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Abstract

The time of dim light melatonin onset (DLMO) is the gold standard for circadian phase 

assessment in humans, but collection of samples for DLMO is time and resource intensive. 

Numerous studies have attempted to estimate circadian phase from actigraphy data, but most of 

these studies have involved individuals on controlled and stable sleep-wake schedules, with mean 

errors reported between 0.5 and 1 hours. We found that such algorithms are less successful in 

estimating DLMO in a population of college students with more irregular schedules: mean errors 

in estimating the time of DLMO are approximately 1.5–1.6 hours. We reframed the problem as 

a classification problem and estimated whether an individual’s current phase was before or after 

DLMO. Using a neural network, we found high classification accuracy of about 90%, which 

decreased the mean error in DLMO estimation - identifying the time at which the switch in 

classification occurs - to approximately 1.3 hours. To test whether this classification approach 

was valid when activity and circadian rhythms are decoupled, we applied the same neural 
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network to data from inpatient forced desynchrony studies in which participants are scheduled 

to sleep and wake at all circadian phases (rather than their habitual schedules). In participants 

on forced desynchrony protocols, overall classification accuracy dropped to 55–65% with a range 

of 20–80% for a given day; this accuracy was highly dependent upon the phase angle (i.e., 

time) between DLMO and sleep onset, with highest accuracy at phase angles associated with 

nighttime sleep. Circadian patterns in activity, therefore, should be included when developing and 

testing actigraphy-based approaches to circadian phase estimation. Our novel algorithm may be 

a promising approach for estimating the onset of melatonin in some conditions and could be 

generalized to other hormones.
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Introduction

Circadian rhythms are oscillations in behavior and physiology with a period of 

approximately 24 h. At the cellular level, these rhythms are driven by transcriptional­

translational feedback loops1, resulting in oscillations both in transcription of approximately 

50% of genes in at least one organ2 and in expression of many drug targets. This motivates 

the growing interest in chronotherapeutic approaches, in which drug intake is timed to 

maximize efficacy and minimize side effects3.

Misalignment between internal circadian rhythms and the environment, which occurs with 

jetlag, shiftwork, and circadian disorders, has been linked to adverse health outcomes, 

including cardiovascular disease, metabolic disease, and cancer4. Methods are needed, 

therefore, to shift the phase of the circadian clock to align with the environment. Both the 

magnitude and direction of the phase shift caused by both photic and non-photic (including 

pharmaceutical) interventions depends on the phase (i.e., time) at which the intervention 

is delivered5–8. Thus, we must be able to precisely assess an individual’s current circadian 

phase9 before applying interventions.

The gold standard for circadian phase assessment in humans is dim light melatonin onset 

(DLMO). This phase assessment technique requires the collection of multiple hours of 

blood or saliva samples under low light conditions, usually in an inpatient setting, for later 

melatonin assay. This method is time-consuming and resource-intensive. Furthermore, it 

does not allow for circadian phase to be assessed continuously or in real-time, limiting its 

usefulness for timing interventions. These limitations motivate the need for an alternative 

method of circadian phase estimation. Recent research has focused on two main approaches, 

using a genetic assay or less invasive actigraphy data10.

Several methods have been proposed to estimate circadian phase using panels of circadian­

cycling genes and proteins (reviewed in Crnko et al.11). Machine learning algorithms12 

have reduced the number of genes used for these panels from over 10013 to about a dozen 

genes in monocytes extracted from whole blood14. Most of these approaches have mean 
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errors between 1 and 2 hours (Table S1). These methods still have the limitations that the 

collection of samples is invasive and results are not available in real-time.

Actigraphy data can be collected non-invasively in real-time. These data can include 

activity counts, light levels, skin temperature, and/or heart rate. There are three main 

model categories for estimating circadian phase using actigraphy data: limit cycle oscillator 

models, regression models, and neural network models15; their errors are between 0.4 and 

1.1 h (Table S2). Limit cycle models use actigraphy data as input to differential equations­

based models, most commonly the Kronauer model16 or its amended version which includes 

a non-photic component17, to predict how the series of light inputs shifts oscillator phase18. 

Some regression models have used derived markers of actigraphy rhythms, such as the time 

of peak activity or the time when wrist temperature begins to increase, to estimate DLMO19. 

Another approach has used an adaptive notch filter (ANF) to derive harmonic estimates 

to estimate phase shifts20. The limit cycle, linear regression, and ANF models all require 

several days of data for (i) the limit cycle result to be insensitive to initial conditions or (ii) 

to define average activity markers, limiting their utility for a phase assessment that can be 

performed quickly (with the goal of real-time assessment). Other regression models have 

used light and skin temperature recordings from multiple skin electrodes over a 24 h period 

to estimate circadian phase with a mean error of 0.7 h21. Recent neural networks have had 

success in prediction when the model’s exact functional form is unknown22. Using the same 

input data but increasing the flexibility of the model by training a neural network, this mean 

error was decreased to 0.4 h23. A similar approach in a different population, but with seven 

days of actigraphy recordings, found a mean error of 0.6 h in a population with habitual day 

active schedules24, with similar accuracies when using just a single wrist temperature sensor. 

These studies are limited due to small sample sizes (n<25) and the fact that participants 

follow regular, controlled schedules. Moreover, the same neural network model produced 

mean errors of over 2 h for participants on night shift schedules25, suggesting that the model 

does not generalize well to populations with less regular schedules or when the individual 

is awake at circadian phases usually associated with sleep. More recent work has again 

explored using differential equations-based models with some success in shift workers, 

although absolute mean errors remained higher26–28 than those reported in these models for 

participants with aligned schedules.

We therefore tested the generalizability of neural network-based models to a population 

of college students who had a high range in regularity in their sleep schedules29. We also 

developed a novel classification-based approach, which we tested in the college student 

population and in participants on inpatient forced desynchrony protocols in which sleep and 

wake occurred at all circadian phases to determine the effect of circadian misalignment on 

DLMO estimation.

Materials and Methods

The studies were approved by the Partners Human Research Committee and were performed 

according to the principles outlined by the Helsinki Declaration. Appropriate informed 

consent was obtained. Details of each study are in the original publications30–35.
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Actigraphy Data from a College Student Population

Data are from 174 participants from cohorts of ~30 undergraduate students each across six 

different semesters for ~30 days while students lived at school30,36. Participants completed 

demographic, psychological, and sleep habit questionnaires at the beginning of the study 

(“static data”). For all days, participants wore an actiwatch (Motionlogger, AMI, Ardsley, 

NY) that collected minute-by-minute light levels and activity counts (zero crossing mode) in 

addition to a Q-sensor (Affectiva, Boston, MA) that collected skin temperature readings at 

8 Hz. At one time during these ~30 days, participants were admitted to an inpatient facility 

for DLMO assessment. This data set was chosen because there was a wide distribution of 

DLMO values (Figure 1) with mean DLMO value of 23.3±1.58 h and range of ~8 h, broader 

than the ~5 h range which is typical of the adult population37.

Actigraphy Data from Forced Desynchrony Protocols

Data are from four inpatient forced desynchrony (FD) protocols. During an FD, participants 

are placed on a non-24-h schedule that is outside of the range of entrainment of the circadian 

clock, allowing for the decoupling of rest-activity patterns and circadian rhythms. The four 

FD protocols are summarized in Table S3. Minute-by-minute light and activity data and 

hourly blood melatonin data from the FD portion of the study were used. For each day, 

we defined the phase angle of entrainment as the difference between DLMO and scheduled 

sleep start.

DLMO Determination

DLMO was calculated by linearly interpolating the time at which melatonin levels crossed 

the 5 pg/mL threshold in saliva or 10 pg/mL threshold in blood 29.

Data Cleaning and Standardization

We wanted our method to be capable of estimating DLMO using only a limited timeframe 

of data, so we restricted our input data to the 24 hours immediately before the day of 

DLMO assessment. For training and testing our model, we considered only participants 

who had complete light and activity recordings for this day. For skin temperature data, we 

computed the average value for each minute and linearly interpolated missing values. Data 

were removed from further analysis if more than a minute of skin temperature recordings 

were missing from the end of the 24 h period or if total activity, light, or temperature 

recordings for the 24 h period were less than 3 standard deviations below the population 

mean, suggesting device malfunction. Data from 27 participants were removed.

To reduce the number of model inputs, we computed the average value of light, activity, 

and skin temperature within a 30-minute bin. We then standardized these binned inputs 

by participant for each data type (see Supplementary Information). We also compared 

performance using the median instead of the average.

The data were randomly split into a training (n=118) and independent test set (n=29), where 

we performed 10-fold cross-validation within the training set (which was randomly split into 

10 test sets for cross-validation) to fit the hyperparameters of the model.
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Continuous Neural Networks

We first trained (using the college student data) a neural network to continuously estimate 

time of DLMO. We implemented a basic feedforward hidden layer neural network 

architecture with one and two hidden layers with hyperbolic tangent activation functions in 

the keras package in Python (Figure 2). To increase robustness, we also introduced dropout 

into these models, where models are randomly thinned during training to reduce overfitting 

to particular data features38. We varied the hyperparameters of the number of nodes in each 

layer (between 10 and 100 in multiples of 10 for the single hidden layer model, and all 

combinations of between 10 and 50 in multiples of 10 for the two hidden layer model) 

and dropout rate (between 0.1 and 0.5 in multiples of 0.1). For each of these models we 

trained the weights of the model using Adam optimization (learning rate = 0.005 for 500 

iterations) to minimize the sum of the squared error between our estimated DLMO and the 

experimentally measured DLMO value on each of the cross-validation splits. We then chose 

the hyperparameter with the lowest mean cost function for our final model architecture, 

retrained this model on the full training set, and used the weights from training to evaluate 

the model on the test set.

We also tested the performance of long short-term memory (LSTM) architectures fitting 

a single layer of LSTM units (where we fit this hyperparameter between 10 and 50 in 

multiples of 10), which include recurrent loops with memory lags. LSTMs have had success 

when analyzing time series data39 such as our 24 h actigraphy recordings, and recurrent 

neural networks, such as LSTMs, have been previously applied to the college student 

dataset40

Classification Approach to DLMO Estimation

We also developed a novel approach to estimate the timing of DLMO, based on 

classification. Using this approach, we could effectively increase our sample size using 

the existing data. While our population was larger than those used to fit previous phase 

estimation models, it was still small for machine learning applications; the number of 

samples in our model was smaller than the number of parameters in the model because of 

the parameters for the nodes in the hidden layers. Rather than estimating the time of DLMO 

directly, we predicted whether the last timepoint in a 24 h series of data falls before or after 

DLMO; we shifted a 24 h interval of data (Figure 4A), where for each participant we have 

6 h (12 datapoints in 30-minute bins) of samples where the last timepoint occurs before 

DLMO and 6 h of samples where the last timepoint occurs after DLMO. This approach 

created a balanced dataset and allowed us to increase the number of samples in our dataset 

24-fold.

We compared the same neural network structures, but with rectified linear unit (ReLU, 

outputs the greater of the input and 0) activation between layers. To make the networks 

predict a classification we introduced a sigmoidal nonlinearity in the output, and instead of 

using the squared error loss as our cost function, we used cross entropy loss to train the 

model with stochastic gradient descent (learning rate=0.001 for 100 iterations).
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Our trained model outputs class labels for each 24 h time series (rather than a continuous­

time estimation). From these class labels, we could then estimate a value for DLMO by 

taking the midpoint of the times that the class labels switch from before to after DLMO.

Circadian Rhythmicity of Activity Levels

The circadian phase of each actigraphy data point was calculated using circadian period 

(i.e., slope) and starting phase (i.e., intercept) from the linear regression of DLMO collected 

during the FD portion of each experiment. Data were then assigned to 3-h circadian time 

bins (one-eighth of the participant’s circadian period) and 3-h wake duration time bins. 

Within each time bin, we used Zero Inflated Poisson (ZIP)-based statistics on activity 

levels for each participant. We then averaged bins across participants within each of the FD 

protocols. We tested for differences by circadian phase and time awake within each of the 4 

FD protocols using repeated-measures ANOVA using SAS 9.4.

Results

Previous Methods Do Not Generalize to the College Student Population

We first tested whether machine learning, actigraphy-based models like those used in 

more tightly-controlled, small-sample-size populations23,24 would extend to college students 

living at their school on self-selected, sleep-wake schedules. We found root mean squared 

errors (RMSE) of approximately 1.6 h for most models, with the best performing models 

(LSTMs) having errors of about 1.5 h for the average features (Table 1). When using the 

median (instead of average) features, (i) there was not much improvement except in the case 

of the full data set with all the demographic and actigraphy features, where errors decreased 

to about 1.4 h, but (ii) there were more consistent results across the models because the 

model predicted the mean DLMO of the dataset (Table S6, Figure S2). The Pearson’s R 

for the relationship between experimentally measured DLMO and the continuous model 

estimated phase in the training set was 0.99 (p<<<0.01), it was 0.17 (p=0.38) for the test 

set (Figure 3A). These errors are higher than those reported in the populations with more 

regular schedules and perform only minimally better than simply predicting the population 

mean, suggesting that these models do not generalize well to populations with irregular 

schedules.

A Classification Approach Improves Phase Estimation Accuracy in the College Student 
Population

The classification approach could predict whether a timepoint was before or after DLMO 

based on 24 h of data with high accuracy (~90%) for both the training and test set (Table 

2, Table S4) for both average and median features. Predictions were more consistent when 

using the median features (Tables S7–S8).

A sample output of the classification neural network is shown in Figure 4B; we have 

presented the data so that the switch in classification should occur between the eleventh and 

twelfth time-bin for perfect accuracy. We found that the changes in class prediction usually 

only crossed the decision boundary once; in cases where this was not true, we defined the 

switch as the first time that the decision boundary was crossed for simplicity. The RMSE 
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for these estimations decreased in all models when using the average features (Table 3) with 

the best performing models producing an RMSE of 1.3–1.4 hours (R=0.59 (p<<<0.01) in 

the training set and R=0.40 (p=0.03) in the test set (Figure 3B)). Even seemingly small 

improvements in classification accuracy can lead to large improvements in RMSE (Figure 

4C), which suggests that the errors in the classification occur near the decision boundary. 

In 16% of participants, the change in classification occurs within 15 minutes of measured 

DLMO, and in 35% of participants, the switch occurs within 30 minutes. However, the 

classification approach did not improve over the continuous approach when using the 

median features, suggesting that the increased variance provided by the average is important 

to the success of the classification approach (Table S9).

Accuracy of the Classification Approach Depends on the Phase Angle Between DLMO and 
Sleep Onset

We fit the model to the training set of light and activity patterns in the college sleep students 

and tested the performance in the FD datasets. In the FD data, overall classification accuracy 

dropped to approximately 50–60% (Table 4), preventing a meaningful determination of 

DLMO based on switches between class labels. Within individual participants, we found 

that classification accuracy could vary between 20% and 80% depending upon the day in the 

protocol, probably due to the phase angles between sleep onset and DLMO; a FD schedule 

includes all possible phase angles, while the phase angle is typically 2.2 ± 1.0 h in aligned 

populations41. Mean classification accuracy was higher for days where the phase angles 

were those of alignment (approximately −4 to 4 h) (Figure 5).

To further explore these findings, we analyzed the activity data relative to circadian and 

wake duration bins. There were significant differences in activity levels by circadian phase 

(p<0.007) and wake duration (p<0.001) for all four FD studies (Figure S3). The circadian 

rhythm of activity was highest at circadian times 13.5–19.5 h and lowest at −1.5–0.5 h 

relative to DLMO.

Discussion

Our classification-based method showed improvement over the continuous approaches 

in college students on self-selected schedules, suggesting that our model may be more 

generalizable since the range of observed phases (Figure 1) is also broader in college 

students compared to healthy participants studied under inpatient conditions. The range 

of errors in estimating circadian phase in both our continuous models (which were based 

on previous approaches23,24) and classification models, however, are greater than previous 

studies19,21,23,24. While our and other methods were successful in estimating DLMO in 

populations on “normal” schedules, they were less successful when circadian phase and 

rest-activity rhythms were misaligned (as is common with rotating shiftwork and circadian 

disorders); in such conditions, phase shifting interventions may be the most valuable. 

Therefore, there is still a need for further improvement in circadian phase estimation in 

misaligned conditions.
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Desired Accuracy for Clinical Utility

Repeated measures of DLMO in this college population42 and studies on the variance of 

DLMO assessment show typical fluctuations of less than an hour43. Therefore, a single 

phase estimate may be useful for clinical and other applications. The accuracy required for 

phase estimation methods to be clinically useful, however, may depend on the application9. 

Errors of approximately one hour may be acceptable to predict cognitive performance, but 

efficacy of phase shifting decreases from about 80% to 60% if errors in the timing of a light 

pulse increase from 1 to 2 hours15, resulting in possible errors in the shifted phase44.

Further Improvements to the Classification Approach

Although our population is larger than in previous studies, training the model on still larger 

populations could be beneficial for refining the model, as machine learning approaches have 

greatest success on large datasets because of the large number of parameters that are needed 

in these models. One possible reason the classification approach was more successful in 

estimating DLMO than the continuous models was because that approach increased our 

dataset size. Using this same expanded dataset but predicting time to DLMO from a specific 

time based on 24 h of data in a continuous framework, did not improve errors in DLMO 

estimation; this suggests the classification approach confers additional benefits beyond just 

more effectively using data.

Our classification accuracy may have performed poorly on the FD protocols because our 

training set of college students was not representative of these misaligned schedules, 

so using broader training data may lead to improvements. Some initial experiments in 

training on the FD datasets suggest some limited generalizability to the population of 

college students with approximately 70% accuracy. This is still lower than attained in 

our models trained in the college student population (as reported above), suggesting that 

other differences (i.e., controlled light and temperature environments) between the inpatient 

and outpatient populations may be important to the higher accuracy for models trained 

in the college population. To what extent classification accuracy depends on the training 

and testing demographic populations (e.g., circadian phase tends to be earlier in older 

populations45) should be explored.

Larger populations may also allow for other types of machine learning models to be 

implemented. Convolutional neural networks are highly effective in classifying images46, 

and may also be effective here if classification is dependent on the location of a 

specific feature of the actigraphy data waveform. Recent research has explored physics­

informed neural networks, which, by introducing physical laws as constraints, can solve 

differential equations47. Based on the success of the differential equation-based approaches 

in estimating circadian phase18, adding known dynamics about the impact of light in 

creating phase shifts in combination with neural networks may be a promising direction 

to pursue.

As these networks are further developed, other features of the input data could be 

considered. In our analysis, we did not find improvements when using smaller time-bins 

for the data (Tables S5 and S10), but the length of the time-bin does put a lower bound on 
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accuracy. For data to correspond to a circadian cycle, we chose to use a 24 h interval of data. 

Requiring 24 h of data limits the ability to immediately assess circadian phase so shorter 

time intervals are preferrable, but we found that accuracy decreased with decreasing time 

intervals of data (Figure S1). Incorporating data from when actigraphy and a single DLMO 

measurement were available in addition to current actigraphy data may also be valuable for 

future predictions, given the relative consistency of DLMO42.

Significance of Activity Rhythms and Challenges Under Circadian Misalignment

Our results demonstrate that activity levels may be important both for circadian phase 

estimation and other applications using activity as an input because of its circadian variation. 

Lowest accuracy in our classification approach was seen across models using average 

features when activity was not included as a model input, unlike previous studies that 

suggested skin temperature data was more important for prediction accuracy21,23.

Circadian variation may explain why the actigraphy-based approaches are highly limited 

in their predictive ability under circadian misalignment; FD protocols result in activity 

levels at circadian phases different than “normal”: higher levels during scheduled wake 

during the circadian “night” and lower levels during scheduled sleep during the circadian 

“day”. Circadian misalignment is common in individuals working night shifts and those with 

circadian rhythm sleep disorders: two populations that may need accurate phase assessments 

for interventions. Thus, a different data source or methodology may be required for phase 

assessment in these populations because of these changes in timing of behaviors and/or 

different light sensitivities in people with circadian disorders48,49.

We have presented a novel, machine learning approach in using actigraphy to estimate 

DLMO that is effective in outpatient, circadian-aligned populations. The classification-based 

approach introduced here is not limited to the prediction of the rise in melatonin but could 

also be used to estimate the timing of other hormones.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. DLMO in the Study of College Students.
Histogram showing the distribution of the timing of DLMO in this population.
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Figure 2. Example Neural Network.
A schematic of a neural network, where x is a vector of input data for d input features 

where xi, v is the vth feature for the ith participant and yi is the network output for the 

ith participant. In the case of the continuous neural network, yi is a continuous variable 

representing the network’s prediction of the time of DLMO for the ith participant. In the 

case of the classification neural network, yi falls between 0 and 1 and if yi< 0.5, the 

timepoint is classified as falling before DLMO. Nodes lm,n represent hidden nodes in the 

network, where m is the layer of the node, and n is the index of the node within each layer. 

The value of each node is determined by lm, n = tanh ∑n = 1
km − 1wm, nlm − 1, n + bn  for bn a fit 

constant. The number of nodes in each layer, km for bn a fit constant. The number of nodes 

in each layer, km, is a hyperparameter which was selected through cross validation.
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Figure 3. Neural Network Based Estimations of DLMO
Scatter plot showing experimentally measured DLMO vs. model estimated phase for the 

training and test sets with the single layer model for continuous neural networks (A) and 

classification neural networks (B). The dashed line represents perfect estimation.
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Figure 4. Outputs of the Classification Algorithm and Relationship to DLMO Estimation 
Accuracy A.
A schematic for the process of using actigraphy data in our classification algorithm. We 

use 24 h of actigraphy data, where data are binned into 30-minute time-bins for a total of 

48 datapoints for each datatype, so ti represents the ith 30-minute bin of activity, light, and 

skin temperature data. We create a classification problem, where we predict whether the 

endpoint of an interval of 24 h of data falls before or after DLMO using a neural network. 

B. Classification neural network outputs for three test participants. For each participant, 

each line shows the 24 predictions of whether the time series falls before or after DLMO 

by rotating our 24 h series of data. Outputs less than 0.5 are classified as occurring before 

DLMO and outputs greater than 0.5 are classified as occurring after DLMO. A perfectly 

accurate classifier would have the switch in classification between time-bins 11 and 12. 

C. Comparison of classification accuracy versus the resulting root mean squared error in 

DLMO estimation based on where the switch in classification occurs for the different 

models in Table 3.
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Figure 5. Classification Accuracy in Forced Desynchrony (FD) Protocols is Dependent on Phase 
Angle Between Sleep Onset and DLMO.
The mean (standard deviation) accuracy of the neural networks classification for days 

relative to the phase angle (between sleep onset and DLMO) for each of the 4 different FD 

protocols.
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Table 3.
Classification Performance vs. RMSE in Estimated DLMO.

A comparison of classification accuracy (predicting if a timepoint falls before or after DLMO) to the resulting 

RMSE between estimated DLMO, calculated based on the switch in classification, and the experimentally 

measured DLMO for different classification models.

Model Full Dataset Actigraphy Dataset

Test Accuracy Test RMSE Test Accuracy Test RMSE

Single Layer 90.7 1.34 90.2 1.36

Single Layer with Dropout 89.9 1.45 90.2 1.42

Double Layer 90.1 1.40 90.9 1.30

Double Layer with Dropout 89.2 1.53 89.8 1.82

Logistic Regression 88.1 1.74 90.4 1.33

SVM (linear kernel) 89.4 1.52 90.7 1.37

SVM (polynomial kernel) 90.1 1.44 89.9 1.45

SVM (RBF kernel) 90.1 1.45 90.5 1.39
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Table 4.
Performance of Classification Models for DLMO Estimation in Forced Desynchrony (FD) 
Protocols

Classification accuracy performance on four different FD protocols to test for generalization of these models 

originally fit to activity and light level data from the college student population.

Model FD1 FD2 FD3 FD4

Single Layer 54.1 52.3 51.8 57.2

Single Layer with Dropout 54.9 53.1 51.0 56.7

Double Layer 53.4 54.3 52.1 57.4

Double Layer with Dropout 54.8 53.6 51.6 57.0
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