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Abstract
Tendinopathy is a challenging complication observed in patients with diabetes 
mellitus. Tendinopathy usually leads to chronic pain, limited joint motion, and 
even ruptured tendons. Imaging and histological analyses have revealed 
pathological changes in various tendons of patients with diabetes, including 
disorganized arrangement of collagen fibers, microtears, calcium nodules, and 
advanced glycation end product (AGE) deposition. Tendon-derived stem/ 
progenitor cells (TSPCs) were found to maintain hemostasis and to participate in 
the reversal of tendinopathy. We also discovered the aberrant osteochondro-
genesis of TSPCs in vitro. However, the relationship between AGEs and TSPCs in 
diabetic tendinopathy and the underlying mechanism remain unclear. In this 
review, we summarize the current findings in this field and hypothesize that 
AGEs could alter the properties of tendons in patients with diabetes by regulating 
the proliferation and differentiation of TSPCs in vivo.

Key Words: Tendinopathy; Diabetes mellitus; Tendon stem/progenitor cells; Advanced 
glycation end products
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Core Tip: Patients with diabetic tendinopathy usually suffer from chronic pain, 
restricted joint motion, calcium deposition, and even tendon rupture. Advanced 
glycation end products (AGEs) have been shown to affect tendon biology and 
biomechanical properties. In addition, tendon-derived stem/progenitor cells (TSPCs) 
play an important role in tendon hemostasis, regeneration, and repair. However, the 
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relationships between diabetic tendinopathy, AGEs, and TSPCs remain unclear. Thus, 
in this review, we summarize the current findings and discuss the possible relationships 
between AGEs and TSPCs. This might provide new guidance for the development of 
effective treatments for diabetic tendinopathy.
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INTRODUCTION
Tendinopathy is a common musculoskeletal complication of diabetes mellitus (DM)[1,
2]. Patients with DM have a higher incidence of tendinopathy than healthy patients of 
the same age[3]. The Achilles tendon, patellar tendon, and rotator cuffs are the most 
frequently affected[4]. The classic symptoms of diabetic tendinopathy usually manifest 
as chronic pain, limited range of joint motion (ROM), and tendon rupture[2,4,5]. With 
the progression of diabetic tendinopathy, increased stiffness and thickness and 
decreased biomechanical properties of Achilles tendons have been reported, and these 
symptoms usually result in an altered gait and accelerated plantar ulcer formation in 
DM patients with poor glucose control[2]. Disordered arrangements of excessive 
collagen fibers and even calcified sites were observed by ultrasound at the entheses of 
the Achilles tendons[6]. In their electron microscopy study, Grant et al[7] also reported 
that the collagen fibers of the Achilles tendon presented in twisted, curved, and 
overlapping arrangements in DM patients.

Histological analysis has revealed prominent fibrochondral metaplasia and 
granulation tissue hyperplasia in DM patients with stenosing flexor tenosynovitis[8]. 
We also observed microtears in disorganized collagen fibers, blood vessels, and 
rounded changing cells in the patellar tendons of rats with experimental DM[9]. 
Moreover, as the characteristic products of DM, advanced glycation end products 
(AGEs) were discovered in DM tendons[10,11]. Once irreversible AGEs accumulate, 
they can modify proteins and ultimately damage tendon tissues. Among the various 
types of cells in tendon tissue, tendon-derived stem/progenitor cells (TSPCs) show 
multidifferentiation potential and exhibit the ability to maintain hemostasis and 
reverse tendinopathy[12-16]. Our previous study reported that the impaired functions 
of diabetic tendon-derived TSPCs showed abnormal osteochondrogenic differentiation 
in vitro, which might also account for the dysfunctions of DM tendons[9]. The 
histopathological alterations in the tendons of diabetic subjects could partially explain 
the weakened tension, decreased biomechanical properties, limited ROM, and even 
the ease of rupture in DM patients. However, the underlying pathological mechanism 
of diabetic tendinopathy remains unclear. In this review, we summarize the current 
findings in the fields of diabetic tendinopathy, AGEs, and TSPCs and hypothesize that 
AGEs could alter the fates of TSPCs to exacerbate tendinopathy in DM patients.

HISTOPATHOLOGICAL FEATURES OF DIABETIC TENDINOPATHY
Many efforts have been made to investigate the histopathological changes associated 
with diabetic tendinopathy. Ji et al[17] observed blood vessel hyperplasia and 
excessive collagen fibers in leptin-deficient mice. In some subjects, microtears were 
found to have red blood cell (RBC) deposition and chondrocyte-like cells surrounding 
the sites of the microtears[17]. In streptozotocin (STZ)-induced DM rats, we also found 
characteristic histopathological features in DM tendons, such as RBC deposition and 
microtears, by hematoxylin and eosin staining[9]. By immunohistochemical staining, 
the expression of vascular endothelial growth factor was found to be significantly 
increased in the experimental tendons of patients with diabetes, which may contribute 
to vascularization changes[18]. As characteristic products of DM, AGEs have been 
reported to be deposited in various organs and tissues[19,20]. In tendons of patients 
with diabetes, AGEs accumulate in the extracellular matrix (ECM) of tendon cells. 
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During the early stage of STZ-induced type I DM, we also found the deposition of 
AGEs in the ECM of rat patellar tendons. Moreover, we discovered decreased 
expression levels of type I collagen (Col I), tenomodulin (TNMD), and decorin (DCN) 
in tendons of patients with diabetes. Nevertheless, these tendon cells express higher 
levels of osteochondrogenesis-associated proteins [osteopontin (OPN), osteocalcin 
(OCN), SOX9, and collagen type II (Col II)] in the ECM[9]. These results suggested that 
the pathologic manifestations of chondrification and ossification observed in tendons 
of patients with diabetes might be ascribed to the aberrant differentiation of these 
autologous TSPCs in tendon tissue into chondrocytes and osteocytes. However, 
current studies cannot fully explain the alterations, especially heterotopic calcification 
and chondrogenesis, in tendons of patients with diabetes at the cellular and 
histological levels[1,9].

FORMATION AND ACCUMULATION OF AGES IN TENDONS OF PATIENTS 
WITH DIABETES
The niche of TSPCs in tendon tissue is complicated. Numerous studies have 
demonstrated the importance of niches in mediating the proliferation and differen-
tiation of stem cells[21-23]. Many factors, such as ECM, biomechanical stimulation, 
biologically active factors, and pH, could affect the functions of TSPCs in vivo[21].

As a distinctive product of DM, AGEs can excessively deposit in connective tissues
[10,24-27]. AGEs are derived from nonenzymatic products of the interactions of long-
lived proteins with glucose[19,28]. The formation of AGEs is quite slow and 
spontaneous in healthy subjects[29]. In low metabolic tissues, such as tendons and 
ligaments, AGEs can accumulate with aging. In addition to aging, the base level of 
glucose can also affect the formation and accumulation of AGEs in vivo[11]. The main 
component of tendon ECM is collagen type I (Col I), whose half-life ranges from 1 to 2 
years; due to this longevity, it is sensitive to the glycoxidation process, which in turn 
highlights the accumulation of AGEs in tendons of patients with diabetes, which 
further alters the qualities of tendon ECM[11,26,30,31]. AGEs are mainly deposited in 
the outer layer or the most distal and proximal regions of the tendons instead of in the 
core regions in aged tendon samples[32]. However, to date, no studies have focused on 
region-specific histological analysis of AGE deposition in tendons of patients with 
diabetes.

Among the subtypes of AGEs, AGE-2 (glyceraldehyde-derived AGEs) and AGE-3 
(glycolaldehyde-derived AGEs) are the main subtypes that can be detected in the sera 
of diabetic patients and they exhibit toxic bioactivities in various cells[33]. In 
osteoarthritis patients with DM, AGE deposition could lead to increased skeletal 
fragility and a higher fracture risk in aged people[34,35]. The main reason for this 
might be the cross-links formed by AGEs between the collagen strands[36]. The 
formation of these cross-links could result in increased stiffness and decreased 
biomechanical properties of diabetic cartilage and tendons.

In addition to the cross-links among the collagen fibers in DM tendons, the 
expression of the receptor for AGEs (RAGE) was also evaluated. Activation of AGE-
RAGE could mediate many downstream signaling pathways in many kinds of cells 
and lead to many functional responses[37,38]. For instance, it induces cell death[39], 
regulates the expression of the inflammatory response[39], and degrades the ECM[40]. 
The study by Yokosuka et al[27] demonstrated the accumulation of AGEs in the 
ossified spinal ligament and suggested that the interaction of AGEs with RAGE is an 
important factor for the progression of spinal ligament ossification. In osteoblast-like 
cells, AGEs can regulate the differentiation stages via specific receptors[41]. Moreover, 
the latest research revealed that AGEs inhibited the osteogenic differentiation of 
mouse adipose-derived stem cells (ASCs) in vitro[42]. These studies demonstrated that 
the chronic accumulation of AGEs has negative impacts on these tissues and organs. 
Therefore, more attention has been given to determining the influences or underlying 
mechanisms of AGEs on musculoskeletal systems.

AGES ALTER THE BIOMECHANICAL PROPERTIES OF TENDONS
It has been documented that tendon tissue exhibits an inherent triple helix structure
[43]. Accumulated AGEs could cross-link neighboring collagen molecules within the 
tendons[20]. The intermolecular cross-links between neighboring collagen molecules 
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may connect lysine to arginine residues or lysine to lysine[44]. In DM patients, the 
arrangement of collagen fibers in the Achilles tendon exhibited a highly disorganized 
structure under electron microscopy, and these structural abnormalities might be 
ascribed to the deposition of AGEs[7].

Various studies have demonstrated that cross-links between collagen fibers could 
affect the biomechanical properties of the musculoskeletal system. Currently, few 
studies have investigated the biomechanical effects of AGEs on human tendon tissues. 
In osteoarthritis, cross-links caused by AGEs increased the stiffness of the collagen 
network in human articular cartilage[36].

However, the conclusions about the effects of AGEs on tendon mechanics are 
contradictory. Sell and Monnier[45] reported that the cross-links formed by AGEs 
could increase the C57BL/6 mouse tendon strain. In isolated rabbit Achilles tendons, 
after glycation in vitro, the maximum load, stress, strain, and Young’s modulus of 
elasticity were increased compared with those of the nonglycated tendons[46]. 
Biochemical analysis revealed significantly increased expression of pentosidine, which 
is recognized as a marker of AGEs, in glycated rabbit Achilles tendons. The cross-links 
formed by AGEs between collagens increased the stiffness of the matrix[47]. Thus, the 
authors concluded that cross-links could directly affect the matrix stiffness and 
stimulate the biomechanical properties of tendons. In addition, AGEs have been 
reported to damage the biomechanical properties of tendon collagen in various species 
by diminishing tendon fiber sliding[11,48,49]. In rat tail tendons, Fessel et al[48] 
discovered that lateral molecular interconnectivity by AGEs could reduce the side-by-
side sliding of collagen fibers, thus leading to increased collagen fiber failure resistance 
in vivo. An in vitro study also revealed dramatically decreased tendon fiber sliding and 
viscoelastic behavior by tissue glycation[11]. In bovine tail tendons, Lee and Veres[20] 
found that the cross-links formed by AGEs could significantly inhibit biomechanical 
plasticity in vitro. Some other researchers considered that the cross-links could affect 
the biomechanical properties by taking up space in the ECM[50]. In both aged tendons 
and glycated tendons in vitro, the molecular spacing was linearly increased[11], which 
might be ascribed to the formation of cross-links by AGEs between collagen fibers. 
Another argument was that AGEs primarily affect the mechanical properties at the 
failure regions of tendons of patients with diabetes[51,52].

RELATIONSHIPS BETWEEN AGES AND THE ECM OF TENDONS OF 
PATIENTS WITH DIABETES
In addition to the cross-links formed between collagen fibers, the deposited AGEs in 
the ECM could also interact with various kinds of cytokines and proteins, cause 
biological effects, and subsequently impair their material properties[44,45,48]. It has 
been reported that Fe2+ in tendons of patients with diabetes could promote the 
accumulation of AGEs in collagens, which in turn stimulated the glycosylation of Col I 
and other matrix proteins in vivo[53]. Once deposited in the ECM, these AGEs could 
suppress the function of the mitochondria of Achilles tendon-derived fibroblasts and 
impair their proliferation, further leading to reduced remodeling of the ECM[54]. In 
porcine patellar tendons, the proteoglycan level was decreased after sustained 
hyperglycemia caused the production of AGEs in vitro[55]. Nevertheless, only a few 
studies have focused on the interactions of AGEs and factors in the ECM of tendon 
cells, especially TSPCs. In other tissues or cell types, such as ligaments and fibroblasts, 
AGEs have been demonstrated to affect the expression levels of matrix metallopro-
teinases (MMPs), bone morphogenetic proteins (BMPs), and other factors. 
Accumulated AGEs in the ossified spinal ligament could elevate the expression levels 
of BMP-7, BMP-2, alkaline phosphatase (ALP), and OCN, an osteoblast-specific 
transcription factor 1[27]. In human fibroblasts, AGEs could decrease Col I and 
increase MMP-1 levels in vitro[56]. In osteoblast-like cells, AGEs could promote the 
degradation of Col I by stimulating the secretion of MMP-2 and MMP-9 in vitro[57] 
and stimulate the mRNA expression and serum levels of fibroblast growth factor 23 in 
chronic disease[58]. The expression of MMP-1 in human gingival fibroblasts was also 
significantly increased at both the mRNA and protein levels in vitro after treatment 
with AGEs[59].
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AGES INDUCE CELLULAR EVENTS IN TENDON CELLS AND THE 
UNDERLYING MECHANISM
AGEs induce cellular effects on various kinds of cells mainly by activating the RAGE 
in vivo. Many studies have reported that the AGE-mediated events of various kinds of 
cells are activated through the interactions of AGE-RAGE[60,61]. RAGE is a receptor 
that can activate many kinds of ligands and it exists in normal tendon tissues. It is 
expressed at low levels under normal blood glucose levels, and its expression could be 
increased while AGEs accumulate under sustained hyperglycemia[21,62]. In addition 
to RAGE, many other molecules have been shown to act as receptors of AGEs, such as 
scavenger receptor class AI/AII[63], scavenger receptor class B type I[64], and CD36
[65]. In our unpublished research, we also observed the expression levels of AGEs and 
RAGE in the ECM of diabetic tendon cells in vivo and in isolated TSPCs in vitro. After 
the receptors for AGEs are activated, a variety of downstream cellular signaling 
pathways can be excited and they subsequently alter cell functions, such as prolif-
eration, migration, apoptosis, and differentiation.

Proliferation
Generally, AGEs have been demonstrated to attenuate the proliferation abilities of 
various kinds of cells, such as bone mesenchymal stem cells (MSCs) and retinal 
pericytes[29,66]. In human MSCs, Kume et al[29] found that higher concentrations of 
AGE-2 and AGE-3 (1-100 μg/mL) could inhibit their proliferation ability and stimulate 
apoptosis in vitro, probably by upregulating intracellular reactive oxygen species 
(ROS). The generation of ROS has been reported to regulate these AGE-RAGE-induced 
cellular events[61,67]. Yang et al[68] reported that AGEs inhibited bone MSC prolif-
eration and migration by inducing chemokine/cytokine secretion via the p38 pathway 
in vitro. Moreover, AGE-2 could suppress the proliferation of cultured bovine retinal 
pericytes through downregulation of the expression ratio of BCL-2/BAX[66]. In 
addition, AGEs could stimulate the proliferation abilities of several other kinds of cells. 
In osteoblastic cell lines, the effects of AGEs on cell proliferation were reported to 
depend on their stage of differentiation[69]. Low concentrations of AGEs could 
stimulate mesangial cell proliferation[70]. AGEs enhance vascularization in diabetic 
retinopathy by interacting with RAGE and promoting vascular endothelial cell prolif-
eration[71]. However, few studies have investigated the impacts of AGEs on TSPCs, 
and further research is required.

Apoptosis
In addition to their influence on proliferation, AGEs also induce the apoptosis of many 
kinds of cells, including TSPCs, retinal pericytes, myoblastic cell lines, mononuclear 
cells, and endothelial progenitor cells[67,72-75]. Xu et al[72] reported that AGEs could 
induce TSPC apoptosis, and pioglitazone showed the ability to rescue AGE-induced 
apoptosis and other abnormal alterations both in vitro and in vivo. In bovine retinal 
pericytes, AGE-initiated apoptosis was reported to be ascribed to the activation of the 
caspase-10 pathway[67]. AGEs could induce the apoptosis of mouse myoblastic C2C12 
cells and inhibit myogenic differentiation, while insulin-like growth factor-I exhibited 
therapeutic potential to attenuate the detrimental effects of AGEs on C2C12 cells[73]. 
In human mononuclear cells isolated from the peripheral blood of patients with type II 
DM, increased cellular apoptosis and decreased osteoblastic differentiation ability 
were highly correlated with RAGE expression[74]. The activation of ROS, Akt/eNOS, 
MAP kinases, and the FOXO1 transcription factor have all been reported to participate 
in AGE-induced apoptosis progression[54,75].

Differentiation
Several studies have illustrated that accumulated AGEs could affect the differentiation 
properties of stem cells in the musculoskeletal system. In TSPCs, AGEs have been 
reported to exacerbate osteogenic differentiation potential in vitro[72]. For other kinds 
of cells, AGEs could inhibit the osteogenic differentiation potential of mouse ASCs by 
suppressing the expression of OPN and runt-related transcription factor 2 (Runx2) 
through activating the Wnt/β-catenin signaling pathway[42]. In human periodontal 
ligament stem cells, AGEs attenuate osteogenesis in vitro, and the canonical Wnt/β-
catenin and JNK signaling pathways might be involved[76-78]. RAGE in MSCs could 
be activated by AGE-2 and AGE-3; thus, the AGE-RAGE interaction was found to 
participate in the osteogenic and chondrogenic differentiation processes of MSCs[29]. 
AGE-3 was reported to inhibit the osteogenic differentiation and bone nodule 
formation of MSCs by activating RAGE and upregulating the expression of TGF-β in 
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vitro[29,79]. The expression levels of ALP and intracellular calcium in MSCs were 
upregulated by AGEs, while mineralization and bone nodule formation were both 
decreased in vitro. The chondrogenic and adipogenic differentiation potentials of the 
MSCs were also attenuated by AGEs in vitro[29].

AGEs and TSPCs
To date, only a few studies have focused on the influence of AGEs on TSPCs. Xu et al
[72] reported that AGEs could reduce cell viability and increase apoptosis and 
autophagy of TSPCs in vitro. In that study, they found that AGEs induced senescence 
and enhanced the ossification of TSPCs in vitro. However, the researchers did not 
further investigate the underlying mechanisms of AGE-induced ossification of TSPCs. 
In MSCs, AGE-2 and AGE-3 showed the ability to enhance ALP activity and 
intracellular calcium content by activating RAGE in vitro[29]. Therefore, we speculate 
that the activation of RAGE in TSPCs could also lead to apoptosis, senescence, and 
aberrant differentiation by activating several signaling pathways, such as the Wnt/β-
catenin, P38/MAPK, Notch, ROS, and Akt/eNOS pathways.

TSPCS IN DIABETIC TENDINOPATHY
The progression of diabetic tendinopathy is complicated and involves various kinds of 
factors and types of cells. Previously, we have summarized the current findings of 
diabetic tendinopathy, especially the cellular and underlying mechanisms[80]. In 
addition to tenocytes, there are many other types of cells inside the tendons. Bi et al[12] 
and Rui et al[13] proved the existence of stem/progenitor cells in the tendons of mice 
and rats. TSPCs exhibit self-colony ability and multidifferentiation properties in vitro
[14-16]. In the patellar tendon of a collagenase-induced rat tendinopathy model, TSPCs 
presented lower proliferation capacity and higher osteogenic and chondrogenic differ-
entiation potentials[16]. In an injury-induced rat tendinopathy model, TSPCs showed 
increased proliferation ability and higher type III collagen (Col III) and α-SMA 
expression than in collagenase-induced rats[15]. These findings indicate the 
involvement of TSPCs in maintaining tendon tissue homeostasis and mediating the 
pathological process of chronic tendinopathy[81]. During the development of diabetic 
tendinopathy, as tissue-specific cells are contained in tendon tissue, TSPCs are the 
most likely cells to participate in the early response. TSPCs are thought to differentiate 
into tenocytes and play key roles in maintaining, regenerating, and replacing differen-
tiated tenocytes in tendon tissues. In rats with experimental DM, we found that the 
fate of TSPCs isolated from patellar tendons was altered, and these cells exhibited 
decreased proliferation properties and enhanced osteochondrogenic potential[9]. High 
glucose (11.1 mmol/L) could stimulate an inflammatory response of TSPCs in the 
human patellar tendon in vitro[82]. Our previous study found that high glucose (15 
mmol/L and 25 mmol/L) could inhibit rat TSPC proliferation and induce apoptosis in 
vitro[83]. Moreover, insulin has been reported to increase ALP activity and the 
expression levels of osteogenesis-associated markers in TSPCs isolated from horse 
superficial digital flexor tendons[84]. Taken together, these studies indicate that the 
aberrant proliferation and differentiation of TSPCs are possible underlying 
mechanisms of diabetic tendinopathy. AGEs have been shown to induce apoptosis and 
to exacerbate the osteogenic differentiation potential of TSPCs in vitro[72]. However, 
the mediating mechanisms of AGEs on diabetic TSPC multidifferentiation potential 
are still unclear, and future studies are required to investigate the underlying 
processes.

CONCLUSION
In summary, we have described the enhanced osteochondrogenic differentiation 
ability of TSPCs from experimental diabetic rats cultured in induction medium[9]. 
Additionally, the outstanding expression of osteochondrogenic-associated markers 
and AGE accumulation were also noted. In vitro studies revealed that AGEs could 
affect the proliferative capacity, apoptosis, and multidifferentiation potential of TSPCs 
and other kinds of stem cells under certain pathological conditions. Taken together, we 
hypothesize that the accumulated AGEs in the ECM of diabetic TSPCs lead to aberrant 
differentiation fates and futures, contributing to the development of chronic 
tendinopathy in DM subjects (Figure 1). Understanding the relationships among 
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Figure 1 Hypothesis of the molecular mechanism by which advanced glycation end products regulate the fate of tendon-derived 
stem/progenitor cells in diabetic tendinopathy. RBCs: Red blood cells; AGEs: Advanced glycation end products; TSPCs: Tendon-derived stem/progenitor 
cells; RAGE: Receptor for advanced glycation end product; ROS: Reactive oxygen species; TGF-β: Transforming growth factor β.

diabetic tendinopathy, TSPCs, and AGEs will be crucial for developing new treatments 
for diabetic tendinopathy therapy.
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