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Objective：  Preoperative differentiation between parotid Warthin’s tumor (WT) and pleo-
morphic adenoma (PMA) is crucial for treatment decisions. The purpose of this study was 
to establish and validate an MRI-based radiomics nomogram for preoperative differentiation 
between WT and PMA.
Methods and materials:  A total of 127 patients with histological diagnosis of WT or PMA 
from two clinical centres were enrolled in training set (n = 75; WT = 34, PMA = 41) and 
external test set (n = 52; WT = 24, PMA = 28). Radiomics features were extracted from axial 
T1WI and fs-T2WI images. A radiomics signature was constructed, and a radiomics score 
(Rad-score) was calculated. A clinical factors model was built using demographics and MRI 
findings. A radiomics nomogram combining the independent clinical factors and Rad-score 
was constructed. The receiver operating characteristic analysis was used to assess the perfor-
mance levels of the nomogram, radiomics signature and clinical model.
Results:  The radiomics nomogram incorporating the age and radiomics signature showed 
favourable predictive value for differentiating parotid WT from PMA, with AUCs of 0.953 
and 0.918 for the training set and test set, respectively.
Conclusions:  The MRI-based radiomics nomogram had good performance in distinguishing 
parotid WT from PMA, which could optimize clinical decision-making.
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Introduction

Parotid gland pleomorphic adenoma (PMA) and 
Warthin’s tumor (WT) are the two most common 
benign tumours of the parotid gland.1The biological 
behaviours of the two tumours are different, with the 
result that the treatment and prognosis also differ.2 
PMA is susceptible to malignant transformation and 

recurrence, and superficial or total parotidectomy is, 
therefore, recommended.2 However, malignant trans-
formation and recurrence of WT seldom occurs, and 
tumorectomy is considered sufficient.2 Therefore, the 
preoperative discrimination of WT from PMA is crucial 
for choosing the most appropriate surgical treatment for 
patients.

As a novel non-invasive technique, radiomics aims to 
extract quantitative and higher dimensional data from 
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digital biomedical images, facilitating a full exploration 
of intratumoural information and changes.3,4 Different 
imaging modalities, including CT, MRI, PET and ultra-
sound, can be used as the basis for extracting these quan-
titative data.4 Previous studies have suggested that there 
is a strong correlation between these high dimensional 
data and tissue heterogeneity at the cellular level.5,6 
Radiomics has been widely used in oncology studies 
and applied successfully to differentiating between early 
and advanced stage diseases, differentiating benign and 
malignant tumours, predicting treatment outcome and 
assessing cancer genetics.7 Radiomics has also been 
successfully applied to the assessment of head and 
neck tumours,8,9 and previous studies have reported the 
value of texture analysis of CT or MR images for the 
discrimination of WT from PMA.10,11 Compared with 
texture analysis, radiomics analysis can provide a more 
comprehensive description of the tumour by extracting 
many more statistical features. To the best of our knowl-
edge, no study has focused on the value of radiomics 
for discriminating between WT and PMA. As a simple 
graphical representation of a statistical predictive 
model, nomogram uses biological and clinical variables 
to determine a model that generates a probability of a 
clinical event.12,13 It has been widely used in radiomics 
studies.141516

In this current study, we aimed to establish an MRI 
radiomics-based prediction nomogram for discrim-
inating between WT and PMA, and then to assess its 
validity.

Methods and materials

Patients
The institutional review board of two clinical centres 
approved this retrospective study and an institutional 
review board waiver was obtained. In the current study, 
all the enrolled patients with histological diagnosis of 
WT or PMA on surgically resected specimens were from 
two clinical centres. Consecutive patients presenting 
between January 2015 and June 2020 were identified 
from Centre 1, and those presenting between January 
2013 and June 2020 were identified from Centre 2. 
These two patient groups were used to form a training 
set and external test set, respectively. The inclusion 
criteria were: 1) patients with histologically confirmed 
WT or PMA and complete clinical data; and 2) patients 
with an MRI examination including axial T1-weighted 
imaging (T1WI) and fat-saturated T2-weighted imaging 
(fs-T2WI) performed less than 7 days before surgical 
resection. The exclusion criteria included: (1) tumours 
with a maximum diameter <5 mm, and (2) the exis-
tence of imaging artifacts making the images unsatis-
factory for radiomics analysis. The exclusion criteria for 
a maximum tumor diameter at 5 mm were set to mini-
mize the influence of partial volume effects, which might 
distort the true tissue-specific image texture.10 A total 
of 127 patients met the above criteria, with 75 being 

enrolled in the training set (WT = 34, PMA = 41) and 
52 in the external test set (WT = 24, PMA = 28). The 
clinical data of the patients included gender, age and 
smoking history.

MRI acquisition
MRI was performed using one of two 3.0-T MRI 
scanners with a matched eight-channel phased-array 
coil (GE 3.0-Tesla Signa scanner, GE Healthcare, 
Milwaukee, WI, USA; Siemens 3.0-Tesla Skyra scanner, 
Siemens, Erlangen, Germany). All patients underwent 
axial T1WI and fs-T2WI sequences. The T1WI was 
acquired using the following parameters: echo time 11 
ms; repetition time 420 or 500 ms; number of excitations 
2; slice thickness 4 mm; slice spacing 1 mm; acquisition 
matrix 320 × 256 or 320 × 203; and field of view 22 cm. 
The parameters for the fs-T2WI sequence included: 
echo time 102 or 103 ms; repetition time 3600 or 3000 
ms; number of excitations 2; slice thickness 4 mm; slice 
spacing 1 mm; acquisition matrix 320 × 256 or 320 × 
203; field of view 22 cm.

MRI feature evaluation and clinical model construction
Two oral and maxillofacial radiologists with 8 and 12 
years of experience who were blinded to the pathology 
results analysed the MRI features in consensus. The 
MRI features analysed were: (1) the maximum diameter 
of the tumour; (2) well-demarcated or poorly demar-
cated tumour margin; (3) heterogeneous appearance 
(10% of the tumour having a different signal17 ); (4) 
growth pattern (focal/ multifocal); (5) presence of cystic 
or necrotic regions (an area with hypointensity on T1WI 
and hyperintensity on fs-T2WI); (6) lobulated appear-
ance of the tumour; and (7) parotid tail involvement. 
In case of multiple nodules within a single patient, the 
nodule with biggest volume was included in the analysis.

The clinical data and MRI features of the training 
set were compared between WT and PMA using univar-
iate analysis. The significant variables identified in the 
univariate analysis were input into a multiple logistic 
regression analysis to identify independent factors for 
building a clinical model.

Tumour segmentation and radiomics feature extraction
The segmentation of the tumours was performed by two 
radiologists who manually delineated regions of interest 
(ROIs) defining the tumour contour in a slice-by-slice 
manner on T1WI and fs-T2WI using 3D Slicer software 
(v.4.10.2, https://www.​slicer.​org; Figure 1). The segmen-
tation data were then input into 3D Slicer to extract the 
radiomics features.

Eight feature groups (a total of 851 radiomics 
features), including shape (14 features), first-order statis-
tics (18 features), gray level dependence matrix (GLDM, 
14 features), gray level co-occurrence matrix (GLCM, 
24 features), gray level run length matrix (GLRLM, 
16features), gray level size zone matrix (GLSZM, 16 
features), neighbouring gray tone difference matrix 
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(NGTDM, five features) and wavelet features (744 
features), were extracted from the ROIs for each MRI 
sequence using 3D Slicer. The definitions of feature 
groups were supplied in “Supplementary Material 1”. 
The details and formulas for these features are shown 
both in the supplementary materials of a previous 
radiomics study18 and at https://​pyradiomics.​readthe-
docs.​io/​en/​latest/​features.​html.

A total of 1702 radiomics features were finally 
extracted from the T1WI and fs-T2WI sequences of each 

subject. Details of the feature extraction are provided in 
Supplementary Table 1. Considering different protocol 
parameters from different MRI scanners, a number of 
preprocessing procedures were applied. The “μ ± 3σ” 
method was used to correct for the effects of different 
MR scanners and acquisition protocols and normalize 
the image intensities.19 Meanwhile, “N4ITK” bias 
field correction was applied to correct the intensity 
non-uniformities caused by the inhomogeneity of the 
scanner’s magnetic field during image acquisition.20 

Figure 1  a: T1-weighted image; b: fat-saturated T2 weighted image) Case 1: Pleomorphic adenoma in a 63-year-old male. A mass can be seen in 
the right parotid (arrow). (c) Manual segmentation of the mass. (d, e) (d: T1-weighted image; e: fat-saturated T2 weighted image) Case 2: Warthin’s 
tumour in a 51-year-old male. A mass can be seen in the right parotid (arrow). (f) Manual segmentation of the mass.

Table 1  Clinical factors of the training and test sets

Clinical factors

Training set (n = 75) Test set (n = 52)

WT
(n = 34)

PMA
(n = 41) P1

WT
(n = 24)

PMA
(n = 28) P2

Gender (M/F) 25/9 18/23 0.010 23/1 12/16 <0.001

Age, year 59.21 ± 11.66 44.27 ± 13.80 <0.001 53.04 ± 13.87 43.57 ± 10.54 0.007

Smoking history (absent /present) 16/18 29/12 0.037 5/19 24/4 <0.001

Maximum diameter, mm 25.22 ± 6.05 26.43 ± 8.84 0.483 27.75 ± 11.86 26.79 ± 10.47 0.756

Margin (well defined/ill defined) 27/7 33/8 0.908 19/5 23/5 1.000

Heterogeneous appearance (absent /present) 14/20 24/17 0.134 15/9 15/13 0.516

Growth pattern (focal/ multifocal) 25/9 39/2 0.021 19/5 27/1 0.132

Cystic or necrotic areas (absent /present) 15/19 24/17 0.213 11/13 19/9 0.109

Lobulated appearance (absent /present) 20/14 14/27 0.033 18/6 13/15 0.036

Parotid tail involvement (absent /present) 13/21 26/15 0.030 4/20 22/6 <0.001

F: female; M: male; PMA: pleomorphic adenoma; WT: Warthin’s tumour.
Numerical data are presented as mean± standard deviation, categorical data as numbers (n).
P1: the P-value of comparison between WT and PMA in training set; P2: the P-value of comparison between WT and PMA in test set.

http://birpublications.org/dmfr
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https://pyradiomics.readthedocs.io/en/latest/features.html.
https://pyradiomics.readthedocs.io/en/latest/features.html.
www.birpublications.org/doi/suppl/10.1259/dmfr.20210023/suppl_file/Supplementary Table 1.xlx
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Resampling (voxel size = 1×1×1 mm3) was performed to 
ensure the conservation of scales and directions when 
deriving the 3D features.21 Z-score normalization was 
also performed as preprocessing steps for data to guar-
antee the repeatability of the results.

The intraobserver and interobserver reliabilities of 
the radiomics features were estimated using 20 randomly 
chosen images. To evaluate interobserver reliability, the 
tumour segmentation was independently performed 
by two radiologists (Readers 1 and 2) over the same 
period. Reader one then repeated the same procedure 
at a 2-week interval to evaluate intraobserver reli-
ability. Reader one then performed the remaining image 
segmentations. The agreement was evaluated using the 
intraclass correlation coefficient (ICC). Features with 
ICCs > 0.75 were considered to show good agreement 

and were selected for further analysis, whereas features 
with ICCs ≤ 0.75 were excluded.

Feature selection and development of the radiomics 
signature
Two-step feature selection methods were used to mini-
mize overfitting22 and identify the features that were 
most effective for discriminating between WT and 
PMA. One-way analysis of variance (ANOVA) was 
first performed to select statistically significant features 
for the training set. The selected features were then 
input into a least absolute shrinkage and selection 
operator (LASSO) regression algorithm23 to identify 
the most effective features (with non-zero coefficients) 
for discriminating between WT and PMA. The tuning 

Figure 2  Selection of radiomics features via the least absolute shrinkage and selection operator (LASSO) regression algorithm. (a) Tuning 
parameter (λ) selection in LASSO model used tenfold cross-validation via 1-standard error criterion. The optimal values of the LASSO tuning 
parameter (λ) are indicated by the dotted vertical lines (the right one), and a value λ of  0.086 was chosen. (b) LASSO coefficient profiles of the 952 
radiomics features. A coefficient profile plot was generated versus the selected log λ value using tenfold cross-validation. Twelve radiomics features 
with non-zero coefficients were finally selected.

Table 2  Radiomics feature selection results

Variables Sequences Radiomics feature name

A T1WI Correlation. GLCM. Wavelet HHL

B fs-T2WI Imc2. GLCM. Wavelet LLH

C fs-T2WI Kurtosis. First order. Original

D fs-T2WI Kurtosis. First order. Wavelet HLL

E fs-T2WI Correlation. GLCM. Wavelet LLH

F fs-T2WI Size Zone Non-Uniformity Normalized. GLSZM. Wavelet LLH

G fs-T2WI Cluster Shade. GLCM. Wavelet HLH

H fs-T2WI Cluster Shade. GLCM. Wavelet HHL

I fs-T2WI MCC. GLCM. Wavelet HHL

J fs-T2WI Cluster Shade. GLCM. Wavelet LLL

K fs-T2WI Gray Level Non-Uniformity Normalized. GLRLM. Wavelet LLL

L fs-T2WI Gray Level Non-Uniformity Normalized. GLSZM. Wavelet LLL

GLCM: Gray level co-occurrence matrix; GLSZM: Gray level size zone matrix; GLRLM: gray level run length matrix; T1WI: T1-weighted 
images; fs-T2WI: fat-saturated T2 weighted images.

http://birpublications.org/dmfr


� birpublications.org/dmfrDentomaxillofac Radiol, 50, 20210023

An MRI-based radiomics nomogram for parotid gland tumors
Zheng et al5 of  9

regularization parameter λ, which controls the strength 
of regularization (a method commonly used for allevi-
ating overfitting in machine learning24,25), was chosen 
using 10-fold cross-validation via the one-standard 
error of the minimum criteria (the 1-SE criteria, a 
simpler model). A radiomics signature was constructed 
based on the finally selected features, and a radiomics 
score (Rad-score) was generated for each patient using a 
linear combination of the values of the selected features 
weighted by their corresponding non-zero coefficients.

Radiomics nomogram construction
A radiomics nomogram incorporating the Rad-score 
and independent clinical factors was constructed using 
multivariate logistic regression. A radiomics nomogram 
score (Nomo-score) was then generated for each patient 
using the Rad-score and independent clinical factors. 
To investigate the performance characteristics of the 

radiomics nomogram, calibration curves were graphi-
cally generated for both the training and test sets.

The discrimination performance of the different models
The area under the curve (AUC) of the receiver oper-
ating characteristics (ROC) curve was calculated for 
both the training set and test set, to assess the discrim-
ination performance of the clinical model, radiomics 
signature,and radiomics nomogram. The sensitivity, 
specificity and accuracy of the three models were 
also calculated. Decision curve analysis (DCA) was 
conducted to estimate the clinical utility of the three 
models by quantifying their net benefits at different 
threshold probabilities when applied to the test set.

Table 3  The results of Rad-score and Nomo-score in the training and test sets

Training set (n = 75) Test set (n = 52)

WT
(n = 34)

PMA
(n = 41) P1

WT
(n = 24)

PMA
(n = 28) P2

Rad-score −0.457 ± 0.632 0.757 ± 0.530 <0.001 −0.395 ± 0.685 0.750 ± 0.605 <0.001

Nomo-score −3.229 ± 2.927 2.866 ± 2.248 <0.001 −2.424 ± 2.627 2.900 ± 2.735 <0.001

Nomo-score: nomogram score.; PMA: pleomorphic adenoma;Rad-score: radiomics score;WT: Warthin’s tumour.
Numerical data are presented as mean± standard deviation, categorical data as numbers (n).
P1: the P-value of comparison between WT and PMA in training set; P2: the P-value of comparison between WT and PMA in test set.

Figure 3  Developed radiomics nomogram and calibration curves for the radiomics nomogram. (a) Age and Rad-score were used for building the 
radiomics nomogram. Calibration curves for the radiomics nomogram in the training (b) and test (c) sets. Calibration curves indicate the goodness 
of fit of the nomogram. The 45° straight line represents the perfect match between the actual (Y-axis) and nomogram-predicted (X-axis) proba-
bilities. A closer distance between two curves indicates higher accuracy

http://birpublications.org/dmfr
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Statistical analysis
SPSS v.17.0 (SPSS Inc., Chicago, IL, USA) and R 
statistical software (v.3.3.3; https://www.​r-​project.​org) 
were used for statistical analysis. A two-sided P-value 
of <0.05 was considered significant. The chi-square test 
and Fisher’s exact test were used for qualitative data, 
and the independent samples t-test was used for quanti-
tative data. The R packages used were: (1) the “pROC” 
package for the ROC curves, (2) the “rms” package for 
the nomograms and calibration curves, (3) the “glmnet” 
package for LASSO logistic regression, and (4) the 
“rmda” package to perform the DCA. All the packages 
can be downloaded at https://​cran.​r-​project.​org/​web/​
packages/.

Results

Clinical model construction
The characteristics of the patients in the training and 
test sets are detailed in Table  1. In the training set, 
gender, age, smoking history, growth pattern, lobulated 
appearance and parotid tail involvement showed signif-
icant differences between the WT and PMA groups. 
After multiple logistic regression analysis, only age (p < 

0.001, odds ratio = 0.910, CI, 0.866 to 0.955) remained 
an independent predictor in the clinical model.

Feature selection and development of the radiomics 
signature
In total, 1521 features with satisfactory inter- and 
intraobserver agreements were included in further anal-
ysis (Supplementary Table 2). A total of  952 features 
showed significant differences between WT and PMA 
based on a one-way ANOVA applied to the training set. 
After application of  the LASSO regression model, 12 
features with non-zero coefficients were finally selected 
to build the radiomics signature with an optimal 
regulation weight λ of  0.086 under the 1-SE criterion 
(Figure  2, Table  2). The Rad-score was calculated 
using the following formula: Rad-score = −1.467 – (A 
× 0.459) + (B × 2.509) – (C × 0.179) + (D × 0.467) + 
(E × 0.144) – (F × 0.131) + (G × 0.029) – (H × 0.075) 
+ (I × 0.067) – (J × 0.136) – (K × 0.568) – (L × 0.534). 
The variables A to L represent the selected radiomics 
features. There was a significant difference in the Rad-
score between WT and PMA in the both training and 
test sets (Table 3).

Table 4  Diagnostic performance of the clinical model, the radiomics signature and the radiomics nomogram

Model AUC (95% CI) Sensitivity %* Specificity %* Accuracy %*

Training set (n = 75)

Clinical model 0.797 (0.689 to 0.881) 68.29 (28/41) 82.35 (28/34) 74.67 (56/75)

Radiomics signature 0.926 (0.842 to 0.974) 90.24 (37/41) 88.24 (30/34) 89.33 (67/75)

Radiomics nomogram 0.953 (0.878 to 0.989) 92.68 (38/41) 85.29 (29/34) 89.33 (67/75)

Test set (n = 52)

Clinical model 0.734 (0.593 to 0.847) 85.71 (24/28) 62.50 (15/24) 75.00 (39/52)

Radiomics signature 0.902 (0.787 to 0.967) 78.57 (22/28) 87.50 (21/24) 82.69 (43/52)

Radiomics nomogram 0.918 (0.808 to 0.976) 89.29 (25/28) 83.33 (20/24) 86.54 (45/52)

CI： confidence interval；AUC： area under the curve
aNumbers in parentheses were used to calculate percentages

Figure 4  The receiver operating characteristic (ROC) curves of the clinical model, the radiomics signature and the radiomics nomogram in the 
training (a) and test (b) sets, respectively.

http://birpublications.org/dmfr
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Radiomics nomogram construction
The radiomics nomogram was constructed incorpo-
rating age and Rad-score (Figure 3a). The Nomo-score 
for this nomogram was calculated using the following 
formula: Nomo-score = 3.942+(Rad-score  ×3.898) – 
(Age × 0.091). The Nomo-score showed a significant 
difference between WT and PMA in both the training 
and test sets (Table  3), while the calibration curves 
showed that the radiomics nomogram had good calibra-
tion in both the training and test sets (Figure 3b and c).

The discrimination performance of the different 
models:  The discrimination performance of each 
model is shown in Table  4. The ROC curves of each 
model for both training and test sets are shown in 
Figure 4. For both training and test sets, the radiomics 
nomogram had better discrimination performance and 
a higher AUC than the clinical model (p < 0.001 in the 
training set; p = 0.009 in the test set).
The DCA of the three models (Figure 5) indicates that 
for the differentiation of WT from PMA, the radiomics 
nomogram had a higher overall net benefit than the 
other models across the majority of the range of reason-
able threshold probabilities. Therefore, we believe that 
the radiomics nomogram developed in our study could 
be a reliable clinical diagnostic tool for discriminating 
between WT and PMA.

Discussion

The differentiation between WT and PMA is necessary 
because of their different biological behaviours and 
treatments. In the current study, we developed an MRI 
radiomics-based prediction nomogram for discrimi-
nating between WT and PMA. Our results show that 
this preoperative MRI-based radiomics nomogram had 
excellent performance for differentiating WT from PMA 
in both the training and test sets, with AUCs of 0.953 
and 0.918, respectively. Furthermore, DCA showed that 
this nomogram was clinically useful.

It can be challenging to distinguish between WT and 
PMA on the basis of traditional CT and MR imaging, 
because the imaging characteristics of these two tumours 
are generally very similar.26 Our results showed that 
there were no significant differences between WT and 
PMA in regard to tumour size, margin, heterogeneous 
appearance and cystic or necrotic formation. Only a 
lobulated appearance was more common in the WT 
groups. Previous studies have reported that some demo-
graphic features are associated with WT, such as male 
predominance, higher incidence in the fifth and sixth 
decades of life and a smoking history.1,27,28 Furthermore, 
WT has a tendency to show multiplicity, bilaterality 
and parotid tail involvement.1,29 Our results are similar 
to those of previous studies, with the multiple logistic 
regression analysis showing age to be an independent 
predictor of WT. Our clinical model demonstrated that 
a parotid tumour in an old age patient was more likely 
to be WT than PMA.

Figure 5  Decision curve analysis for three models. The y-axis indicates the net benefit; x-axis indicates threshold probability. The red-dotted line, 
green line and blue line represent net benefit of the clinical model, the radiomics signature and the radiomics nomogram, respectively. The radi-
omics nomogram had a higher overall net benefit in differentiating WT from PMA than the clinical model and simple diagnoses such as all PMA 
(gray line) or all WT patients (black line) across the full range of threshold probabilities at which a patient would be diagnosed as PMA. WT = 
Warthin’s tumour; PMA = Pleomorphic adenoma.

http://birpublications.org/dmfr
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Fine needle aspiration (FNA) biopsy has been 
increasingly used to obtain tissue for pathological anal-
ysis of parotid tumours.27 However, some disadvantages 
of FNA have been reported, such as facial nerve palsy 
and high rates of insufficient diagnostic aspirations.30–32 
Recently, diffusion-weighted imaging (DWI) has been 
used to evaluate parotid gland tumours, with some 
studies demonstrating that DWI is of value for distin-
guishing PMA from WT.2,27,33,34 However, analyses in 
areas of tumour-related cyst formation, necrosis and 
haemorrhage were excluded from these studies. In the 
current study, the tumour segmentations included the 
entire tumour volume, without excluding any tumour 
areas.

Radiomics can non-invasively extract a high 
throughput of quantitative information from tradi-
tional medical images, making it possible to evaluate the 
internal textures of tumours that cannot be captured by 
visual assessment. Some previous studies incorporating 
radiomics or radiomics nomograms have reported 
good predictive values for the differential diagnosis of 
tumours.15,16,35–37 However, at the time of writing, only 
texture analysis has been applied to the diagnosis of 
parotid gland tumour. A previous study demonstrated 
that MRI texture analysis based on T1WI could be used 
to distinguish WT from PMA.10 Al Ajmi et al11 also 
found that multienergy CT texture analysis could quan-
titatively discriminate WT from PMA, with accuracy, 
sensitivity and specificity of 93%, 92% and 94%, respec-
tively. In the current study, the radiomics nomogram 
model we created provided a comprehensive description 
of the tumours by extracting more statistical features 
than used in conventional texture analysis. Our results 
showed that this radiomics nomogram combining age 

and radiomics signature had good preoperative predic-
tion performance. Additionally, we used an external 
validation method to validate the constructed nomo-
gram in the current study, which is a stronger design for 
evaluating model performance.38

Some limitations of this study should be noted. First, 
the retrospective design of this study brings the potential 
for selection bias. A second limitation is the relatively 
small sample of external test data. Multicentre studies 
with larger samples are needed to further validate this 
nomogram. Third, the radiomics signature built in this 
study was only based on non-contrast-enhanced MRI. 
Further advanced MRI acquisitions such as contrast-
enhanced T1WI or DWI are needed to achieve a high-
level of evidence for clinical application.

Conclusion

In conclusion, we developed and validated a radiomics 
nomogram incorporating a radiomics signature and age. 
This nomogram is an effective tool to preoperatively and 
non-invasively distinguish WT from PMA and could 
optimize clinical decision-making.

Ethical Standards and Patient Consent

We declare that all human have been approved by the 
Institutional Review Board of the Affiliated Hospital of 
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in accordance with the ethical standards laid down in the 
1964 Declaration of Helsinki and its later amendments. 
We declare that all patients gave informed consent prior 
to inclusion in this study.
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