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ABSTRACT: Out-of-equilibrium processes are ubiquitous across
living organisms and all structural hierarchies of life. At the molecular
scale, out-of-equilibrium processes (for example, enzyme catalysis,
gene regulation, and motor protein functions) cause biological
macromolecules to sample an ensemble of conformations over a
wide range of time scales. Quantifying and conceptualizing the
structure—dynamics to function relationship is challenging because
continuously evolving multidimensional energy landscapes are
necessary to describe nonequilibrium biological processes in
biological macromolecules. In this perspective, we explore the
challenges associated with state-of-the-art experimental techniques to
understanding biological macromolecular function. We argue that it is time to revisit how we probe and model functional out-of-
equilibrium biomolecular dynamics. We suggest that developing integrated single-molecule multiparametric force—fluorescence
instruments and using advanced molecular dynamics simulations to study out-of-equilibrium biomolecules will provide a path
towards understanding the principles of and mechanisms behind the structure—dynamics to function paradigm in biological
macromolecules.
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B STRUCTURE-DYNAMICS—FUNCTION
RELATIONSHIP IN BIOMOLECULES

The biological macromolecules that comprise life have long been

protein domain rearrangements.'” Other transitions are small,
fast (less than microsecond) changes in structural configuration
among energetically similar microstates within a conformational

considered to have a robust structure—function relationship.'
Structure seems to determine function in some biomolecules,
while function drives structure for others.' Either way, the
structure—function paradigm provides a widely successful
framework for understanding the molecular origins of life.
However, the structure—function paradigm portrays a static
picture of biomolecules in living organisms. Functional
biomolecules are often dynamic; they undergo large structural
transitions and small fluctuations essential to their physiological
functions.” Functional biomolecules also can be unstructured.
Both intrinsically disordered proteins (IDPs)*~> and proteins
with intrinsically disordered regions (IDRs)®’ have critical
biological functions. Thus, the paradigm for understanding
biomolecular mechanisms is shifting from a structure—function
toward a structure—dynamics—function relationship.
Molecular biophysics research aims to detail the mechanistic
principles underlying the structure—dynamics—function rela-
tionships in biomolecular systems (for definitions of terms first
used in italics, see Box 1). Biophysicists characterize
biomolecular systems by their free energy states and transitions
between them due to both equilibrium and nonequilibrium
processes. In this free energy framework, some transitions are
large, slow (greater than microsecond) changes in structural
conformation between the macrostates of a system,””"" like
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macrostate. Transitions between microstates include small-scale
displacements like amino acid side chain rotations and solvent
interaction changes, as well as larger-scale displacements, like
protein backbone fluctuations in secondary structures and
loops.'”"?

Free energy landscapes'*™"” model a system as a continuum of
thermodynamic states at equilibrium,'® often with significantly
reduced dimensionality (1 or 2 dimensions down from 3N — 6,
see Box 1)."” However, from whole organisms down to
individual macromolecules, living systems function under out-
of-equilibrium conditions**~** and with complex multidimen-
sional dynamics. While conventional free energy landscapes are
widely successful at explaining the folding and functional data for
relatively simple biomolecular systems at thermodynamic
equilibrium, they struggle to explain multidimensional processes
involving nonequilibrium conditions.

PISIEAL
CHEMSTRY

Received: March 17, 2021
Revised:  August 13, 2021
Published: September 10, 2021

https://doi.org/10.1021/acs.jpcb.1c02424

10404 J. Phys. Chem. B 2021, 125, 10404—10418


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Narendar+Kolimi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ashok+Pabbathi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nabanita+Saikia"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Feng+Ding"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hugo+Sanabria"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Joshua+Alper"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jpcb.1c02424&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.1c02424?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.1c02424?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.1c02424?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.1c02424?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jpcbfk/125/37?ref=pdf
https://pubs.acs.org/toc/jpcbfk/125/37?ref=pdf
https://pubs.acs.org/toc/jpcbfk/125/37?ref=pdf
https://pubs.acs.org/toc/jpcbfk/125/37?ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jpcb.1c02424?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JPCB?ref=pdf
https://pubs.acs.org/JPCB?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/

The Journal of Physical Chemistry B

pubs.acs.org/JPCB

In this Perspective, we discuss the role free energy landscapes
play in models and our understanding of functional mechanisms
in biomolecules. There are many excellent reviews of folding
energy landscapes,23_27 so here we focus on functional, rather
than folding, biomolecular processes. We illustrate some
limitations of the energy landscape paradigm and highlight the
benefits of extending the current theoretical framework,
experimental approaches, and means to represent data to
improve our understanding of complex, nonequilibrium
biomolecular function.

B DEFINITIONS OF KEY TERMS AS WE USE THEM IN
THIS PERSPECTIVE

Box 1

Key Definitions:

e Biomolecular system (abbreviated herein as system): a
closed thermodynamic system consisting of a biomole-
cule or biomolecular assembly that is distinct from and
does not exchange matter with the environment.

e Environment (or surroundings): the matter in the
proximity of a system but not included in the designation
of the system. The environment consists of coordinating
biomolecules, small molecules, ions, and solvent
molecules.

o Gibbs free energy (abbreviated herein as free energy): the
internal energy of a system, or the potential of that system
available to perform work. Changes in free energy of a
system, AG, are AG = AH — TAS where AH is the
change in the enthalpy, T'is the absolute temperature, and
AS is the change in the entropy of the system.

o Equilibrium process: a transition in thermodynamic state
that occurs without the net transfer of energy into or out
of the system

e Nonequilibrium process (also out-of-equilibrium or far-
from-equilibrium): a transition in thermodynamic state
that occurs due to or results in the net transfer of energy
into or out of the system

e Macrostate: a long-lived (microsecond or longer) state
corresponding to a local free energy minimum of a
system. A macrostate is often associated with a
biomolecule’s function or as an element of a more
complex, multistep functional process.

e Microstate: a short-lived (microsecond or shorter) state
corresponding to the specific free energy of a system,
often very close in energy to a macrostate and associated
with thermal fluctuations. The collection of microstates
near to a local energy minimum constitute a macrostate.

e Structural conformation: the set of structures, often
represented by a mean structure or lowest energy
structure, associated with a macrostate

e Structural configuration: the specific structure associated
with a microstate

e TFree energy landscape (abbreviated herein as energy
landscape or landscape): the mapping of all thermody-
namically accessible Gibbs free energy states of a system
in multidimensional configuration space where the 3N —
6 dimensions correspond to the positions (x, y, z) of all N
atoms within the system.

e Reaction coordinate: the curvilinear path through the
energy landscape that is consistent with the system’s
Hamiltonian™® and defines the path of least action. It

represents the most probable sequence of structural
transitions taken by a system between macrostates. The
reaction coordinate is found analytically or computa-
tionally by analyzing a complete energy landscape.”*"

e Observable coordinate: the coordinate on which
experimental observations of free energy are made in
biomolecular systems. The observable coordinate is
easily conflated with the reaction coordinate in the
interpretation of experimental results, but it is frequently
independent of the reaction coordinate.

o Detailed balance: a thermodynamic principle of kinetic
systems that states that each elementary process a
complex or cyclic system can perform (i.e,, a transition
from macrostate A to macrostate B) must be equilibrated
with its reverse process (i.e., a transition from macrostate
B to back to macrostate A) as a direct consequence of]
microscopic reversibility at thermodynamic equilibrium

e Flux: the flow of biomolecule through an energy
landscape. For example, an ensemble of biomolecules
exhibits flux if they progress from state A through state B
to state C on average in the violation of detailed balance.
Therefore, flux is only a property of nonequilibrium
systems. The identification of a system that exhibits flux
through any phase space is sufficient to identify the
process as a nonequilibrium process.”’

o Functional free energy landscape: the region of a free
energy landscape of that is thermodynamically accessible
to a biomolecule as it performs its function.

e Folding free energy landscape: the region of an energy
landscape of that is thermodynamically accessible to a
biomolecule during protein folding, for example.

B EQUILIBRIUM ENERGY LANDSCAPES

A biomolecular system’s equilibrium population and functional
dynamics can be modeled using the energy landscape formalism.
Take a topological landscape as an analog to a biomolecule’s free
energy landscape. The equilibrium population of states arises
from the depths of the landscape’s energy basins (local minima,
Figure 1A), with molecular ensembles populating lower energy
valleys more heavily than higher energy ones; they rarely sample
states near peaks (local maxima, Figure 1A). Functional
dynamics arise from individual molecules transitioning within
that equilibrium population of states, which can be con-
ceptualized as a particle moving through an energy landscape
with overdamped Brownian motion.>” Transitions between local
energy basins occur through passes between the peaks in the free
energy landscape (saddle points, Figure 1A). The higher these
passes, the less likely a system will undergo a transition between
the neighboring basins.

In his seminal work, Kramers™® described the way systems are
most likely to move through energy landscapes: along a unique
reaction coordinate. Projecting a biomolecule’s functional
dynamics along a one-dimensional (1-D) reaction coordinate
is conceptually appealing. It reduces dimensionality from 3N — 6
(Box 1) to one easily represented dimension (Figure 1B) and
helps to conceptualize properties of complex systems at
thermodynamic equilibrium. For example, a detailed balance of
states exists within a population at thermodynamic equilibrium
as a direct consequence of microscopic reversibility. Consider a
system with two states, A and B (Figure 1B). The transition rate
from A to B, ryp = k,p, where k, is the forward rate constant and
pa is the population of state A, must be balanced by reverse
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Figure 1. Schematic representations of free energy landscapes under equilibrium and nonequilibrium conditions. (A) A 2-dimensional topological
landscape is an analog to a biomolecule’s multidimensional functional energy landscape. The path of least action (orange line) traverses a mountainous
landscape between populated local minima in basins (towns in valleys) through the saddle point (pass) and avoiding the local maxima (peaks)
altogether. Topological image from GoogleEarth.'® (B) Schematic representation of thel-D projection of a free energy landscape along a reaction
coordinate for a system with two macrostates, A and B, similar to the path of least action in panel A. At thermodynamic equilibrium, the height of the
energy barrier (activation energy) determines the forward and backward rate constants, and a detailed balance, r,p = rp,, is maintained between the
states. (C) Schematic of a multidimensional energy landscape and its corresponding chemical reaction equation (inset), representing a biomolecule that
undergoes cyclical functionality. At equilibrium, microscopic reversibility, and thus a detailed balance, exists between the macrostates, and the system
exhibits no net flux. The path of least action (green line) traverses the landscape between populated local minima in basins (A, B, and C, filled with green
to represent the equilibrium population of the macrostate) in the landscape through the saddle points (passes) and avoiding the local maxima (peaks)
altogether. (D) Schematic representation of thel-D projection of the free energy landscape in panel C along the reaction coordinate opened at the
saddle point between states A and C. As the system is cyclic, the reaction coordinate is cyclic as well, and the free energy landscape is continuous (cyclic
boundary conditions) at both ends of the plot. Force drives the system from the “no force” equilibrium state (solid green line) to a new “with force”
equilibrium condition by tilting the energy landscape along the observable coordinate corresponding to the direction of force. This projects back to the
reaction coordinate in a way that affects macrostate C and the transition states between B and C (dashed black line). (E) Energy flow into the system
from panel C drives it into out-of-equilibrium conditions wherein transitions between the macrostates of the system are not balanced by reverse
processes, and there is a net circulation through the states. The reaction coordinate (purple arrows) can be conceptualized as a spiral (tilted in a 1-D
projection) that cycles through the local basins in the energy landscape but constantly goes downhill. Such systems are often studied in quasi-
equilibrium states (green lines and fill) stabilized by force or an inactive analog of a substrate. Note that the spiral 1-D energy landscape is cyclical, that is,
ifi + 1 > n, then the system cycles back to i = 1 rather than to n + 1, where  is the number of macrostates experienced by the system during its functional
cycle (in this case, n = 3).

H OUT-OF-EQUILIBRIUM ENERGY LANDSCAPES

Out-of-equilibrium biomolecular systems are nonisolated, which

transitions at rate 15, = k_pp, such that ry5 = 4. The detailed
balance at thermodynamic equilibrium precludes a net flux of

the population through a series of macrostates.”"**** Even if the
system is cyclical (i.e., its reaction coordinate loops back on itself,
Figure 1C, green line, and the 1-D projection of its energy
landscape along the reaction coordinate has cyclic boundary
conditions, Figure 1D, green line) % transitions from one state to
the next must be individually and simultaneously balanced.

Despite the proven utility of 1-D energy landscapes, several
simplifications inherent to this conceptualization make func-
tionally important biomolecular dynamics less clear and may
lead to the misinterpretation of experimental results, among
other potential problems. For example, experiments typically
yield data on experimentally tractable observable coordinates,
such as end-to-end distance, radius of gyration, bond distances,
bond angles, or affinities between the interacting molecules,
rather than actual reaction coordinates.””** Only in the most
simple systems, a slip-bond type receptor—ligand interaction, for
example, do the reaction coordinate and the observable
coordinate coincide.* Therefore, one must carefully consider
how data collected along an observable coordinate projects onto
the reaction coordinate to make a genuinely quantitative analysis
using the 1-D energy landscape paradigm, as discussed for
folding energy landscapes.”***~*

implies that they exchange energy or matter with the
environment. Cytoskeletal motor proteins** and DNA heli-
cases™ walk along filaments and perform useful work with
energy supplied from ATP; ribosomes polymerize proteins,*>*’
and tubulin undergoes dynamic instability™® with energy
supplied from GTP; photosystems I and II transfer electrons
to acceptor molecules with energy supplied from photons;49
ATP-synthase phosphorylates ADP with energy supplied from a
chemical potential due to ion concentration differences across
the mitochondrial membrane;*° and riboswitches regulate gene
expression”" and allosteric effector molecules regulate enzyme
activity”>>® with energy supplied from ligand binding. Non-
equilibrium biochemical and biophysical processes in biological
macromolecules ranging from enzyme catalysis and allosteric
regulation to force production and electron transport, for
example, underlie nearly every fundamental biological function.

One-dimensional representations of energy landscapes along
single reaction coordinates (e.g., Figure 1B,D) do not represent
nonequilibrium, functional biomolecular systems particularly
well. There are two critical differences between nonequilibrium
and equilibrium systems that affect their conceptualization using
energy landscapes. First, the nature of the energy landscape itself,
that is, the topological contours of a multidimensional landscape,

https://doi.org/10.1021/acs.jpcb.1c02424
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can evolve as material or energy exchanges with the environment
(Figure 1E). Examples include post-translational modifications
that lower barriers between basins>* and allosteric ligand binding
that modifies the topography of entire regions of multidimen-
sional energy landscapes.”” Second, the exchange of energy or
material can change a system’s dynamics within the energy
landscape. For example, the fluctuation—dissipation theorem™>
and Kramer’s theory can re%uire additional terms corresponding
to the exchange of energy,>® or the principle of detailed balance
can be violated, that is, the forward and backward paths through
an energy landscape can be different, one-way, or irreversible or
exhibit hysteresis.””

Current approaches to representing out-of-equilibrium
phenomena within the framework of energy landscapes tend to
model nonequilibrium systems as a series of static 1-D energy
landscapes corresponding to each altered condition, that is,
before and after ligand binding or as a function of force (Figure
1E, green). This approach assumes that the system undergoes
kinetic processes to populate the lowered states in the same way
that would occur through a dynamically changing landscape.
However, the kinetics at the new equilibrium do not necessarily
reflect the kinetics and structural dynamics associated with the
nonequilibrium process that evolves the energy landscape in the
first place (Figure 1E, purple). For example, the process of an
external force directed along the reaction coordinate performing
mechanical work and deforming the biomolecule may
significantly alter the system’s energy landscape, causing a
continual evolution of the landscape’s contours. Experimentally
quantifying the energy landscape of biomolecular systems
undergoing nonequilibrium processes is more challenging than
for those of equilibrium processes,” and it also highlights the
importance of properly identifying a reaction coordinate that
follows the evolving functional free energy landscape of a
nonequilibrium process. In the example of Figure 1E, the
reaction coordinate follows the purple path. Nonetheless, doing
so profoundly impacts our understanding of a biomolecular
system’s mechanism, and thus it is worth the effort.

The framework presented in Figure 1 also calls for three
possible cases.

Case 1: The exchange rate of conformational transitions (k)
is faster than the exchange rate between functional states (k). E.
coli dihydrofolate reductase, which catalyzes an essential reaction
for glycine and purine syntheses, exemplifies this case. The
conformational states of the enzyme exchange at faster rates than
its substrate and cofactor binding and catalysis processes.”” The
enzyme populates various intermediate conformations, includ-
ing the ground and excited states, that depend on the steady state
turnover rate and hydride transfer.”” The conformational
exchange takes place within the microsecond to millisecond
time scale, while the exchange rate between functional states
occurs between millisecond and second scales (Figure 2A).%

Case 2: The exchange rate of conformational transitions is
slower than the exchange rate between functional states. Peptide
deformylase, which is an enzyme that catalyzes formate,
exemplifies this case. The actinonin-peptide deformylase
complex formation is an induced fit process that populates
several intermediate conformations at it transverses its functional
free energy landscape from an initial open state to the final closed
state.” However, the steps in ligand binding, catalysis, and
product release are limited by the conformational exchange that
occurs at shorter time scales.”” For the enzyme to function, it
must overcome these limiting rates by moving along the reaction

pubs.acs.org/JPCB Perspective
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Figure 2. Free energy landscape for the conformational states observed
during enzyme catalysis. (A) Free energy changes observed during the
catalytic activity of dihydrofolate reductase (DHFR) interaction with its
substrate dihydrofolate (DHF) in the presence of NADPH cofactor.
Various conformational states A, B, C, D, and E are shown. Adapted
from Boehr et al.>” (B) Schematic representation of free energy changes
observed during the enzyme—substrate interaction of actinonin-peptide
deformylase (AtPDF) complex via an induced-fit mechanism. The open
(0), superclosed (S), intermediate (I), transition (T), and enzyme—
substrate complex (C) conformational states are shown. Adapted from
Fieulaine et al.*’

coordinate through an induced fit mechanism that reduces the
energy barrier for catalysis (Figure 2B).%’
Case 3: The exchange rate of conformational transitions is
similar to the exchange rate between functional states. This
scenario is the most challenging to experimental approaches
since functional state transitions and conformational changes
that occur simultaneously cannot be unambiguously separated.
To probe exchange rates that belong to these cases, and to
probe nonequilibrium conditions ensemble perturbation,
methods such as laser-based temperature jump (T-jump),®**
pH jump,®® and rapid mixing,**** are useful. With the T-jump
technique, one can drive the system into higher energy, low
populated states using laser-induced T-jumps and follow the
nonequilibrium dynamics as it relaxes with high temporal
resolution (nanosecond to millisecond). Rapid-mixing and pH-
jump assays provide temporal resolution of microseconds to
seconds and nanoseconds to seconds, respectively. Recent
advances in 2D-IR spectroscopy”” also enable one to probe the
nonequilibrium dynamics of the system. Crucial is that these
methods can reach high temporal resolution probing short-lived
functional states.

B MULTIDIMENSIONAL ENERGY LANDSCAPES

A one-dimensional projection of the energy landscape along the
reaction coordinate is conceptually elegant and quantitatively
convenient. However, it is common practice to use a one-
dimensional experimental observable that might not reflect the
true reaction coordinate. For example, at thermodynamic
equilibrium, systems can experience dynamics that are not
experimentally captured entirely along the reaction coordinate.
Thermal fluctuations displace complex systems in directions
with components orthogonal to the reaction coordinate as they
sample microstates near to, but not along, the reaction

https://doi.org/10.1021/acs.jpcb.1c02424
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coordinate. The dynamics of a system in these other dimensions
can be essential for the molecule’s function.****®” These
considerations are particularly important when the observable
reaction coordinates either do not align with the reaction
coordinate or fail to capture the system’s critical dynamics.
Multidimensional changes such as these can be difficult or
impossible to capture on a 1-D reaction coordinate projection of
the energy landscape.

Nonequilibrium systems exacerbate the need to improve
representations of multidimensional energy landscapes. Non-
equilibrium processes, including the application of external
force,°® allosteric cofactors,”” protein—protein interactions,”’
post-translational modifications,”* and temperature’' and pH
changes,”” as well as other energy transfer mechanisms’> and
environmental perturbations,”* can impact biomolecular sys-
tems in ways that nonuniformly distort the multidimensional
free energy landscape. Consider a biomolecular system subject to
external loading that displaces its atoms along dimensions other
than the direction of the force due to its anisotropic nature. Such
oblique translations along orthogonal dimensions could have
significant direct functional effects.'” Additionally, they could
destabilize intramolecular interactions in remote areas of the
molecule leading to other changes to the energy landscape,
causing unfolding of other structural domains, or changing
interactions with solvent (environment) molecules.'® Any
combination of these effects likely alters the energy landscape’s
contours and changes the reaction coordinate’s path through the
multidimensional energy landscape space.”””’” Therefore,
reducing a multidimensional energy landscape into 1-D does
not adequately represent the system’s dynamics and can mask
physiologically relevant accessible conformations, configura-
tions, and transition paths.”*”’

To understand, model, and make predictions about multi-
dimensional, nonequilibrium molecular biological processes, we
suggest that the field needs to move beyond 1-D representations
of observable coordinates in the equilibrium free energy
landscapes. To do so, we need computational and experimental
tools to visualize and probe these systems. However, this
suggested approach remains challenging. To illustrate the
problem’s magnitude, take the relatively simple system of the
thiamine pyrophosphate (TPP) riboswitch’s ligand sensing
domain as an example. The aptamer domain of the TPP
riboswitch has about 110 RNA bases; that is nearly 3N — 6 =
5000 dimensions! Measuring, analyzing, conceptualizing, and
representing a 5000-dimensional system is an overwhelmingly
complex problem unlikely to impart understanding in any
meaningful way. However, as we will discuss when we revisit this
example further below, a single-dimensional or even two-
dimensional representation may be too simple to capture
essential mechanisms of the system.

H MAPPING THE MULTIDIMENSIONAL FUNCTIONAL
ENERGY LANDSCAPE IN EQUILIBRIUM AND
NONEQUILIBRIUM SYSTEMS

For decades, structural biology’s goal has been to find and
present representative structures corresponding to local minima
(i.e, macrostates) in the functional energy landscape,37’80 and X-
ray crystallography and cryo-electron microscopy (cryo-EM)
have been widely successful at doing so. We have learned much
about biological macromolecular mechanisms by determining
structures in various conditions (e.g., ligand-bound and
unbound states) and inferring dynamics between these
structures. Further progress can be made using methods that

capture dynamics directly, including nuclear magnetic resonance
(NMR) spectroscopy, electron paramagnetic resonance (EPR)
spectroscopy, and ultrafast pump—probe spectroscopy, partic-
ularlgr1 when integrated with X-ray crystallography and cryo-
EM.

Other techniques have significant roles in improving the
mapping of functional energy landscapes for biomolecular
systems. Single-molecule techniques, including fluorescence
spectroscopy,82 super-resolution microscopy,83 optical tweez-
ers,8 magnetic tweezers,85 and atomic force microscopy,” have
the advantage of disentangling heterogeneous populations
within the ensemble and monitor transitions in real-time across
many decades of spatiotemporal-force resolution. Dynamic
simulation methods have developed into a robust tool for
precisely understanding the properties (structure, recognition,
and function) of biomolecular systems on a time scale that is
otherwise inaccessible and are routinely applied to study
dynamic events, thermodynamic properties, and time-depend-
ent (kinetic) phenomena of many biophysical processes.”’
Computational methods such as Langevin (stochastic) dynam-
ics,**® Brownian dynamics,go’91 Monte Carlo simulations,”
and molecular dynamics (MD) simulations using all-atom or
coarse-grained”” representations of molecules coupled with
enhanced sampling approaches such as temperature replica
exchange”””® can be used to com7p1ement experimental
techniques such as NMR,”® FRET,*””° force spectroscopy,97
and other biophysical tools to explain the dynamics nature of
interconverting ensembles.”® MD describe the time evolution of
conformations of biological molecules and generate thermody-
namically consistent trajectories through equilibrium energy
landscapes with high temporal and spatial resolution”” as well as
none%uilibrium landscapes through techniques like steered
MD.'"” Moreover, MD simulations and other computational
solvers (e.g., Poisson—Boltzmann equation solvers'’") can map
out multidimensional energy landscapes constrained by
observations and predict the ensemble of microstates that
make up any given macrostate.'**

Force Spectroscopy. Single-molecule force spectroscopy
has successfully been used to determine folding free-energy
landscapes of biomolecules with externally applied force in both
quasi-static and nonequilibrium experiments on molecules as
they both unfold and refold.'®**'*7'%° The approach
effectively “tilts” the free energy landscape in the direction of
pulling and changes the relative depths of the basins and the
heights of the hills between them (Figure 1D, dashed black line).
Tilting an energy landscape favors partially and fully unfolded
macrostates, enabling one to acquire quantitative data about
these otherwise low populated states and rarely occurring
transitions in more detail.*' Even for systems that are generally
not subject to external loading, if done precisely, for example,
based on an X-ray crystallography structure, or on a simple
enough system, for example, a DNA hairpin or short peptide,
externally applied forces can be directed along the reaction
coordinate and the shifted, nonphysiological equilibrium states
can be used to understand the physiologically relevant
biomolecular system.'®*¥>*%

Moreover, the external forces applied by force spectroscopy
techniques can help map multidimensional functional energy
landscapes in equilibrium and nonequilibrium systems. External
forces can mimic and probe the energy landscape tilting effects of
energy fluxes associated with nonequilibrium processes in motor

107111 . . 84 112 . 113
proteins, riboswitches, ch%perqnes, kinases,
CRISPR/Cas9,114 and many others.'®115116 When taken in
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the context of other structural data, force spectroscopy can aid in
characterizing multidimensional energy landscapes for both
equilibrium and nonequilibrium conditions as well as identifying
the reaction coordinates along which systems traverse these
landscapes.

Fluorescence Spectroscopy. Single-molecule multipara-
meter fluorescence spectroscopy (smMFS) is a time-resolved
technique using all the dimensions of intrinsic fluorescence
information that one can obtain from a chromophore, that is, its
absorption and fluorescence spectra and its fluorescence
quantum yield, lifetime, and anisotropy, to quantify the dynamic
properties of biological macromolecules.''” State-of-the-art
smMFS data analyses enable resolution of a target molecules’
structural and dynamic characteristics''® at time scales from
picoseconds to hours and length scales that reach angstrom
precision when used in combination with FRET.""®""” When
extended to multicolor FRET, smMFS allows one to monitor
each of the dimensions of intrinsic fluorescence information
along multiple observable coordinates simultaneously.''”'*’
Also, the single-molecule nature of smMFS data can allow
researchers to distinguish regions of energy landscapes under
nonequilibrium conditions hidden in ensemble measure-
ments.'”" Particularly when taken in the context of other
structural data, smMFS can also help identify reaction
coordinates and characterize the multidimensional energy
landscape.

Molecular Dynamics. MD simulations use Newton’s laws
and parametrized force fields to model the position of atoms in a
system as a function of time.'*>"** The all-atom approach of MD
allows one to probe the multidimensional aspect of free energy
landscapes in great detail. Specifically, MD simulations allow one
to calculate multiple possible conformational and configura-
tional trajectories through highly multidimensional (all 3N — 6
dimensions) energy landscapes. MD simulations can be used to
predict and validate experimental observables made with
complementarz techniques, such as NMR,”® FRET,”””° force
spectroscopy,”’ and other biophysical tools. MD simulation
packages, including CHARMM,'** AMBER,'** NAMD,"*° and
GROMACS,"”” can include external forces with the conven-
tional force fields and other external perturbations in targeted
and steered MD simulations. These approaches enable one to
identify plausible reaction coordinates, design force and
fluorescence spectroscopy experiments, and determine con-
formational dynamics of biological molecules under non-
equilibrium conditions."**~"*

Usually, conventional all-atom MD simulations with parallel
computing can reach time scales up to microseconds that capture
many physiologically important dynamics but still fall short of
covering the wide range of functionally relevant time scales up to
milliseconds and seconds.*'*' Also, conventional MD simu-
lations can rarely unveil the features of the high energy transition
states that lie in regions of the free energy landscape, as the
simulated systems often get trapped in local-minimum
conformations.'>* To overcome this limitation, enhanced
sampling methods such as replica exchange MD'*® and
metadynamics'** have been developed to handle the inherent
quasi-nonergodicity'*” and analyze complex dynamics, deter-
mine structural information, and efficiently sample the rugged
folding landscape of biophysical systems.'>”'*° Discrete
molecular dynamics (DMD), an event-driven MD approach
featuring higher sampling efliciency over conventional
MD,"*’~*? has been developed to efficiently study the dynamics
of biomolecules."* The increased computational efficiency

results from the usage of discretized potential functions and
recalculation of atomic ballistic equations only for atoms that are
involved in a collision event."""'** The DMD force field
incorporates the CHARMM van der Waals interaction
parameters, the Lazaridis and Karplus implicit solvent
model'* (the effective energy function, EEF1), screened
electrostatic interactions between charged residues, and explicit
modeling of hydrogen bonds. Replica exchange DMD coupled
with the implicit solvent model accelerates sampling of the
complex multiple-basin energy landscape and has high predictive
power in describing conformational transitions of biological
molecules under nonequilibrium conditions,'**~"*" identifying
plausible reaction coordinates, and resolvin% the supertertiary
structure of multidomain proteins.'**'*> Moreover, the
structural and thermodynamic data generated by coarse-grained
MD and DMD'*® simulations can be used to study the
mechanisms of larger-scale, slower processes.'*’

Integrated Approaches. In recent years, efforts to integrate
these approaches led to more detailed reconstructions of
functional biomolecular energy landscapes. smFRET used in
combination with MD simulations bridged multiple length and
time scale limitations associated with each technique independ-
ently. The combination has been used to validate the leucine—
isoleucine—valine binding protein (LIV-BP) as a biosensor, **
investigate rapid dynamics along the reaction coordinate,'*’
capture dynamic binding and allosteric processes, quantify
supertertiary and transient conformations, and probe the
equilibrium dynamics for biomolecular states."'”'"*° Addi-
tionally, optical tweezers used in combination with multiscale
molecular dynamics simulations have characterized the effects of
octanoyl-CoA on the folding stability of acyl-CoA binding
protein'>' and revealed how disease-causing mutations in
kinesin-3 motors affect force generation in one dimension
through allosteric effects on the ATP hydrolysis site in another
dimension of its multidimensional energy landscape.'>> Single-
molecule fluorescence spectroscopy combined with force
spectroscopy approaches provided mechanistic details for
force-induced changes and local conformational dynamics in
DNA nanostructures'>* and out-of-equilibrium conformational
dynamics in the protein—DNA interactions of the E. coli DNA
repair helicase (UvrD) system.'** The discoveries of complex
biological mechanisms rooted in the details of the structure—
function—dynamics relationship and made by integrating
multiple approaches would have been impossible to find if the
data were collected in isolation.

Despite these significant insights into various biological
mechanisms, the overarching principles governing out-of-
equilibrium dynamics within biological macromolecule multi-
dimensional energy landscapes are yet to be clearly understood.
We suggest a path forward that builds on the remarkable progress
made in recent years by integrating techniques. Studies that
simultaneously analyze data collected from multiple independ-
ent techniques, often through collaborations among multiple
research groups, is a fantastic first step, and they have already
yielded remarkable results, some of which we highlighted above.
However, we suggest novel, integrated instruments that probe
single-molecule biomolecular systems in and out of equilibrium,
along multiple dimensions, and over many orders of length, time,
and force scales simultaneously would significantly accelerate
discovery. Such instruments will synergistically combine multi-
ple techniques into a single instrument to make real-time,
simultaneous, multiparameter single-molecule measurements of
biomolecular dynamics.
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Figure 3. Multidimensional smFRET and optical tweezers data show the folding and unfolding kinetics for the riboswitch. (A) Schematic
representation of TPP riboswitch in the ON (left) and OFF (right) state conformations, which activate and inactivate the expression platform
(magenta) by enabling and disrupting ribosomes (brown). TPP (yellow) and Mg?** (blue circle) ligands coordinate with the pyrimidine sensor helix (P2
and P3 helices, orange) and the pyrophosphate sensor helix (P4 and PS helices, purple), which comprise the aptamer domain along with the P1 switch
helix. Donor (green circle) and acceptor (red circle) fluorophores in the sensor helices enable probing aptamer domain dynamics with smFRET and
MFS. (B) Ball and stick representation of the TPP riboswitch’s aptamer domain X-ray crystallographic structure (pyrimidine sensor helix, orange, and
pyrophosphate sensor helix, purple) when complexed with TPP (yellow) and coordinating Mg** ions (blue) (PDB ID: 2GDI'®*). This structure
represents a P1/P2 co-stacked, P1 switch helix base-paired state. (C) Filtered FCS species cross-correlation function (sCCF) vs correlation time for
TPP riboswitch in apo conditions. There are four state transition rates with different time scales (vertical black lines). Darker to lighter shaded regions
represent from intrachain to local and global conformational dynamics, respectively. Raw and functional fit correlation data are shown in colored and
black lines, respectively. Note that LF indicates low FRET, and HF indicates high FRET. (D) Transitions between the switch helix base-paired (F) and
multiple unfolded states (UF1 and UF2) in the time-series force spectroscopy data are identified by sudden increases and decreases of force within the
optical tweezers. States of order 100 ms (7) are identified with a step-finding algorithm (inset). (E) Two-dimensional potential of mean force (PMF)
calculated with discrete molecular dynamics (DMD) represents the aptamer domain’s energy landscape quantified along intersensor helix arm and P1/
P2 helix co-stacking distance observable coordinates. The PMF shows multiple conformational states (basins) corresponding to sensor helix open states
with no co-stacking (@) and with co-stacking (f3), a partially closed sensor helix state with co-stacking (7), and closed sensor helix state with co-stacking
(8). Adapted from Ma et al.'e!

B THE TPP RIBOSWITCH: A CASE FOR INTEGRATIVE ture.'®> The energy landscape model of this switching
SINGLE-MOLECULE MULTIDIMENSIONAL mechanism suggests that TPP and Mg** tilt the functional
APPROACHES energy landscape through a nonequilibrium process that

allosterically lowers the P1 helix base-paired basin.

Riboswitches ‘are noncoding gene regulatory segments of To resolve the functional mechanism of the TPP riboswitch,

mRNA.'*>1%¢ Riboswitches, as their name indicates, switch

whether a gene gets expressed in response to small metabolites we recegtglgﬁgd 'outlsmMFS an o%tlcai tweezezls rnhe as;lr)el;
and metal ions. Such is the case for the Arabidogsis thaliana ments wit simulations independently to study the

thiamine pyrophosphate (TPP) riboswitch."**'>" The TPP blndmg process and subsequept transition to the tra_nslati_on—
riboswitch has two distinct functional domains: the TPP ligand 1nh1b1t11211g state in a set_of experiments that bridge multiple time
sensing aptamer domain and the splice-regulating expression scales. ".['he.se com]zzln?ed results sho.w thfit an excess of T_PP
platform (Figure 3A,B). Mechanistically, the sensor helices of and coordlnat'lng Mg"™ ion concentrations is necessary to drive
the aptamer domains coordinate with TPP, which, in turn, causes the sensor helices toward a structural configuration (Flgulr6e33C)
the P1 switch helix to base-pair, leading to subsequent structural consistent with X-ray crystallography data (Figure 3B). " We

changes in the expression platform domain that ultimately performed filtered fluorescence correlation spectroscopy (fFCS)
regulate gene expression.“’ls 1159 and time-correlated single-photon counting (TCSPC) measure-
Recently, optical tweezer data were used to quantify the TPP ments to probe the site-specific exchange process 1132’4 111655ing
riboswitch’s aptamer domain folding energy landscape.“’léo characteristic fluorescence and time-resolved decays. " ™ A
However, the functional energy landscape is less clear. In ligand- global fit of species-specific auto- and cross-correlation data gave
free conditions, the P1 switch helix is not base-paired (Figure four relaxation times (Figure 3C), indicating interconversion
3A) ,161 and the sensor helices undergo rapid structural among at least five different states. We found that the relaxation
conformation transitions through a relatively flat free energy times among these states span time scales from 100 ns to
landscape.158 The dynamics of the sensor helices slow in the milliseconds. Under different buffer conditions, our results
presence of the TPP ligand, which correlates with the base- showed that the relative population and the transition rates
pairing of the P1 switch helix.'®> However, there is not a between the states are sensitive to the ligand concentrations. To
transition to a static, stable X-ray crystallography-like struc- probe the long-lived states (greater than millisecond time scale)
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dynamics, we measured the aptamer domain’s P1 switch helix
unfolding transitions using a passive optical trap. Analysis of the
optical tweezer time traces revealed that the dynamics between
the folded (F) and unfolded states (UF) are on the order of 100s
of milliseconds under load (Figure 3D) and 10s of seconds in the
absence of a load.'®" Further, we employed replica exchange
DMD simulations to sample the conformational space of the
riboswitch under multiple conditions, including the ligand-free
apo state, partially bound states with either Mg>* or TPP, and the
holo state with both ligands. Under each condition, we mapped
these dynamics onto two-dimensional energy landscapes using
replica exchange DMD simulations and weighted histogram
analysis method'®® (e.g, PMF of the holo RNA in Figure 3E),
where the “interarm distance” dimension corresponds to the
sensor helix open-to-closed axis, that is, transitions between
structures represented by the “ON” and “OFF” states (Figure
3A), and the “stacked distance” dimension corresponds to P1/
P2 helix stacking (Figure 3B). The simulation results suggested
that co-stacking between P1 and P2 helix coupled to the opening
and closing dynamics of the arms. In the presence of Mg>" and
TPP, the computed PMF of the interarm distance vs co-stacking
distance shows two distinct peaks; interarm distance at 24.8 A
represents a closed state ensemble and the population with peaks
at 85.2 and 95.1 A resembles an open state ensemble (Figure
3E). In agreement with FRET measurements, the two-
dimensional PMF histogram suggests the appearance of a
prominent population peak for the closed state and simultaneous
reduction in the open state in the Mg*>* and TPP buffer, a low-
population closed state in the Mg** buffer, and a tailing toward a
closed state and appearance of an intermediate state in the TPP
buffer.'®" Including the “ON” state with P1 unfolded after losing
the P1/P2 co-stacking that was not sampled in silico, we
identified at least five conformational ensembles with low energy
barriers between them whose depths, and therefore populations,
are strong functions of whether the TPP and Mg** ligands are
bound. Integrating the results from multiple independent
techniques enabled us to propose a model in which the TPP
riboswitch aptamer domain can follow each of two pathways
through its functional multidimensional energy landscape and
that this mechanism underlies a kinetic rheostat-like function of
the Arabidopsis thaliana TPP riboswitch.

Using an integrated instrument that simultaneously main-
tained the TPP riboswitch’s aptamer domain in an optical trap
and collected intensity-based smFRET trajectories, Duesterberg
et al.** identified concurrent transitions in the force and FRET
data. The experiments’ simultaneous measurement enabled
them to distinguish differences in the sensor helix orientation in
various TPP-binding states (Figure 4) that the same data
collected separately would not have found. However, these data
could not resolve the complex configurational and conforma-
tional heterogeneity associated with rapid fluctuations (Figure
3C) due to the temporal resolution limitations of intensity-based
smFRET trajectories.'®’ Even with state-of-the-art combined
technique instrumentation, it remains challenging to build a map
of the quantitative, multidimensional, nonequilibrium functional
energy landscape for the TPP riboswitch’s aptamer domain that
captures how the rapid conformational dynamics of the sensor
helices lead to slower switch helix actuation and P1/P2 co-
stacking. We need more advanced tools that combine single-
molecule force and time-resolved multiparameter FRET
techniques to elucidate how conformational dynamics underly
the functional mechanisms of TPP riboswitch.
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Figure 4. Simultaneously acquired force-FRET data reveal that TPP
binding correlates with structural changes within the TPP riboswitch.
Force (optical tweezer data, black line) and FRET trajectories
(smFRET data, gray line with black circles) reveal the unfolding
conformations of the TPP riboswitch’s aptamer domain. F (no TPP,
top), F'"TPP (with TPP, middle) and F”-TPP (with TPP, bottom)
represent the no TPP bound, weak TPP binding, and strong TPP
binding states of the riboswitch, respectively. The apo (blue box), weak
TPP-bound (green box), and strong TPP-bound (yellow box) states, as
identified based on FRET, correspond to increasing switch helix
unfolding forces, as quantified by optical tweezers. Small filled arrows
indicate opening transitions and refolding period end points. Open
arrows mark the force ramp starting points. Adapted from Duesterberg
etal.

B PERSPECTIVE

We must develop and build new instruments to probe structural
dynamics across many decades of spatiotemporal resolution and
along multiple simultaneous dimensions in equilibrium and
nonequilibrium conditions to characterize the multidimensional
complexities of biomolecules relevant for living organisms. Such
rapid, simultaneous, multidimensional data acquisition would
enable researchers to quantify distinct reaction coordinate
pathways as a system’s functional energy landscape evolves in
out-of-equilibrium conditions, for example, as ligands bind to the
TPP riboswitch’s aptamer domain. It is crucial to investigate
biomolecular processes with high spatiotemporal resolution
because these critical functional dynamics occur over a broad
range of time and length scales (Figure S and Table 1). The
further development and proliferation of integrated single-
molecule force and multiparametric fluorescence spectroscopic
instruments, for example, a single-molecule multidimensional
fluorescence and force microscope (smmFFM) that combines
ultrafast optical tweezers with smMFS, will enable probing
multidimensional energy landscapes of more biomolecular
systems under out-of-equilibrium conditions.

Beyond instrument development, we further suggest it is
critical to apply, extend and, most importantly, integrate

https://doi.org/10.1021/acs.jpcb.1c02424
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Figure S. Schematic model shows the ability to probe biomolecular
structure—dynamics—function with length, time, and force scales in
studies that combine MD simulations with integrated fluorescence and

force spectroscopy instruments.

Table 1. Various Biological Functions with Various Time
Scale, Length Scale and Force Range Measured Using

Different Methods
event methods scale/range refs
Time Scale (s)
side chain motions NMR relaxation dispersion 1072 to 10~ 167
protein folding Optical tweezers 10°to 1 24
gene splicing FCS and FRAP 10 to 10° 168,169
gene regulation FRAP 1073 to 100 170
ion channel gating smFRET 10°t0 1073 171
translation E. coli and mammalian cell 1 to 60 172
lines
domain motion smFRET 1078 to 1073 144,173
ligand binding MD simulations 10 to 100 60
signal smFRET 107 t0 1073 174
transduction
enzyme catalysis ~ NMR relaxation dispersion ~ 107° to 107 10
Length Scale (nm)
E. coli DIC microscopy >10° 175
organelles nucleus 10%to 10
membrane cryo-electron tomography 5 to 10 176
thickness
extracellular extracellular vesicle 10 to 10° 177
vesicles imaging
ribosomes cryo-EM Sto 10 178
proteins gel filtration and electron Sto SO 179
microscopy
Force Range (pN)
ion channel gating atomic force microscopy 1to 10 180
chromosome electron microscopy 0.1to1 181
segregation
motor proteins force-feedback optical trap 7 to 10 182
molecular optical tweezers 1to 10 161
extension

computational methods, analytical tools, and conceptual frame-
works to understand these data. A strategy adapting and
extending the methodologies that successfully quantify folding
energy landscapes™ >*** to analyze functional energy land-
scapes likely would be fruitful. Additionally, it will be essential to
develop elegant and broadly understandable but rigorous
representations of these data’s complexities. Extensions to the
static representations of one- and two-dimensional landscapes
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widely used today would better capture the underlying dynamics
of multidimensional, nonequilibrium systems.

Taking the riboswitch case as an example, simultaneously
applied integrated approaches like the smFFM can address both
specific and broadly fundamental questions such as the
following: (1) How do sensor helix conformational dynamics
and switch helix base paring coordinate? (2) How do TPP and
Mg** ligand binding to the sensor helices drive the conforma-
tional and configurational transitions in the aptamer domain
structure? (3) Which functional pathways identified with
equilibrium experiments are significant in the more biologically
relevant, out-of-equilibrium conditions that occur as the ligands
bind? (4) Can a single reaction coordinate adequately model the
TPP riboswitch function, or are multiple reaction coordinates
necessary to understand its function? Beyond riboswitches, the
combined integrated approaches will be important in the study
of nearly all biomolecular systems, including allosteric
mechanisms of enzymes, cytoskeletal and nucleic acid motor
proteins, functional roles of intrinsically disordered proteins and
domains, biomolecular aggregates and phase-separated con-
densates, gene regulatory and differential gene expression
mechanisms, membrane fusion processes, ion channel gating,
and signal transduction, just to name a few; other examples are
listed in Table 1.

In summary, the energy landscapes of biomolecular systems
are highly complex. The construction of multidimensional
landscapes is cumbersome even in the simplest cases and
essentially impossible for larger ones using independently
applied experimental, computational, and theoretical techni-
ques. One must carefully choose the observable coordinates to
probe biomolecular function along the reaction coordinates to
map multiple possible trajectories through a multidimensional
space. Energy must be added to or taken from a system while
simultaneously making biophysical and biochemical measure-
ments to get details about a biomolecule’s intrinsic mechanistic
pathways under out-of-equilibrium conditions. In this context,
advanced integrative approaches, such as the combination of
advanced optical tweezers and fluorescence methods, can be the
way of the future. Specifically, we suggest that single-molecule
multiparametric fluorescence spectroscopy integrated with
ultrafast optical tweezers, that is, the smFFM, and combined
advanced MD simulations can enable researchers to access the
spatiotemporal regimes important for function. Widespread use
of such integrated approaches will boost our understanding of a
broad swath of biomolecular mechanisms and help the scientific
community to engineer biology and develop future therapeutic
agents.
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