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Abstract
Brain diseases, including brain tumors, neurodegenerative disorders, cerebro-
vascular diseases, and traumatic brain injuries, are among the major disorders 
influencing human health, currently with no effective therapy. Due to the low 
regeneration capacity of neurons, insufficient secretion of neurotrophic factors, 
and the aggravation of ischemia and hypoxia after nerve injury, irreversible loss 
of functional neurons and nerve tissue damage occurs. This damage is difficult to 
repair and regenerate the central nervous system after injury. Neural stem cells 
(NSCs) are pluripotent stem cells that only exist in the central nervous system. 
They have good self-renewal potential and ability to differentiate into neurons, 
astrocytes, and oligodendrocytes and improve the cellular microenvironment. 
NSC transplantation approaches have been made for various neurodegenerative 
disorders based on their regenerative potential. This review summarizes and 
discusses the characteristics of NSCs, and the advantages and effects of NSCs in 
the treatment of brain diseases and limitations of NSC transplantation that need to 
be addressed for the treatment of brain diseases in the future.
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Core Tip: In this review, we elaborate on the characteristics of neural stem cells (NSCs) 
and their effects on the treatment of traumatic brain injury, hypoxic-ischemic brain 
injury, Alzheimer’s disease and Parkinson’s disease. At the same time, we discuss the 
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INTRODUCTION
Brain diseases are among the major disorders influencing human health. The main 
types of brain diseases include brain tumors, neurodegenerative disorders, 
cerebrovascular diseases, and traumatic brain injury (TBI). Previous studies have 
suggested that repair and regeneration is a complex process and is challenging due to 
the following reasons: (1) Nerve cells, including neurons, are highly differentiated 
terminal cells, with very low regenerative capability; (2) Insufficient secretion of 
neurotrophic factors is unable to sustain the homeostasis of local environment results 
in the failure to repair damaged nerve system; and (3) Following injury, the secretion 
of inflammatory factors and various cytokines is upregulated, which inhibits synaptic 
regeneration and aggravates hypoxia and ischemia. The major cause of nerve 
regeneration disorders is the scar formation at the injuries, which may act as a physical 
and chemical barrier, suppress nerve regeneration, and dysregulate the extension and 
growth of synapses. Therefore, various physiological processes, including the supply 
of neurotrophic factors, regeneration of axons, plasticity of synapses, and the microen-
vironment, are involved in the repair and regeneration of the central nervous system 
(CNS) after injuries, and the underlying mechanisms are very complex.

Cellular therapy uses neurogenic or non-neurogenic cells to replace, repair, or 
improve the functions of the injured nerve system, which are implemented mainly 
through transplantation of cells into the system. Stem cell transplantation therapy has 
been widely applied in treating CNS diseases because of its ability of regeneration in 
nerve repair and tissue damage. The mechanisms underlying the treatment of brain 
diseases with stem cell transplantation are similar: facilitating the local microenvir-
onment, promoting blood vessel development, supporting neuron regeneration, and 
reducing inflammatory responses. The commonly used stem cells include neural stem 
cells (NSCs), mesenchymal stem cells (MSCs), adipose mesenchymal stem cells, and 
human-derived umbilical cord blood stem cells, among which NSCs have been widely 
used and has unique advantages in the treatment of brain disease.

In this review, we discuss the role and generation of NSCs for various neurodegen-
erative disorders. Recent studies using different types of NSCs and transplantation 
approaches have been discussed in detail, and the limitations of NSCs for neurodegen-
erative disorders are also discussed.

BASIC CHARACTERISTICS OF NSCS
During development, the brain and spinal cord are generated from a small number of 
NSCs lining the neural tube. These cells are undifferentiated cells and can differentiate 
into different cells[1]. The subgranular zone (SGZ) of the dentate gyrus (DG) and 
subventricular zone (SVZ) in adult brains are two neurogenic regions for neurogenesis
[2]. The neurogenic regions, especially the hippocampus, participate in cell renewal by 
developing new neurons from the neural progenitor cells[3]. Several sources can be 
used for NSCs. They can be collected from brain tissue, reprogrammed from somatic 
cells[4,5], or differentiated from embryonic stem cells (ESCs) and induced pluripotent 
stem cells (iPSCs)[6,7]. In addition, NSCs can differentiate into lineage-specific cells, 
such as neurons, oligodendrocytes and astrocytes[8]. They exist in highly-specific 
microenvironments, consisting of cell and extracellular components, such as 
ependymal cells, vasculature, extracellular matrix proteins, soluble factors, astrocytes, 
microglia, and pericytes[9,10]. Interaction of cells, transcription factors, neurotrophins, 
cytokines (such as growth factors, neurotransmitters, hormones and signaling 
molecules) have a crucial role in the proliferation and differentiation of NSCs. 
Cytokines (TNF-α) has been shown to induce proliferation of neural stem cells via 
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IKK/NF-κB signaling. While BMP4/LIF has been shown to induce neuronal stem cells 
in monkeys, it was shown to induce astrocyte-like differentiation of monkey NSCs[11-
14]. Neural stem cells are involved in various biological functions and continue to play 
their role throughout the lifespan of an organism. Both intra and extracellular signals 
regulate the functional properties of NSCs. Sox2 is one of the major regulators among 
transcription factors that serve as molecular switches[15]. The association of NSCs and 
migration in blood vessels were recently studied and shown that blood vessels play a 
significant role in neuronal migration during brain development. Moreover, NSCs can 
migrate to designated regions, such as injured regions, following injury[16].

Preclinical studies on treating brain diseases with NSCs have reported promising 
results, while clinical trials in patients are still ongoing. Nevertheless, experiments on 
animal models or in vitro studies have shown that NSCs may be induced and activated 
to differentiate into neurons, consequently replacing the lost neurons, improving the 
local microenvironment, promoting blood vessel development, regulating inflam-
matory responses, and restored homeostasis of the brain.

NSCS AND ALZHEIMER’S DISEASE
Alzheimer's disease (AD) is a progressive multifactorial brain disorder characterized 
by the amyloid-β (Aβ) deposition, as insoluble deposits or inclusions of proteins, 
accumulations of neurofibrillary tangles, and intracellular tau aggregation. It is the 
most common cause of dementia that slowly destroys memory and thinking skills. 
More than 26 million people are living with AD worldwide, and this number is 
expected to increase to 100 million over the next 35 years[17,18].

Targeting Aβ levels has been the central strategy to halt, retard, and reverse or cure 
AD pathology progression. Though great efforts have been made to cure AD 
symptoms and delay its progression, limited treatment options are available. Only 
four cholinesterase inhibitors (tacrine, donepezil, galantamine and rivastigmine are 
rarely prescribed due to its possible side effects) and NMDAR antagonists 
(memantine) have only been approved by United States Food and Drug Adminis-
tration for AD. There is not a single drug approved in the last two decades. The 
available drugs (cholinesterase inhibitors), can only reduce the acetylcholinesterase 
activity to prevent the buildup of acetylcholine levels synaptic region. However, 
neither drug design to reverse the AD pathology nor immunotherapy that targets 
amyloid or Tau is the ultimate solution for Alzheimer's. Several lines of evidence have 
shown the successful approach of neural stem cells for the treatment of neurodegen-
erative disorders, including AD, amyotrophic lateral sclerosis and PD[19].

This approach of NSCs transplantation offers a tremendous therapeutic potential to 
cure neurodegenerative disorders based on its self-renewal ability and differentiate 
into neuronal, oligodendrocytes and astrocytes cells[20]. Tg2576 neural stem cells 
isolated from mice represent an Alzheimer disease model related to Aβ plaque. Tg2576 
derived cells showed a disease model with reduced neuronal growth and MAP-2 
expression. This model has been studied in various studies and offers to screen new 
molecules for the treatment of AD[21].

Ager et al[22] used NSCs derived from the fetal brain tissue and transplanted to the 
hippocampus of 3xTg-AD murine models and found that the transplanted NSCs 
improve the cognitive functions and enhanced synaptogenesis. The human neural 
stem cell population, HuCNS-SC, has been clinically tested before for different 
neurodegenerative disorders. Transplantation of HuCNS-SCs has been shown to 
improve cognition in two different models of neurodegeneration. Migration and 
differentiation of HuCNS-SC into immature neurons and glial cells were observed. 
Researchers have found the association of significant synaptic increase and other 
growth-associated markers were found in both 3xTg-AD and CaM/Tet-DTA mice 
models.

The hippocampus, which is critical for learning new memories, is normally affected 
at earlier stages of AD. Disruption of metabolic activities in hippocampal neurons has 
been demonstrated in earlier studies in AD[23]. The following diagram shows the 
different mechanisms of stem cells associated with AD (Figure 1).

A study conducted by Li et al[24], 2016 showed that metabolic activity was increased 
in the frontal cortex and hippocampal neurons. The human brain-derived NSCs 
(hNSCs) were transplanted into the hippocampus transgenic mouse model of AD to 
assess the role of hNSC on behavior and Alzheimer’s pathology. Six weeks later, 
transplanted hNSCs migrated in different brain regions and slowly differentiated into 
neuronal cell types of CNS. These transplanted cells rescue AD symptoms, including 
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Figure 1 Mechanism of action of stem cells in Alzheimer disease. (1) Replaced injured or lost cells; (2) Enhanced secretion of neurotrophic factors 
(BDNF, GDNF, FGF, etc.); (3) Anti-amyloid protein production; (4) Inhibit inflammatory response; (5) Facilitate activation of endogenous cells; and (6) Enhanced 
metabolic activity of neuronal cells in the brain.

cognitive defects, learning and memory impairment, by increasing neuronal 
connectivity and metabolic activity. This study suggests the role of hNSCs in 
modulating the metabolism of neuronal cells and validates the association between 
hippocampal neuronal metabolism and AD symptoms[24].

Chronic inflammation has a significant role and contributes to AD pathology in the 
brain. Transplantation of NSCs has been assessed to inhibit inflammatory processes. 
Researchers have shown that NSCs transplantation into the hippocampus attenuates 
inflammatory reactions and supports a neuroprotective role in beta-amyloid 42 (Aβ
-42) peptide injected rat hippocampus, suggests an important role of NSCs in the 
inhibition of inflammatory reactions[25]. Neural stem cells are making a dominant 
appearance because of it neurogenic abilities, based on the recent findings that 
neurogenesis reduces significantly in AD patients compared to healthy subjects[26]. 
Progress is currently being made to differentiate the transplanted NSCs into 
cholinergic neurons, to compensate for the loss of injured neurons, the main research 
focuses on the treatment of AD.

A summary of preclinical studies of stem cells of different sources in rat and mice 
models of AD was showed in Table 1[27-37]. Ibotenic acid lesion or APP/PS1 
transgenic mice were used in most of the AD model. Stem cells of different origin were 
used, which include rat, mouse and also from human. Genetically modified stem cells 
are also used in some studies, which have increased capacity to migrate from 
transplantation sites. Damage neuron replaced by transplanted stem cells. Stem cells 
migrate to the lesion site and differentiate to specific neurons e.g., cholinergic neuron, 
clear beta-amyloid, and produced anti-inflammatory effects. These studies showed 
that transplantation of stem cells (ECS-derived, NSCs, and MSCs) improved or 
restored learning and memory in AD-model rats.

NSCS AND PARKINSON’S DISEASE
Parkinson’s disease (PD) is a complex neurodegenerative disease that result from the 
loss of dopaminergic neurons in the substantia nigra, pars compacta (SNc) and 
mesencephalon, and the formation of α-synuclein-containing Lewy bodies, which 
consequently induce motor disorders[38]. The stem cell approach offers a significant 
therapeutic output to a wide range of neurodegenerative disorders including PD, 
because of the regenerative potential to renew the cells and replace the affected cells. 
Several studies have reported using neural stem cell approach to find a cure and 
explore the disease mechanism.
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Table 1 Therapeutic potential of stem cell transplantation in Alzheimer’s disease models

Animal model Transplanted 
cells

Density of 
transplanted 
cells

Transplantation 
site

Therapeutic 
effects

Unique 
features Results Ref.

1 Mice (Transgenic 
3 x Tg- AD and 
Thy1-APP)

NSCs 100000 cells in 2 
µL

Hippocampus Aβ-clearance, 
increased synaptic 
density

Neprilysin 
gene transfer

Not 
assessed

Blurton-
Jones et al
[37]

2 Mouse (NBM 
lesion) 

ESC-derived 
neurosphere 

400 µL/injection, 
1-5 × 104 
cells/µL

Prefrontal and 
parietal cortices

ChAT and serotonin-
positive neurons

ChAT + cells↑ Working 
memory ↑

Wang et al
[27]

3 Rat (Forebrain), 
Okadaic acid

NSC (rat) 5 µL /injection 
site (2 injections) 
2 × 104 cells/mL

Hippocampus and 
cerebral cortex

replace damaged or 
lost neuron

NGF(human), 
gene transfer

Memory ↑ Wu et al[28]

4 Mice (Transgenic 
Tg2576)

MSCs from 
human UCB

100000 cells/ 
Mouse (i.v.)

Systematic Anti-inflammatory, 
anti-amyloidogenic

None Not 
assessed

Nikolic et al
[29]

5 Rat (NBM lesion) 
Ibotenic acid

ESC-derived 
NPC (mouse)

2 × 105 cells in 2 
µL

Forebrain specially 
NBM

Forming cholinergic 
cell phenotype

Shh-primed Water maze
↑; Spatial 
probe↑

Moghadam 
et al[30]

6 Mouse (3X TG-
AD)

NSC (mouse) 100000 murine 
NSCs

Hippocampus Neurotropic effects BDNF-
mediated effect

Working 
memory↑

Blurton-
Jones et al
[31]

7 Rat 
(Hippocampus) 
Kainic acid

Immortalized 
NSC (human, 
HB1.F3)

1 × 106 cells/rat Hippocampal CA3 
region

Migrate to injured 
site differentiate into 
neurons 
overexpressing 
ChAT

ChAT (human), 
gene transfer

Water maze
↑; Spatial 
probe↑

Park et al., 
2012a[33]

8 Rat (NBM lesion) 
AF64A toxin

Immortalized 
NSC (human, 
HB1.F3)

1 × 106 cells/rat ICV migrate to various 
brain regions 
including cerebral 
cortex and 
hippocampus 

ChAT (human) 
gene transfer

Water maze
↑; Spatial 
probe↑

Park et al[32]

9 Mice (Transgenic 
APP/PS1)

MSCs from 
human UCB

1 × 105 cells in 3 
µL(3 injection 
once after 2 wk)

Hippocampus Anti-inflammatory, 
anti-amyloidogenic, 
anti-phosphorylation 
of tau

None Improved 
learning 
and 
memory

Lee et al[34]

10 Mouse 
(Hippocampus) 
Ibotenic acid

Immortalized 
NSC (human, 
HB1.F3)

2 × 105 cell 
suspension 2 µL

Hippocampus migrated to lesion 
sites and 
differentiated into 
neurons and 
astrocytes

NGF (human); 
Gene transfer

Water maze
↑; Spatial 
probe↑

Lee et al[35]

11 Mice (Transgenic 
APP/PS1)

MSCs from 
human UCB

2 × 104 cells per 
head

Hippocampus, 
cortical region

Anti-inflammatory, 
Aβ-clearance

- Not 
assessed

Kim et al[36]

NBM: Nucleus basalis of Meynert; ESC: Embryonic stem cell; NGF: Nerve growth factor; 3XTG: Triple transgenic/APP-presenilin-tau; BDNF: Brain-
derived growth factor; ChAT: Choline acetyltransferase; NPC: Neural precursor cell; NSC: Neural stem cell; SHH: Sonic hedgehog protein; UCB: Umbilical 
cord blood; Aβ: Beta-amyloid; MSCs: Mesenchymal stem cells; APP: Amyloid-β precursor protein; ICV: Intra-cerebro ventricular.

Induced neural stem cells (iNSCs) exhibited different stem cell biomarkers with self-
renewal properties and has shown the potential to differentiate into dopaminergic 
(DA) neurons. Researchers have shown the role of grafted cells for the neuronal 
network by assessing synaptic markers. Analysis of 4 wk of post-transplantation 
showed an extensive network of presynaptic neurons. hESC-derived neural cells has 
been reported to reduce the tumorigenicity and function of DA neurons in a prolonged 
mature culture. The transfer of such grafts in monkeys improved behavior for 12 mo 
period, reflecting the significance of matured hESCs that can act as a source for DA 
neurons[39].

Studies have shown that transplantation of iNSCs transformed from somatic cells 
into PD mice brains improves motor manifestation behavior. Wernig et al[40] shown 
that iPS cells efficiently differentiate into neural precursor cells, further giving rise to 
neuronal and glial cells. Transplantation of iNSCs into the brain of fetal mice shows 
the potential of stem cell migration into different brain regions and its differentiation 
into glia and neurons, including glutamatergic, catecholamines and GABaergic 
subtypes. Moreover, induced iPS cells were differentiated into DA neurons after 
transplantation into the adult brain.
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Researchers have shown that steroli cells can be directly converted into iPS cells, 
which exhibit different stem cell biomarkers with self-renewal properties and can 
differentiate into DA neurons. These grafted cells were validated for a matured 
neuronal network by assessing synaptic markers. Analysis of 4 wk of post-
transplantation showed an extensive network of presynaptic neurons, suggest a crucial 
role of steroli based iNSCs may provide a source of replacement of affected cells with 
new fresh cells[41]. iNSCs derived from fibroblasts have been shown to improve PD 
symptoms. Transplantation of iNSC into the 6-hydroxydopamine (6-OHDA)-injected 
mice striatum shows substantial reduction in apomorphine mediated rotational 
symmetry. The engrafted iNSCs show the differentiation pattern to all neuronal 
lineages and differentiate to DA neurons[42].

Yang et al[43] shows that neural stem cells transplantation into a 6-hydroxydo-
pamine-lesioned rat, migrate to the striatum and express dopaminergic traits. Studies 
demonstrated the role of single factors, (Platelet-derived growth factor (DGF-AA), -
AB, and –BB) which plays a role in the differentiation of primary stem cells derived 
from fetal and adult CNS, differentiate C17.2 cells in vitro, suggesting its significance 
that C17.2 NSCs lead to the development of dopaminergic neurons and a source for 
transplantation[44].

Nurr1 is a transcription factor and is specifically required to induce DA neurons in 
the midbrain region[45,46]. However, later in another separate study, Wagner et al[47] 
used the same stem cell line C17.2 and demonstrated that Nurr1 alone was unable to 
induce the differentiation of C17.2 cells into dopaminergic neurons. While, in a 
combination of other factors derived from local type 1 astrocytes, overexpression of 
Nurr1 in NSCs (C17.2) generates dopaminergic neurons (Figure 2).

A summary of preclinical studies of stem cells of different sources in rat, mice and 
monkey models of PD was showed in Table 2[42,48-54]. OHDA (rats and mice) and 
MPTP (monkey) drugs were used to create Parkinson’s model in these studies. 
Transplantation cells of different origin were used, which include rat, monkeys and 
from human. Genetically modified stem cells are also used in some studies, which had 
unique features. Results of these studies showed that transplantation of stem cells in 
different cell densities (ECS-derived, NSCs and MSCs) in striatum decreased rotation 
and improved motor function in PD model.

NSCS AND TBI 
Traumatic brain injury (TBI) refers to a disruption of normal function of the brain 
and/or pathological injuries of brain tissues caused by external forces instead of 
disorders of brain tissues. TBI has a complex pathological condition, which includes 
breakage of the blood-brain barrier, massive neuroinflammation, axonal injury and 
lesions[55]. It has been estimated that about 50-60 million patients globally are newly 
diagnosed with TBI every year. In developing countries, TBI is mainly caused by 
traffic accidents, while in developed countries, by the falling of the elderly[56]. Based 
on the population census in 2013, TBI mortality rates in China were 13/100000, while 
in the 27 United States, TBI accounted for 30% of all trauma-induced deaths. In the 
United States, about 5.3 million individuals are living with TBI-related disabilities[57,
58].

Despite having the higher frequency of TBI, a large proportion of molecular 
mechanisms and the basis of cognitive deficits and brain insults remain unknown.

Over the recent years, studies have demonstrated that neurogenesis in SVZ and 
SGZ was enhanced after TBI[59]. Endogenous NSCs get activated and migrate to 
regions of nerve injuries, which differentiate into neuroglial cells or oligodendrocytes 
and integrate into the injured local neurovascular network, promote the secretion of 
neurotrophic factors, and participate in nerve repair. Therefore, activating endogenous 
neurogenesis following TBI to contribute to post-injury functions may be a potential 
therapeutic approach[60,61]. On one hand, neurogenesis and nerve migration in 
human beings mainly exist in neonates younger than 18 mo but drastically decrease in 
adults, suggesting that neurogenesis following TBI in middle-aged and elderly people 
is substantially lower than in adolescents. While, glial scars have been reported to 
prevent the regeneration of axons and directly limit the repair of injuries in the late 
stage of TBI[62,63]. In addition, massive cell death and inflammatory responses in the 
late stage of TBI may disturb the local microenvironment, reduce the survival rate of 
new endogenous NSCs, and limit injury repair.

Transplantation of pre-differentiated human endogenous neural stem cells (ENSCs) 
has been reported to increase angiogenesis and neuronal survival in the lesion area 
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Table 2 Therapeutic potentials of stem cell transplantation in Parkinson's disease models

Disease 
model 

Source of 
transplanted cells

Transplantation 
location

Density of 
transplanted cells

Unique feature or 
treatment Results Ref.

1 Rat, 6-OHDA Immortalized NSC 
(mouse, C17-2)

Striatum 106 cells TH/GTPCH1; Gene 
transfer

Rotation↓ Ryu et al[48]

2 Monkey, 
MPTP 

ESC (monkey) Bilateral putamen 3 x 105-6 x 105 cells 
per side

Stromal cell (mouse) 
feeder

PFS-parkinsonian 
factor score↓

Takagi et al
[49]

3 Rat, 6-OHDA Immortalized NSC 
(human, HB1.F3)

Striatum 3 × 105 cells/3 μL TH/GTPCH1 gene 
transfer

Rotation↓ Kim et al[50]

4 Rat, 6-OHDA Immortalized NSC 
(human, HB1.F3)

Striatum 2 x 105/3µL NSC migration Rotation↓ Yasuhara et al
[51]

5 Rat, 6-OHDA MSCs from human 
UCB

Striatum 1 × 105 cells/10 µL FGF8/SHH Rotation↓ Fu et al[52]

6 Rat, 6-OHDA DA neurons from 
ESC (human)

Striatum 5 x 105 cells None Rotation↓, beam 
walking↓

Cho et al[53]

7 Mice, 6-
OHDA 

DA neurons from 
ESC (human)

Striatum 1.5 × 105 cells /1.5 
µL

Wnt signal; SHH Rotation↓ Kriks et al[54]

8 Mice, 6-
OHDA 

iNSCs (rat) Striatum 1 × 105 cells Tripotential 
differentiation 
capacity

Rotation↓ Choi et al[42]

6-OHDA: 6-hydroxydopamine; MSC: Mesenchymal stem cell; ESC: Embryonic stem cell; FGF8: Fibroblast growth factor 8; GTPCH-1: GTP 
cyclohydrolyrase-1; MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; iNSC: Induced neural stem cell; TH: Tyrosine hydrpxylase; NTN: Neurturin; UC: 
Umbilical cord blood; SHH: Sonic hedgehog protein; CN: Caudate nucleus; SN: Substantia nigra.

Figure 2 Overview of lineages of stem cells and transplantation strategies in Parkinson diseases. Pluripotent stem cells are directly converted to 
stem cells that can be further differentiated to long-term survival neurons by overexpressing neurotrophins. Wnt4 overexpression drives differentiation into neuronal 
cells while reducing glial scar formation.

and decrease astrogliosis, resulting in improved motor functions[64,65]. Moreover, 
researchers have shown that immediate transplantation of embryonic cortical neurons 
in the adult cortex after injury facilitates the restoration of injured motor pathways and 
supports the development of neuronal projections[66,67] (Figure 3).

Exogenous NSC transplantation can compensate for the disadvantage of insufficient 
endogenous NSCs to a certain degree and has a significant impact on the treatment of 
TBI[68,69]. Experiments in mice and rats have been demonstrated that, upon NSCs 
transplantation, the transplanted stem cells survive in affected regions and differ-
entiate into mature astrocytes, oligodendrocytes, and neurons, which can then be 
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Figure 3 Schematic diagram of possible sources of neural stem cells to target stroke patients. (1) Neural stem cells from the fetal brain, 
differentiated to neuronal cells; (2) Neuronal cells directly generated from fibroblast cells, expanded to neuronal cells to replace the lost cells.

integrated into the neural circuit of the host to improve the injury-related cognitive 
and motor disorders[70,71]. When transferring human fetal NSCs to the hippocampus 
of TBI rats at 24 h post-injury, the transplanted cells survived. In addition, treating in 
vitro cultured NSCs with basic fibroblast growth factor, heparin, and laminin promote 
its differentiation into neurons at the injured area and the expression and secretion of 
glial-cell-line-derived neurotrophic factor in vivo from the transplanted cells, thus 
improving the internal environment of the brain, promoting the endogenous repair, 
and finally improving the cognitive functions of TBI rats[72]. The approach of cell 
therapy by transplanting ENSCs reduces neuroinflammation and supports 
neurogenesis in the adult injured cortex of the controlled cortical impact mouse model
[69].

NSCS AND HYPOXIC ISHEMIC BRAIN INJURY
Cerebrovascular disease is a global health issue, where the incidence and mortality 
rate of ischemic stroke are high levels. Thrombolytic therapy is considered the best 
treatment procedure for ischemic stroke[73,74]. Though it is not safe and tissue 
damage is usually inevitable. It is a complex process, which involves oxidative damage 
and apoptosis of neurons[73,75].

The sub-ventricular zone and dentate gyrus are the primary sites of endogenous 
NSCs. Exogenous NSCs are mainly extracted from three main sources for therapeutic 
purposes: extraction from brain tissue, differentiation from IPSc, and trans-differen-
tiation from somatic cells[76]. Studies have been reported the methods of generating 
different types of NSCs and its applications in neurodegenerative diseases[76,77]. The 
SVZ NSCs have been shown its association with glioma progression and its 
occurrence. Effect of conditioned medium derived from NSCs has confirmed its 
association with SVZ NSCs, and found that conditioned medium from NSCs promote 
the glioma proliferation and invasion[78]. Earlier studies reported the characteristics of 
exogenous NSCs that it can migrate into ischemic brain regions, and differentiate into 
neurons and glial cells and facilitate endogenous NSCs differentiation and prolif-
eration[79-81]. Transplantation of human NSCs in a stroke model of rats showed 
neuroprotective effects by enhancing dendrites branching, increasing corticospinal 
tract projections and inhibited inflammation[82,83]. It has been demonstrated that 
NSCs improved the condition of stroke rats when transplanted, suggesting a role of 
NSCs mediated regulation of angiogenesis and formation of brain microvasculature 
because of increased activity of proangiogenic factors[84].

Researchers conducted a small Phase 1 translational study and demonstrate the role 
of CTCoE3 human NSCs in stroke patients. Upon implantation of human NSCs into 
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the putamen, they found patients safe even for 2 years after transplantation and no 
side effects showed. However, a slight improvement showed in the NIH stroke scale
[85]. The use of primary human tissue is limited because of the ethical and logistic 
complications to obtain large quantities of fetal neurons. Therefore, much effort is 
required to develop alternate sources of human cells for use in transplantation. One 
source is the NT2/D1 human embryonic carcinoma-derived cell line. These cells can 
proliferate and differentiate into human neuronal cells (LBS-Neurons) upon treatment 
with retinoic acid. These neuronal cells have been reported to survive, express 
neurotransmitters and regulate functional synapses.

Despite its significant role of NSCs in treating most neurodegenerative diseases, 
there are still some limitations. Modulation of cell dose is a critical factor, as low dose 
cannot provide therapeutic outcomes. While transplantation of high cell dose of tissue-
derived NSCs can clot in vivo and may have a poor survival rate[2]. Furthermore, 
understanding molecular mechanisms of endogenous NSCs regulation largely remain 
unknown in patients with ischemic brain injury[86].

Due to the effectiveness of NSCs in animal models of cerebral stroke, clinical trials 
using NSCs have been conducted for the treatment of chronic ischemic cerebral stroke
[87]. Although over 50 clinical trials have been registered for the treatment of cerebral 
stroke by stem cells, only human neural precursor cell line NT2/D1 and immortal 
human NSC line CTX have progressed to stage 1 and stage 2 phases. NT2/D1 cell, also 
known as NT2 cell, is a human teratoma-derived pluripotent embryonic carcinoma 
stem cell line, considered a neural precursor cell line. Treating NT2/D1 cells with 
tretinoin induces mitosis of anaphase neuron-like cell NT2N neuron (trade name: LBS-
Neurons). A phase 1 clinical trial investigated the effects of NT2N neurons in basal 
ganglia stroke patients with severe motor disturbance. The 18-mo serum or imaging 
evaluations confirmed the safety and applicability of brain neuron transplantation in 
cerebral infarction patients with motor disturbance[88-90].

CTX0E03 is an immortalized human NSC line derived from human embryo brain 
tissues. CTX0E03 has been used as a clinical-grade NSC, based on which the 
commercial product CTX-DP was developed to treat chronic cerebral stroke (the 
ReNeuron PISCES trial)[90]. The 5-year follow up findings of phase 1 clinical trial of 
CTX0E03 in chronic cerebral stroke patients (PISCES I, NCT01151124) showed the 
following results: no immune or cell-related adverse events occurred, and only 
adverse influences from surgical procedures or complications were found; the overall 
NIHSS score improved by 2 points at 2 years after transplantation, which was 
associated with the improvement of neurological functions[85]. In another phase 2 
clinical trial of CTX0E03 (PISCES II, NCT02117635), the 12-mo follow-up showed no 
cell-related safety events, while clinical related function improvement was found in 15 
patients. CTX0E03 PISCESIII (NCT03629275), has already been approved, is a 
randomized, controlled, phase 2b clinical trial that aims to evaluate the safety and 
effectiveness of CTX cells in patients with chronic cerebral stroke (Figure 4).

CONCLUSION
The stem cells approach offers a significant output to a wide range of disorders, 
including neurodegenerative disorders, because of the regenerative potential to renew 
the cells and replace the affected cells. Neural stem cells are making a dominant 
appearance because of it neurogenic abilities, that neurogenesis reduces significantly 
in neurodegenerative patients compared to healthy subjects. Although studies on 
brain diseases with NSCs-based therapy are continuously increasing, and the NSC 
treatment strategy has provided an exciting and promising treatment method for brain 
diseases, there are still various uncertainties and potential risks involved in NSC 
transplantation, similar to the treatments with other stem cells: (1) Modulation of cell 
dose is a critical factor, as low dose is unable to provide the therapeutic outcomes. 
While transplantation of high cell dose of tissue derived NSCs can clot in vivo, and 
may have a poor survival rate; (2) Furthermore, understanding molecular mechanisms 
of endogenous NSCs regulation largely remain unknown in patients with neurodegen-
erative disorders; (3) Transplantation approaches can be improved by region specific 
regulation of local microenvironment in the brain: precise regulation of the microen-
vironment through genetic engineering techniques and combination transplantation 
may promote the proliferation and differentiation of transplanted NSCs, and greatly 
increase the treatment efficacy; and (4) Methods, timing, and doses of transplantation: 
strategies should be made to improve the transplantation methods to favor the 
aggregation of NSCs to the injured regions.
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Figure 4 Schematic diagram of generation of neural stem cells via different methods to treat neurodegenerative disorders. Neural stem cells 
(NSCs) can be generated by extracting directly from the subgranular zone of the hippocampal dentate gyrus and subventricular zone of the lateral ventricles from 
fetal or adult brain. NSCs isolation from patients can be reprogrammed by using different factors such as transcription factors, small molecules, microRNAs, and other 
morphogens. NSCs can also be generated from blastocyst-derived embryonic stem cells by using differentiation factors. SGZ: Subgranular zone; SVZ: Subventricular 
zone.

However, based on the shortcomings of various in vitro and in vivo neurodegen-
erative disease models, the translational effects of NSCs into human patients remains 
unknown. Thus, a more definite role of NSCs in various transplantation settings 
further needs to be explored. Many studies provided the evidence of the association of 
cognitive improvement with increase in synaptic activity, which is closely correlated 
with increase in neuronal and glial cells. NSCs transplantations supports behavioral 
and cognitive functions. Although specific cell types that associate with improve-
ments, that NSCs need to differentiate into, remains unknown. The selection of the 
best time window for stem cell treatment is closely associated with the clinical 
prognosis of patients; however, thus far, no studies have reported the best treatment 
time window. The differentiation potential of NSCs derived from different sources 
may also vary, and how to determine the doses of transplanted cells is, therefore, an 
important issue for future research studies. There are still great challenges in 
preventing immunological rejection responses, improving the survival rate of 
transplanted NSCs, and consequently obtaining activated young stem cells with a 
clinically effective grade.
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