosis. Software libraries for deriving 

radiomics [1] and radiotherapy features as well as outcomes models have grown rapidly. 

Similarly, automatic image segmentation has seen a great deal of recent progress with deep 

learning [2]. Segmentation models involve various dependencies related to the choice of 

the framework, whereas predictive and prognostic models [3] are affected by the choice of 

feature calculation settings, making it cumbersome to use the published signatures on new 

datasets. In the present study, we address the issue of variability in model implementations 

by creating an open-source, validated and comprehensive library of image-segmentation, 

radiotherapy and radiomics-based outcomes model implementations. The library of model 

implementations developed in the work herein will be useful to (i) validate existing models 

on datasets collected at different institutions, (ii) automate segmentation, making it less 

prone to inter-observer variability, (iii) create ensembles from various models in the library 

and in-turn improving model performance and (iv) simplify incorporating the models in the 

clinical workflow.

There have been various efforts to deploy implementations of predictive and prognostic 

models. The focus has mostly been on developing online tools useful to patients and 

physicians. These implementations are limited to web interfaces and don’t support batch 

evaluations on datasets for research. The ability to batch evaluate models is important to 

validate them on datasets acquired at multiple institutions. For example, DNAmito (https://

predictcancer.org) provides online tools and an app that supports 25 cancer models for 

different sites. These models incorporate patient and radiotherapy treatment characteristics. 

National Cancer Registration and Analysis Service [4] (https://breast.predict.nhs.uk/) 

provides an online tool to predict survival rate for early invasive breast cancer treatment. 

Memorial Sloan Kettering Cancer Center [5, 6] (https://www.mskcc.org/nomograms) 

provides online tools to predict cancer outcomes based on characteristics of the patient and 

their disease, for example nomogram to calculate the risk of bladder cancer recurrence after 

radical cystectomy and pelvic lymph node dissection. There has been a lot of recent progress 

in the development of toolkits for storing and deploying deep learning segmentation 

models. These include traditional multi-atlas-based segmentation as well as state of the 

art deep learning-based models. DeepInfer [7] currently provides segmentation models for 

prostate gland, biopsy needle trajectory and tip detection in intraoperative MRIs, and brain 

white matter hyperintensities. DeepInfer can also be invoked from 3DSlicer [8]. NiftyNET 

[9], a consortium of research organizations, provides a TensorFlow™-based open-source 
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convolutional neural networks (CNN) platform. It provides the implementation of networks 

such as HighRes3DNet, 3D U-net, V-net in the DeepMedic software [10] which can be 

used to train new models as well as share pre-trained models. Plastimatch [11] is an open­

source software primarily used for image registration and provides a module for multi-atlas 

segmentation.

In this work, we implemented a research-friendly library of models that is comprehensive 

in terms of the variety of models, viz. image segmentation, radiotherapy, and radiomics. 

The library was developed with the Computational Environment for Radiological Research 

[12] software platform which has been widely used for outcomes modeling and prototyping 

algorithms useful in radiotherapy treatment planning. The library of model implementations 

will provide a reproducible pipeline including image segmentation, estimated prediction and 

prognosis.

Methods:

The library of model implementations was developed as a module within the MATLAB [13] 

based CERR software platform, allowing users to readily access and plug-in models. The 

library supports the following three classes of models: (1) Segmentation models based on 

deep learning, (2) Radiomics models based on imaging biomarkers, and (3) Radiotherapy 

models based on dose-volume histograms and cell survival. The library builds on CERR’s 

data import/export, visualization and standardization tools for outcomes modeling. The 

following sections provide details about the architecture for deploying and using these three 

classes of models.

Image segmentation models

The architecture for implementation of image segmentation models was based on 

containerizing the models and their dependencies. The containers were designed to accept 

input images in Hierarchical Data Format (HDF5) file format and return the resulting 

segmented mask, again in HDF5 file format, thereby allowing models developed with 

a variety of frameworks to be readily plugged into the library. Currently available 

implementations of segmentation models use open-source frameworks like Tensorflow™ 

and PyTorch. Both, Singularity and Docker container technology allow users to securely 

bundle libraries such that they are compatible with a variety of scientific computing 

architectures. Singularity containers are well suited for high performance computing 

(HPC) environments and present various advantages including (i) checksums for making 

the software stacks reproducible (ii) compatibility with HPC systems and enterprise 

architectures (iii) software and data controls compliance for HIPAA and (iv) can be run 

by users without root privileges. Singularity containers are runnable on most flavors of 

Linux operating system and Mac OS X via “Singularity desktop”. Docker containers, on 

the other hand, are also runnable on Windows 10 operating system via “Docker desktop”. 

The implementations of deep learning segmentation models are provided in the form of 

both, Docker and Singularity containers, such that they can be readily used with different 

operating systems. The models within the containers can be run with or without using GPU. 
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Figure 1 shows a schematic of invoking deep learning segmentation models from CERR 

through a Singularity container.

Segmentation models often require preprocessing of input images as well as post-processing 

of output segmentation. These pre and post-processing options are defined through model­

specific configuration files. An important pre-processing option is the selection of the region 

of interest used for segmentation and must correspond to the one used while deriving the 

model. The options for automatically defining the region of interest include (i) cropping to 

structure bounds, (ii) cropping by a fixed amount from center, (iii) cropping to the patient’s 

outline, and (iv) cropping to the shoulder. The cropping operations can also be chained 

together via union and intersection operators so that the segmentation results can be used 

as priors for subsequent segmentations. Figure 2 shows examples of selecting regions of 

interest as inputs to segmentation models. Segmentation models derived on 2-D, 3-D and 

2.5-D input images are supported. Various pre-processing filters are supported to populate 

different channels used by CNNs. Currently, the post-processing options allow filtering 

segments below a threshold area and limiting the number of connected components.

The segmentation models within the library can also be invoked from CERR’ user interface. 

Figure 3 shows the selection of model and its parameters through the graphical user 

interface.

Parameters such as structure names to define the region of interest are selected using the 

interface.

In addition to deep-learning-based segmentation models, multi-atlas segmentation is 

supported. Atlas fusion methods such as majority-vote and STAPLE [14] are supported. 

Plastimatch is used for deformable image registration allowing users to choose from a 

variety of cost functions, optimizers, and registration algorithms. It allows users to easily 

compare state-of-the-art with traditional segmentation models. CERR provides metrics to 

evaluate the performance of auto-segmentation methods such as Dice coefficient, Hausdorff 

distance, and deviance of the resulting segmentation from the ground truth.

Radiotherapy models

Radiotherapy models involve modeling Normal Tissue Complication (NTCP) and Tumor 

Control probabilities (TCP). NTCP models are usually based on dose-volume histogram 

(DVH) characteristics whereas TCP models involve estimating cell survival from 

radiobiology. QUANTEC series of papers provides a comprehensive description of models 

for various treatment sites. CERR provides utility functions to import DICOM RT-DOSE 

and RT-PLAN objects as well as tools to apply linear-quadratic (LQ) corrections [15] for 

fraction size and to sum dose distributions from multiple courses of radiation. The library 

of radiotherapy models has access to the wide variety of DVH metrics in CERR such 

as minimum dose to hottest x percent volume (Dx), volume receiving at least x Gy of 

dose (Vx), mean of hottest x% volume (MOHx), mean of coldest x% volume (MOCx) 

and generalized equivalent dose (gEUD). Various types of NTCP models include Lyman­

Kutcher-Burman (LKB) [16], linear, logistic, bi-exponential and the ability to correct for 

risk factors [17, 18]. TCP models include cell survival model based on the dominant lesion 
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for the prostate [19] and Jeong et al’s model for lung based on dose and treatment schedule 

[20]. The models are defined via JavaScript Object Notation (JSON) files as shown in figure 

4, allowing users to readily adjust the model specific parameters.

Radiomics models

Radiomics models require the derivation of image and morphological features. These 

include image histogram-based features as well as texture derived from gray-level co­

occurrences, run-lengths, size-zones, gray level dependence, and gray tone difference 

matrices. CERR supports the calculation of a variety of flavors of these features using the 

radiomics extensions [21]. CERR’s data structure supports longitudinal images as well as 

multiple modalities such as CT, MR, PET, SPECT, and US. This allows for the deployment 

of models derived from multiple modalities and various time points, for example, Hypoxia 

prediction model from Crispen-Ortuzar et al [22] which used features from PET and CT 

scans. In addition to the Image Biomarker Standardization Initiative (IBSI) [23] defined 

radiomics features, CERR supports computation of modality-specific features such as Tofts 

model [24] parameters and non-model-based parameters such as time to half peak (TTHP) 

for Dynamic Contrast-Enhanced (DCE) MRI [25] and Intravoxel Incoherent Motion (IVIM) 

parameters for Diffusion Weighted Imaging (DWI). Parameter extraction is driven via 

configuration files in JSON format.

Quality assurance

Implemented models were validated by comparing results with those provided by the 

developers of these models. The results from the developers were available in the 

form of publications, test datasets or open source code. CERR’s DVH-based features 

used in radiotherapy models have been independently validated by comparing with 

commercial treatment planning software. Radiotherapy models were thoroughly validated 

by creating test sets with single-voxel structures and then comparing the results with manual 

calculations. Radiomics features in CERR are compliant with IBSI and validated with other 

popular libraries such as ITK (https://itk.org/) and PyRadiomics [26]. A test suite was 

developed, including test datasets for the implemented models and is run following each 

software update using Jenkins [27] continuous integration platform. This ensures accurate 

implementation, stability, and reproducibility with respect to software updates. The test suite 

along with test datasets is distributed along with CERR.

License

The codebase for implementations of models uses the GNU-GPL copyleft license (https://

www.gnu.org/licenses/lgpl-3.0.en.html) to allow open-source distribution with additional 

restrictions. The license retains the ability to propagate any changes to the codebase back 

to the open-source community along with the following restrictions (i) No Clinical Use, 

(ii) No Commercial Use, and (iii) Dual Licensing which reserve the right to diverge and/or 

modify and/or expand the model implementations library to have a closed source/proprietary 

version along with the open source version in future. We would like to highlight that the 

library of implementations presented in this work is not approved by the U.S. Food and Drug 

Administration and should not be used to make clinical decisions for treating patients. The 
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library merely provides implementations of the developed models, whereas the creators of 

models retain the copyright to their work.

Results:

CERR’s Model Implementation Library is distributed as an open-source, GNU-copyrighted 

software with additional restrictions along with the CERR platform. Documentation for the 

available models and their usage is available at https://github.com/cerr/CERR/wiki. Tables 

1–3 list various models implemented for image segmentation, radiotherapy, and radiomics 

based outcomes prediction. Image segmentation models include the popular DeepLab 

[28] network for segmentation of prostate, heart sub structures, chewing and swallowing 

structures as well as specialized architectures such as MRRN [29] for segmentation of lung 

nodules and Self-attention networks for segmentation of head & neck organs at risk [30]. 

Radiotherapy and radiomics models from the published literature demonstrating satisfactory 

performance were included. Radiotherapy based models include the prediction of normal 

tissue complication resulting from lung, prostate and head & neck radiotherapy. Radiomics 

models include features that have been shown to be predictive in a variety of published 

studies. For example, the image features used in overall survival prediction model for lung 

cancer patients [31] have been shown to be important across multiple treatment sites and 

image types. Similarly, CoLIAGe [32] features have been shown to predict brain necrosis as 

well as breast cancer sub-types.

One of the advantages of the library of implementations developed in this work is to be able 

to readily apply models to datasets at different institutions. It is demonstrated by applying 

the segmentation model for cardiac sub-structures [33, 34], derived at Memorial Sloan 

Kettering Cancer Center, to segment 490 scans from the RTOG 0617 [35] dataset at the 

University of Pennsylvania. Features extracted from these sub-structures will further be used 

for outcomes modeling.

Discussion:

The library of model implementations can be used to create ensembles for improving 

performance in addition to inter-institutional validation as well as collaboration. It can 

be used in developing tools to personalize treatment planning and to drive clinical 

segmentation. The following describes applications that make use of the library of model 

implementations.

Radiotherapy Outcomes Estimator

Radiotherapy Outcomes Estimator (ROE) is a tool for exploring the impact of dose scaling 

on TCP and NTCP in radiotherapy. Users define outcomes models and clinical constraints, 

following a simple pre-defined syntax. Inputs are specified in easily edited JSON files 

containing details of treatment protocols and outcomes models. Model files specify tumor 

and critical structures; associated outcomes models; model parameters including clinical risk 

factors (age, gender, stage etc.); and clinical constraints on outcomes. Predictive models 

supplied with ROE include Lyman-Kutcher-Burman [16], linear, biexponential, logistic, and 

TCP models for lung and prostate cancers. ROE supports multiple display modes including 

Apte et al. Page 6

Phys Med. Author manuscript; available in PMC 2021 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/cerr/CERR/wiki


(1) NTCP vs. BED, (2) NTCP vs. TCP, and (3) TCP/NTCP dose responses as functions of 

the prescription dose (varied by fraction size or number) and indicates where the clinical 

limits are first violated. Users can modify the clinical and model variables to visualize the 

simultaneous impact on TCP/NTCP. Figure 5 shows the ROE graphical user interface.

Ensemble of Voxel-wise Attributors

Ensemble of Voxel-wise Attributors (EVA) is an extensible pipeline developed at Memorial 

Sloan Kettering Cancer Center to deploy deep learning-based image segmentation 

algorithms into the clinic. It works in conjunction with MIM software (https://

www.mimsoftware.com/) and uses segmentation models from the library presented in 

this work. EVA has been deployed in clinical use for segmentation of prostate structures 

[Elguindi et al, under review] and is currently undergoing testing for other sites. Figure 6 

shows the workflow for EVA. Models from the library are invoked on the processing server 

and the resulting segmentation is archived in MIM Software.

One of the limitations of using Singularity containers is the requirement of Linux operating 

system. For Mac OS, there is a beta version of “Singularity Desktop” which allows users 

to natively run Singularity containers. “Docker Desktop” runs as a native application by 

enabling virtualization only in Windows 10 operating system. Users using versions below 

Windows 10 are required to run containers in a virtual Linux environment for Windows. 

MATLAB users also have the option to purchase the Deep Learning toolbox which supports 

exchanging models with TensorFlow™ and PyTorch through the ONNX format. We plan to 

make implementations of segmentation models available in ONNX format and running them 

natively in MATLAB.

Conclusion:

A library of model implementations for segmentation of organs and risk and tumors and 

outcomes models was developed using the CERR platform. The library makes it efficient 

to use and deploy segmentation, radiotherapy and radiomics based models. It facilitates 

reproducible application of models and the development of automated pipelines starting 

from imaging and radiotherapy inputs to applying the final model. In the present study, it 

was demonstrated by sharing the segmentation model for cardiac sub-structures between the 

two institutions.
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Figure 1: 
Schematic of invoking the container for deep-learning image segmentation model from 

CERR. CERR passes images in HDF5 format to the container and displays the resulting 

segmentation.
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Figure 2: 
Options to select region of interest as an input to segmentation model. (a) cropping to 

structure bounds and by a fixed amount. (b) cropping to the shoulder.
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Figure 3: 
Graphical User Interface to invoke deep learning segmentation models from CERR Viewer. 

In this example, the union of left and right lungs is used as a prior to select the region of 

interest.
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Figure 4: 
(a) JSON files to define models. (b) Parameters for a model are defined in the corresponding 

JSON file.
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Figure 5: 
Radiotherapy Outcomes Explorer (ROE). Graphical user interface allows the selection of 

protocols which includes models and constraints. Additionally, users can input risk factors 

for the patient. NTCP curves for esophagitis and pneumonitis models and TCP curve for 

BED are shown in this example along with the points on the NTCP curves where the clinical 

limits are reached.
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Figure 6: 
Schematic of EVA pipeline. Image transfer to MIM software triggers segmentation on the 

processing server and the resulting segmentation gets archived in MIM.
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Table 1

Image segmentation models

Site Modality Organ/s Model / Framework

Lung [34] CT Heart, heart sub-structures, pericardium, atria, ventricles DeepLabV3+ / Pytorch

Lung [29] CT Tumor nodules Incremental MRRN / Keras, 
Tensorflow™

Prostate (Elguindi et al, 
under review)

MRI Bladder, prostate and seminal vesicles (CTV), penile bulb, 
rectum, urethra and rectal spacer

DeepLabV3+, Tensorflow™­
GPU

Head & Neck [36] CT Masseters (left, right), medial pterygoids (left, right), 
constrictor muscles, and larynx

DeepLabV3+ / Pytorch

Head & Neck [30] CT Parotid glands (left, right), Sub-mandibular glands (left, 
right), mandible and brain stem

Self-attention UNet / Pytorch
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Table 2

Radiotherapy models

Site Endpoint Model

Prostate [37–40] Rectal bleeding LKB

Late urinary toxicity

Late urinary toxicity post SBRT

Lung[41] Radiation-induced liver disease LKB

Prostate[42] Erectile dysfunction Linear regression

Lung [43] Esophagitis Logistic regression

Lung[44] Dysphagia Logistic regression

Head & Neck[45] Xerostomia Bi-exponential

Lung[46] Chest wall pain Non-standard

Lung[17] Pneumonitis Logistic with correction for clinical risk factors

Lung[19] Tumor control probability Radiobiological

Prostate[47] Tumor control probability Logistic
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Table 3

Radiomics models

Site Endpoint Features

Ovarian [48] Survival for high grade Ovarian cancer CluDiss (inter-tumor heterogeneity)

Breast, Brain [32] (i) Radiation necrosis in T1-w MRI Brain, (ii) Subtype 
classification in DCE-MRI Breast

CoLlAGe (gradient orientations)

Head & Neck [22] Hypoxia P90 of FDG PET SUV, LRHGLE of CT

Lung, H&N [31] Survival for NSCLC and HNSCC Statistics Energy, Shape Compactness, Grey Level 
Nonuniformity, wavelet Grey Level Nonuniformity HLH
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