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NR4A3 and CCL20 clusters dominate 
the genetic networks in CD146+ blood cells 
during acute myocardial infarction in humans
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Abstract 

Background:  CD146 is a tight junction-associated molecule involved in maintaining endothelial barrier, and balanc‑
ing immune–inflammation response, in cardiovascular disease. Notably, peripheral CD146+ cells significantly upsurge 
under vessel dyshomeostasis such as acute myocardial injury (AMI), appearing to be a promising therapeutic target. 
In this study, with a new view of gene correlation, we aim at deciphering the complex underlying mechanism of 
CD146+ cells’ impact in the development of AMI.

Methods:  Transcription dataset GSE 66,360 of CD146+ blood cells from clinical subjects was downloaded from NCBI. 
Pearson networks were constructed and the clustering coefficients were calculated to disclose the differential con‑
nectivity genes (DCGs). Analysis of gene connectivity and gene expression were performed to reveal the hub genes 
and hub gene clusters followed by gene enrichment analysis.

Results and conclusions:  Among the total 23,520 genes, 27 genes out of 126 differential expression genes were 
identified as DCGs. These DCGs were found in the periphery of the networks under normal condition, but transferred 
to the functional center after AMI. Moreover, it was revealed that DCGs spontaneously crowded together into two 
functional models, CCL20 cluster and NR4A3 cluster, influencing the CD146-mediated signaling pathways during the 
pathology of AMI for the first time.

Keywords:  Acute myocardial infarction (AMI), CD146, Pearson network, Clustering coefficient, Differential 
connectivity genes (DCGs)
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Introduction
Cluster of differentiation 146 (CD146)/melanoma cell-
associated molecule is an essential immunoglobulin-
like protein initially discovered in metastatic melanoma 

[1]. It locates at endothelial tight junctions across all 
vessel beds, mediating physiological and pathological 
events under vascular dyshomeostasis [2, 3]. Pioneer-
ing researchers regard CD146 as a historical marker 
for isolating circulating endothelial cells that slough off 
inflamed vasculature [4]. Over several decades, CD146 
has also been discovered in other cell types including 
mesenchymal stem cells [5], endothelial progenitor cells 
[6], macrophages [7], T helper 17 cells [8], B lymphocytes 
[9], T lymphocytes [9, 10], and natural killer cells [9]. The 
CD146+ circulating cells occupy about 2% of peripheral 
mononuclear cells in healthy individuals [9] and most 
notably, this percentage increases in certain conditions 
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associated with vascular dysfunction like myocardial 
infarction, connective tissue diseases, and cancers [6, 
11–13]. Moreover, CD146-activated T cells have shown 
an enhanced ability to interact with endothelium in adhe-
sion, rolling, and transmigration, evidenced by human 
and murine studies [14, 15]. Given its multiple functions 
in vessel structure, angiogenesis, and lymphocyte activa-
tion and its enabled detection in the bloodstream, CD146 
appears to be a potential target for vascular disorders 
[16–18].

Complex networks are of great interest to researchers 
in the fields of computational biology and bioinformat-
ics [19–21]. It has been gradually extended from initial 
gene comparison to protein–protein network modeling, 
to protein–genetic investigation, and up to the disease–
disease association exploration [22]. Most of the success-
ful bioinformatics approaches that identify the initial key 
genes, however, have been based on only gene expres-
sion comparison and restrict the following analysis to the 
top differential expression genes (DEGs) without pay-
ing attention to the gene interaction rearrangement [23, 
24]. Instead, the hub-structured network is an important 
motif that is, to our best knowledge, leading the genome-
wide association characterization in complex networks 
[25, 26]. It generates the structure view angle to present 
the innermost gene–gene interaction, giving a compre-
hensive understanding of the underlying mechanisms of 
disorders.

Acute myocardial injury (AMI) dataset GSE 66,360 was 
focused on the performance of CD146+ populations dur-
ing early AMI development [12, 27–29]. In this paper, we 
try to decipher gene reorientation within the correlation 
network structure parameter analysis [30, 31], extract the 
optimal gene collections which are termed the differen-
tial connectivity genes (DCGs), and reveal functional 
gene clusters which likely lead to the pathogenesis of 
peripheral CD146+ blood cells during the development 
of AMI in human for the first time.

Materials and methods
Data
The GSE66360 [12] gene transcription profile data of 
human AMI in the NCBI database was selected as the 
primary interest. Clinical subjects including 50 healthy 
individuals and 49 AMI patient subjects were recruited 
in the original investment by the Topol group. To gather 
the data, CD146+ cells were obtained by CD146-based 
magnetic immunoisolation from the subjects’ blood 
samples. RNA samples were isolated from the CD146+ 
cells and processed by Affymetrix human U133 Plus 2.0 
array. In this study, two cohorts were formed: a discovery 
cohort, consisting of 22 healthy subjects (control group) 
and 21 AMI patients (AMI group), which were used for 

the discovery of genes and appropriate testing methods, 
and a validation cohort, consisting of 28 healthy subjects 
and 28 AMI patients, which were used for the validation 
of the genes and methods discovered in the discovery 
cohort. No data were excluded from the original data-
bases used during this study.

Study design
First, using the hypothesis test published by our group 
[33], we distinguished DEGs based on the gene expres-
sion profile in the discovery cohort and then verified 
in the validation cohort. Second, the gene networks of 
DEGs were constructed based on the Pearson coeffi-
cients, followed by the network separation assessment. 
Third, the clustering coefficient, which is a parameter 
indicating gene connectivity, was calculated for each 
DEG under each gene network [32]. Accordingly, genes 
with a clustering coefficient that represented a consist-
ent increase in the AMI group among different cohorts 
were labeled as DCGs. Finally, two-dimensional analysis 
of gene connectivity and expression was employed, hub 
gene clusters were identified, and gene enrichment analy-
sis was performed (Fig. 1).

Identify DEGs
A total of 23,520 genes were screened in each sam-
ple. The hypothesis test was used to screen the DEGs 
between control and AMI group [33]. The method pri-
marily gave weight for the distribution shape of the 
expression spectrum. If the distribution shape was dif-
ferent between the two groups, then the gene expression 
was different with regard to significance level α1. If not, a 
normal distribution test (significance level α2) and homo-
geneity test of variance (significance level α3) would be 
carried out. T test or Welch’s t test (significance level α4) 
was used for normal distribution; rank sum test (signifi-
cance level α4) was used for non-normal distribution with 
a similar distribution of expression spectrum [33]. We 
defined α1  =  0.00001, α2  =  0.00002, α3  =  0.00001, and 
α4  =  0.00001 as the significance levels of the hypothesis 
tests for DEGs selection regarding the limited input gene 
size of the following connectivity analysis.

Clustering coefficient
A local clustering coefficient was introduced to measure 
the compactness, or the connectivity of genes within a 
suspected cluster, of a complete array formed by the adja-
cent nodes within a network [34]. To clarify, assume that 
a node i in a network was connected to ki nodes. The ki 
nodes were called neighbors of node i. The ratio of the 
actual number of edges Ei and the total number of pos-
sible edges ki(ki − 1)/2 between ki nodes were defined as 
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the clustering coefficient, Ci, of node i; that is, Ci  =  2Ei/
[ki(ki − 1)].

Pearson network construction and assessment
Pearson correlation networks of DEGs were constructed 
according to the absolute value of Pearson coefficients. 
Two genes were considered correlated if the absolute 
value of the Pearson coefficient was greater than the 
threshold x (0  <  x  <  1), at which point a line could be 
drawn between the two genes. In the cases when genes 
were not correlated, there would be no link in the net-
work and thus no line would be drawn. Gene clusters 
were determined by examining the clustering coeffi-
cients, and those with a non-zero value could be labeled 
clusters. Gene clusters represent functional modules 
as a whole with varying degrees and connectivity; while 
the degree describes the number of genes connected to 
one another. The average clustering coefficients of DEGs 
were calculated to evaluate the overall separation of the 

control and AMI networks. This analysis was performed 
in R i386 3.6.2.

Natural biological networks are scale-free networks 
and the degree distributions follow the power-law expo-
nential distribution index range 2–3 [35, 36]. We spe-
cifically looked at the gene networks under threshold 0.5 
and 0.7 because the power-law indexes of degree distri-
bution in discovery cohort were in the range of 2–3. We 
then presented the corresponding networks in discovery 
cohort and validation cohort of this study (Additional 
file 2: Table S1).

Identify DCGs
In the analysis of network connection parameters, the 
greater the difference between the control and AMI 
group, the higher the correlation with AMI. The follow-
ing describes our unique identifying method. Assume 
that the average clustering coefficient of the control 
group and AMI group could be separated at the thresh-
old (0.1, 0.9). First, the clustering coefficients of each gene 

Fig. 1  Flowchart for study design. DEGs differential expression genes; DCGs differential connectivity genes
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in the Pearson correlation networks under the threshold 
0.1–0.9 of the control group and AMI group were calcu-
lated with step length 0.1. Secondly, the average cluster-
ing coefficients of each gene through threshold 0.4–0.8 
were calculated to compare changes in connectivity 
between the two groups within the validation and discov-
ery cohorts. Finally, if clustering coefficient differences in 
discovery cohort and validation cohort were consistently 
greater than 0.1 between the AMI group and the control 
group, the genes were identified as candidates for DCGs.

To test the reliability of the proposed candidate genes 
across different datasets, we expanded our method to a 
combination cohort, which included all subjects in both 
discovery and validation cohorts. This increased the 
number of subjects, but also introduced some variation 
in the data due to the less categorized subject population. 
The overall network between the control and the AMI 
groups were still separable through threshold 0.4–0.8 
(data not shown). The 27 out of 39 candidate genes that 
still showed clustering coefficient differences greater than 
0.1 in this combination cohort were defined as DCGs.

Gene set enrichment
Gene set enrichment was performed by the STRING 
server. Biological process, reactome pathways, and pro-
tein–protein association networks were generated for 
CCL20 cluster, NR4A3 cluster, and DCGs.

Graphs
Heatmaps of DEGs and DCGs were generated by using 
heatmap.2 function in the gplots package. Networks 
were computed by using igraph::graph.data.frame func-
tion. Layout algorithm of layout.kamada.kawai was used 
for visualizing the overall DEGs networks and the con-
nections for individual genes. Layout algorithm of layout.
circle was used to visualize the gene connections within 
DEGs and DCGs in circle view. Cytoscape network func-
tion was used to generate the clustered DCGs networks.

Results
DEGs identification
In our initial analysis, 126 out of 23,520 genes’ expression 
levels were significantly altered in the AMI group com-
pared to the control group in discovery cohort, defined 
as DEGs, with the majority (79 of 126) demonstrated 
an upregulation feature (Fig.  2A). The validation cohort 
showed a similar expression pattern (Fig. 2B).

Assessment of DEGs’ networks
The overall gene networks of DEGs in the control 
group and the AMI group were distinctly independ-
ent through a large range of thresholds in discovery 
cohort and validation cohort (Fig.  3A). The networks 

in discovery cohort were separable through threshold 
0.1–0.9 and in validation cohort were separable through 
0.1–0.8. The average separable widths of the discovery 
cohort and validation cohort were 0.218 and 0.0518, 
respectively. The validation cohort showed a narrower 
split range possibly due to the variations between two 
cohorts; for instance, the differential sample size, age, 
and co-morbid disorders.

In addition, the gene connections within DEGs’ net-
works in the AMI group were more complex than those 
in the control group in both cohorts (Fig.  3C). In the 
discovery cohort, the number of gene clusters within 
AMI network gradually decreased from 125 to 67, when 
threshold increased from 0.4 to 0.8, while it more sharply 
decreased from 123 to 17 in the control group (Fig. 3B). 
Similarly, the clusters declined with a lower slope in the 
AMI group compared to the control group in validation 
cohort (Fig. 3B).

The data described above suggested that gene networks 
of DEGs were largely and consistently disturbed by AMI 
stimulation as seen in two independent cohorts, verifying 
our findings. Thus, DEGs and DEG-networks were math-
ematically reliable and hereafter could be set as the foun-
dation for in-depth gene interaction data mining.

DCGs identification and connectivity analysis
Beyond DEGs, we identified 27 genes as DCGs whose 
clustering coefficient difference was greater than 0.1 
in the discovery cohort, the validation cohort, and the 
extended combination cohort (Fig. 4A; Additional file 2: 
Table  S2). The sub-networks of DCGs presented obvi-
ous tighter connections in the AMI group compared 
to the control group, in both discovery and validation 
cohorts (Fig. 4C). When threshold increased from 0.4 to 
0.8, the average degree of DCGs progressively decreased 
from 16.0 to 4.30 in the AMI group, while it decreased 
from 7.93 to 0 in the control group in discovery cohort 
(Fig. 4D). Similarly, in the validation cohort, this number 
decreased from 19.9 to 1.41 in the AMI group while from 
3.26 to 0 in the control group (Fig. 4D). In addition to the 
clustering coefficients, gene expression of those DCGs 
showed a steady increase in the AMI group in both the 
discovery and validation cohorts (Fig. 4B).

Therefore, we proposed that the networks’ differen-
tial of all DEGs was largely attributed to the connection 
changes within DCGs. As visualized in kamada-kawai 
layout, the DCGs randomly participated in the DEGs’ 
network and connected to a few genes under a normal 
steady state. However, they appeared to interact with 
more functional genes and shift into central positions of 
the clusters after AMI in both discovery and validation 
cohorts (Fig. 5).
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Two‑dimensional analysis of gene connectivity and gene 
expression
As the power-law indexes of degree distribution in the 
discovery were in the range of natural networks, we 
regarded the discovery cohort as a more precise dataset 
and it was selected for the following analysis. The average 
clustering coefficient and gene expression of DCGs were 
plotted for two-dimensional analysis (Fig.  6A). NR4A3 

and CCL20 presented high levels of clustering coefficient 
and gene expression changes, defined as CChighGeExphigh 
genes. SOCS3, FOSL2, PLIN2 were the genes that were 
found to have high clustering coefficient changes (fold-
change  >  2) with low expression changes, defined as 
CChighGeExplow genes; while IL1R2, NLRP3, ANXA3 and 
AC079305.10 were the genes that were found to have 
high expression changes (fold-change  >  0.4) with low 

Fig. 2  Gene expression profiles of DEGs. 126 genes show significant differential expressions between the AMI and the control groups in the 
discovery cohort (A) and validation cohort (B), defined as DEGs. DEGs differential expression genes
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Fig. 3  Assessment of DEGs’ networks. Networks in the control and AMI groups are independent and separable according to the average clustering 
coefficients of DEGs (A). Number of clusters within DEGs’ networks progressively decline when thresholds increase from 0.1 to 0.9 (B). The AMI group 
has a lower slope decline. The gene networks of DEGs in the AMI group have more complex connection, compared to that in the control group (C). 
Networks are present under threshold 0.5 and 0.7. Darker line represents connections under threshold 0.7; lighter line represents connections under 
threshold 0.5. DEGs differential expression genes
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clustering coefficient changes, defined as CClowGeExphigh 
genes. All information on these genes is shown in Table 1. 
Subgraphs of NR4A3, CCL20, and other DCGs provided 
evidence that supported their increased gene connectiv-
ity after AMI in the discovery cohort (Fig. 6C, Additional 
file 1: Figure S1A, B).

NR4A3 and CCL20 clusters identification
Taking a closer analysis of the subgraphs of individual 
genes, we revealed that DCGs stay “non-activated” in 

the control group (Fig.  7A). Interestingly, even though 
there were several minor clusters in the gene network, 
they appeared to be spontaneously gathering together 
as two major separate clusters after AMI stimulation 
(Fig. 7B, Additional file 1: Figure S1A, B). The highlighted 
CChighGeExphigh genes, NR4A3 or CCL20, located in the 
center spot of each cluster, served as leading-like hub 
genes. CCL20 connected with SKIL, MMP9, ITPRIP, 
ANXA3, GLUL, CXCL16, IL1R2, TMCC3, NLRP3, 
PYGL, RNF144B, BCL6, LILRB2, CLEC4E, FCER1G, and 

Fig. 4  Identification of DCGs. Genes for which the clustering coefficient increased by over 0.1 in the AMI group in both discovery cohort and 
validation cohort, are revealed as DCGs (A). Gene expression profile of DCGs shows a stable increase in the AMI group in both cohorts (B). The 
connections among DCGs in the AMI group are denser (C) and the average degrees of DCGs in AMI group are higher (D) compared to the control 
group in both cohorts. Networks are presented under threshold 0.5 and 0.7. Darker lines represent connections under threshold 0.7; lighter line 
represents connections under threshold 0.5. Degrees are presented as mean  ±  SEM. DCGs differential connectivity genes
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AC079305.10, identified as the CCL20 cluster. NR4A3 
connected with NR4A2, FOSL2, CDKN1A, SOCS3, 
GABARAPL1, ITPRIP, SYTL3, PELI1, MAP3K8, and 
PLIN2, identified as the NR4A3 cluster. While there were 

overlapping genes between clusters, ITPRIP, SKIL and 
MAPK38 were the intermediate genes that connected 
both clusters according to their subgraphs (Additional 
file 1: Figure S1B). The clustering coefficient fold-changes 

Fig. 5  Visualization of DCGs in DEGs’ networks. The networks of DEGs in discovery cohort (A) and in the validation cohort (B) indicate that the DCGs 
participate in distinctive ways in the control group and in the AMI group. DCGs switch to central functional position of networks and participate 
in more intricate connections under AMI situation. Yellow nodes indicate the DCGs. Red gene names indicate the hub genes. DEGs differential 
expression genes; DCGs differential connectivity genes
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of NR4A3 and CCL20 were 15.7 and 10.2, respectively; 
and the gene expression fold-changes were 0.379 and 
0.422, respectively. Gene connections are partly verified 
by the STRING datasets (Additional file 1: Figure S2).

Gene enrichment
Biological process analysis showed that DCGs were 
involved in response to organic substrates, positive regu-
lation of leukocyte activation, immune response, immune 
system process, response to cytokine, and regulation of 
cytokine production. The CCL20 cluster was essential 
to the immune response, immune system process, and 
regulation of localization while the NR4A3 cluster was 
essential to cellular response to corticotropin-releasing 
hormone stimulus, positive regulation of leukocyte acti-
vation, and regulation of apoptotic process (Table 2).

Reactome pathway analysis revealed that DCGs were 
related to the immune system with regard to tasks such 
as signaling by interleukins, namely interleukin-1, inter-
leukin-4 and interleukin-13, the innate immune system, 
and the dectin-2 family. The CCL20 cluster was essential 
to immune system, innate immune system, the dectin-2 
family, and neutrophil degranulation while the NR4A3 
cluster was essential to RNA Polymerase II Transcrip-
tion, Generic Transcription Pathway, and MyD88 cas-
cade initiated on plasma membrane (Table 2).

Discussion
CD146 is a junction-associated adhesion molecule that 
participates in immune and inflammatory pathological 
processes in the initiation and development of vascular 
diseases [2]. CD146-activated leukocytes are recruited 

Fig. 6  Analysis of gene connection and expression of DCGs in discovery cohort. The analysis of clustering coefficient and gene expression revealed 
CCL20 and NR4A3 as hub genes (A). The CCL20 is a chemoattractant while NR4A3 is a nuclear factor receptor (B). Subgraphs of CCL20 and NR4A3 
substantiate their important roles in AMI development (C). Networks are presented under threshold 0.5 and 0.7. Darker lines represent connections 
under threshold 0.7; lighter lines represent connections under threshold 0.5. DCGs differential connectivity genes; CC clustering coefficient; GeExp 
gene expression
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to the inflamed endothelium to induce the expression 
of chemokines and cytokines and, in doing so, progres-
sively destroy the blood vessel barrier. Our study finds 
that following AMI stimulation, in CD146+ human 
blood cells, 126 out of 23,520 genes show significant dif-
ferential expression (P  <  0.0001) and, among those, 27 
genes show consistent connectivity changes and serve 
as DCGs. Unlike DEGs, DCGs are able to not only 
aggregate gene expression, but also encompass gene 
connectivity properties, internally coupling into func-
tional gene clusters—NR4A3 cluster and CCL20 clus-
ter—orchestrating the gene networks’ entire dynamics in 

CD146-associated AMI pathophysiology development. 
Meanwhile, NR4A3 and CCL20 are revealed as hub genes 
since they experienced both significant connectivity and 
expression changes after AMI stimuli. Furthermore, gene 
enrichment analysis shows that the DCGs are involved 
in inflammation–immune response, with CCL20 being 
principal to the immune response and regulation of 
localization; while, the NR4A3 cluster is principal to 
leukocyte activation, apoptotic process, and cellular 
response to corticotropin-releasing hormone stimulus. 
Such findings align with the well-known hypothesis that 

Table 1  Category of DCGs

DCGs differential connectivity genes; CC clustering coefficient; GeExp gene expression

Genes Name Clustering coefficient fold-
change

Gene 
expression 
fold-change

CChighGeExphigh

 NR4A3 Nuclear receptor subfamily 4 group A member 3 15.7 0.422

 CCL20 C–C motif chemokine ligand 20 10.2 0.379

CChighGeExplow

 SOCS3 Suppressor of cytokine signaling 3 5.35 0.085

 PLIN2 Perilipin 2 4.56 0.128

 FOSL2 FOS like 2, AP-1 transcription factor subunit 3.30 0.163

CClowGeExphigh

 ANXA3 Annexin A3 1.58 0.482

 AC079305.10 Unnamed 1.40 0.417

 NLRP3 NLR family pyrin domain containing 3 0.982 0.411

 IL1R2 Interleukin 1 receptor type 2 0.523 0.421

 MMP9 Matrix metallopeptidase 9 0.749 0.377

 NR4A2 Nuclear receptor subfamily 4 group A member 2 0.767 0.375

 PYGL Glycogen phosphorylase L 0.498 0.372

 LILRB2 Leukocyte immunoglobulin like receptor B2 0.432 0.349

 FCER1G Fc fragment of IgE receptor Ig 0.633 0.339

 CXCL16 C–X–C motif chemokine ligand 16 0.263 0.324

 CLEC4E C-type lectin domain family 4 member E 0.153 0.327

CClowGeExplow

 ITPRIP Inositol 1,4,5-trisphosphate receptor interacting protein 2.03 0.158

 SYTL3 Synaptotagmin like 3 1.98 0.209

 MAP3K8 Mitogen-activated protein kinase kinase kinase 8 1.34 0.169

 CDKN1A Cyclin dependent kinase inhibitor 1A 1.41 0.246

 SKIL SKI like proto-oncogene 1.05 0.284

 TMCC3 Transmembrane and coiled-coil domain family 3 1.13 0.295

 BCL6 BCL6 transcription repressor 0.818 0.239

 PELI1 Pellino E3 ubiquitin protein ligase 1 0.489 0.109

 GABARAPL1 GABA type A receptor associated protein like 1 0.353 0.182

 RNF144B Ring finger protein 144B 0.524 0.263

 GLUL Glutamate-ammonia ligase 0.198 0.165
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Fig. 7  CCL20 cluster and NR4A3 cluster formation in early-stage AMI. CCL20 and NR4A3 stay in the peripheral position of DCGs’ network under 
normal state (A). However, they shift to the primary position of DCGs’ network dominating two functional clusters under AMI stimulation (B). DCGs 
differential connectivity genes
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CD146-mediated inflammation plays an important role 
in the pathogenesis of AMI.

DCGs revealed by gene connectivity network
The network structural parameter analysis method is 
applied to weave the gene–gene correlation network. 
We identify DCGs which present steadily elevated con-
nectivity under AMI conditions in both the discovery 
and validation cohorts, and further confirm the upreg-
ulation seen in the combination cohort. As expected, 
the gene expressions of DCGs are increased after AMI, 
but are not distinguishable from DEGs solely by expres-
sion signatures (data not shown). NR4A3 and CCL20 
as Queryhighlight hub genes are also defined as AMI 
biomarkers after pre-filtering the comorbidity-relevant 
genes by the original Topol group [12]. SOCS3 tends to 
be the only “shared” AMI biomarker candidate revealed 
by other groups in which the same GSE66360 dataset 
is included as one of their study objects [27, 28]. Rec-
ognizing the CCL20, NR4A3, and SOCS3 as top DCGs 
substantiate previous outputs and, in turn, the validity 
of our method is enhanced. Therefore, we recommend 
the gene connectivity analysis, along with gene expres-
sion signature, to be used as a powerful and unbiased 
way for researchers to rank the importance of candi-
date DEGs.

The NR4A3 hub gene
NR4A3 belongs to the NR4A orphan nuclear recep-
tor family (with NR4A2 and NR4A1), which plays an 
important role in AMI development. The JM Penninger 

group reports that NR4A3 is the highest-ranking gene 
in circulating human endothelial cells under athero-
sclerosis [37]. Transcription analysis of human left ven-
tricular myocardium shows that NR4A3 upregulates 
during ischemia and reperfusion in normal and chronic 
ischemic myocardium [38]. Similarly, NR4A3 is found 
to be elevated 10  days post-left anterior descending 
artery ligation ischemia surgery in mice [39]. Overex-
pression of NR4A3 significantly reduces infarct size, 
preventing deterioration of left ventricular function 
and repression of neutrophil infiltration in the heart 
of mice after coronary artery ligation and relates to the 
activation of JAK2/STAT3 and the inhibition of STAT3-
dependent NF-κB signaling pathways [40]. Addition-
ally, it has to be pointed out that the NR4A subgroup, 
including NR4A3, is an immediate early response gene 
induced by diverse physiological stimuli, i.e., mechani-
cal agitation, calcium, and inflammation cytokines [41]. 
This reinforces our data that, in very early-stage AMI, 
NR4A3 has a significant 16-fold clustering coefficient 
climb and 42% gene expression increase. Yet, despite 
these characteristics, implications of the nuclear factor 
NR4A3 in CD146+-related myocardial disorders remain 
a mystery.

The CCL20 hub gene
CCL20, a C–C motif chemokine, is a chemoattractant 
for recruiting leukocytes to sites of injury and inflamma-
tion. CCL20 secretion is induced by pro-inflammatory 
chemokines and cytokines, such as CXCL12, IL17, IL1β, 
IL6, and is in part related to JAK/STAT​ pathway signaling 

Table 2  Top six gene enrichment outputs of DCGs and hub gene clusters

DCGs differential connectivity genes

Biological process
CCL20 cluster NR4A3 cluster DCGs

Immune response Cellular response to corticotropin-releasing hormone 
stimulus

Response to organic substance

Immune system process Positive regulation of leukocyte activation Positive regulation of leukocyte activation

Response to organic substance Response to organic substance Immune response

Regulation of cytokine production Cellular response to organic substance Immune system process

Response to cytokine Regulation of apoptotic process Response to cytokine

Regulation of localization Response to cytokine Regulation of cytokine production

Reactome pathway

 Immune system Signaling by interleukins Immune system

 Innate immune system RNA polymerase II transcription Signaling by interleukins

 Signaling by interleukins Generic transcription pathway Interleukin-4 and interleukin-13 signaling

 Cytokine signaling in immune system Cytokine signaling in immune system Innate immune system

 Dectin-2 family Gene expression (transcription) Interleukin-1 signaling

 Neutrophil degranulation MyD88 cascade initiated on plasma membrane Dectin-2 family
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in multiple cell types [42–44]. IL6 and soluble IL6 recep-
tor stimulate STAT3 binding to the CCL20 promotor, and 
IL17 stimulates the phosphorylated NF-κB binding to the 
CCL20 promoter in murine astrocytes, facilitate neuro-
inflammation within the central nervous system [42]. 
In addition, the co-expression of CCL20 receptor CCR6 
and CD146 is a marker of effector memory Th17 cells 
which mediate migration and is thought to be essential 
for inflammation in human psoriasis [8]. Moreover, it is 
reported that CCL20 levels are elevated in the serum of 
clinical patients with ischemic myocardial infarction [45, 
46]. In vitro study shows that CCL20 expression increases 
in CD146+ human mesenchymal stromal cells at the early 
pro-inflammatory phase in fracture healing [47]. Thus, 
we hypothesize that CCL20 binding its receptor CCR6 is 
likely what drives the CD146-mediated vessel inflamma-
tion progress in early AMI phase.

Functional gene clusters
In terms of functional models, DCGs are self-organ-
ized into two clusters, the NR4A3 and CCL20 clusters, 
with 18 genes and 12 genes in each cluster, respectively. 
All genes are directly linked to its hub gene and partly 
linked to adjacent genes. Protein–protein connection 
analyzed by STRING database produces a structure 
that is greatly similar to our network pattern in which 
CCL20 connects with CXCL16, IL1R2, MMP9, NLRP3, 
BCL6 LILRB2, PELI1, CLEC4E, FCER1G, and NR4A3 
connects with NR4A2, FOSL2, RNF144B, CDKN1A, 
SOCS3. A few of the gene–gene correlations within 
clusters are stated in inflammatory diseases. MMP9 
activation correlates with CCL20 expression in astro-
cytes via Notch-1/Akt/NF-κB pathway promoting leu-
kocyte migration across the blood–brain barrier [48]. 
NR4A2 and NR4A3 as orphan nuclear receptors medi-
ate neutrophil number and survival in chronic inflam-
matory signals in multiple hematologic disorders 
[49–51]. FOSL2 acts as an activating protein-1 tran-
scription factor promoting hematopoietic progenitor 
cells transition to macrophages and neutrophils in an 
SOCS3-dependent manner is reported [52]. Neverthe-
less, most of the cluster functions are rarely reported in 
AMI pathogenesis.

Taken together, NR4A3 and CCL20 clusters are novel 
functional modules in CD146+ cell-mediated immuno
inflammatory balance, triggering increased susceptibil-
ity to vascular deterioration and accelerating myocardial 
injury. Meanwhile, we propose that NR4A3 and CCL20 
are promising biomarkers for clinical diagnosis and 
potential therapeutic candidates since they largely impact 

the early AMI development. In-depth studies are neces-
sary for understanding the mechanisms of peripheral 
CD146+ cells in cardiovascular disease.
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