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Abstract 

Background:  Infections by the SARS-CoV-2 virus causing COVID-19 are presently a global emergency. The current 
vaccination effort may reduce the infection rate, but strain variants are emerging under selection pressure. Thus, there 
is an urgent need to find drugs that treat COVID-19 and save human lives. Hence, in this study, we identified phyto-
constituents of an edible vegetable, Bitter melon (Momordica charantia), that affect the SARS-CoV-2 spike protein.

Methods:  Components of Momordica charantia were tested to identify the compounds that bind to the SARS-CoV-2 
spike protein. An MTiOpenScreen web-server was used to perform docking studies. The Lipinski rule was utilized to 
evaluate potential interactions between the drug and other target molecules. PyMol and Schrodinger software were 
used to identify the hydrophilic and hydrophobic interactions. Surface plasmon resonance (SPR) was employed to 
assess the interaction between an extract component (erythrodiol) and the spike protein.

Results:  Our in-silico evaluations showed that phytoconstituents of Momordica charantia have a low binding energy 
range, -5.82 to -5.97 kcal/mol. A docking study revealed two sets of phytoconstituents that bind at the S1 and S2 
domains of SARS-CoV-2. SPR showed that erythrodiol has a strong binding affinity (KD = 1.15 μM) with the S2 spike 
protein of SARS-CoV-2. Overall, docking, ADME properties, and SPR displayed strong interactions between phytocon-
stituents and the active site of the SARS-CoV-2 spike protein.

Conclusion:  This study reveals that phytoconstituents from bitter melon are potential agents to treat SARS-CoV-2 
viral infections due to their binding to spike proteins S1 and S2.
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Background
On January 30, 2020, the World Health Organization 
(WHO) declared infections of severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) a global 
emergency. Originating in Wuhan, China, in December 
2019, the disease (COVID-19) took only four months to 
become a pandemic [1]. It has now spread to more than 

221 countries and territories [2]. With a scarcity of treat-
ment options and lack of vaccines, especially in low-
income countries, COVID-19 has taken 4 million lives 
worldwide. This infection involves dosing with nucleo-
side analogs, such as remdesivir, that inhibit viral repli-
cation by becoming incorporated into RNA [3, 4]; others 
are supporting care, symptoms, experimental measures, 
and isolation. Repurposing of drugs and administering 
vaccines are believed to be promising to deal with this 
pandemic [5]. Given its drastic effects, many countries, 
including the United States, have employed extensive 
resources to find a definitive cure for COVID-19 and 
develop preventive vaccines.
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Scientific knowledge of the virus and COVID-19 are 
accumulating. However, treatment remains a challenge 
for physicians and patients. In a viral infection, the host–
pathogen interaction is a critical step that can be utilized 
to develop antiviral therapy [6]. Further, cancer patients 
are more vulnerable to COVID-19 infections and, due 
to tumor-induced immune suppression, have a high fre-
quency of severe symptoms [7].

Like Middle East respiratory syndrome coronavirus 
(MERS-CoV), SARS-CoV-2 has crossed the species bar-
rier and has reached humans as deadly pneumonia [8]. 
Bats are considered the primary host for SARS-CoV-2, 
with palm civets and raccoon dogs as intermediate 
hosts [9, 10]. The zoonotic transmission of SARS-CoV-2 
between bats and humans remains to be described. 
SARS- CoV, which caused a previous outbreak of severe 
acute respiratory syndrome, and SARS-CoV-2 have the 
same origin, are structurally related with 80% genotypic 
similarity, and have the same binding affinities to human 
angiotensin-converting enzyme 2 (ACE2) [8, 11]. Like 
SARS-CoV, SARS-CoV-2 is a positive-strand virus with 
surface protein subunits S1 and S2 that bind to ACE2. 
In SARS-CoV-2, the spike glycoprotein (S protein) is a 
trimeric protein that is cleaved into S1 and S2 subunits, 
of which S1 facilitates binding to the receptor, ACE2. 
S2 is cleaved by host proteases, mediates membrane 
fusion, and allows the virus to enter into host cells, an 
essential step in infection [12–15]. Structural studies of 
SARS-CoV-2 show that docking of the S protein trimer 
onto the structure of the ACE2 dimer suggests simulta-
neous binding of two S protein trimers [16]. In addition, 
SARS-CoV-2 has a furin cleavage site between the S1 and 
S2 subunits that distinguishes SARS-CoV-2 from other 
SARS-CoVs [8]. Further, scanning electron micrograph 
studies show that monoclonal antibodies specific to the 
SARS-CoV receptor-binding domain (RBD) have no 
appreciable affinity to SARS-CoV-2, suggesting antibody 
cross-reactivity between the two viruses RBDs [17]. Thus, 
there is an urgent need to identify strategies that facilitate 
the development of decoy ligands to neutralize or sup-
press viral infection.

Natural products and their derivatives have been used 
to cure several diseases, including viral infections. A 
library of chemicals is available and needs to be explored 
to develop drugs to treat viral infections [18]. There are 
reports pointing to herbal medications and traditional 
medicine for treating SARS and other viral infections 
[19]. Among the sources of natural remedies, vegetables 
and fruits are rich sources of vitamins, dietary fiber, and 
minerals linked to reducing cardiovascular diseases, can-
cer, and other chronic diseases [20]. Among the vegeta-
bles, Momordica charantia, commonly known as bitter 
melon or bitter gourd, is consumed primarily in China, 

India, and Pakistan. Bitter melon has many traditional 
uses, including treatment of nephropathy, neuropathy, 
gastroparesis, cataracts, and atherosclerosis. They are 
further inhibiting human immunodeficiency virus (HIV) 
from the compounds extracted from bitter melon, such 
as momordica anti-HIV protein (30  kDa, MAP-30) and 
gelonium anti-HIV protein (31  kDa, GAP-31). These 
compounds reduce viral infections in a concentration-
dependent manner by inhibiting the HIV-1 integrase 
protein, remaining harmless to uninfected cells and 
unable to enter healthy cells [21, 22]. Moreover, among 
several compounds extracted from Momordica charan-
tia, erythrodiol displayed potent anti-inflammatory and 
immunomodulatory activities and activity against HIV-1 
reverse transcriptase [23, 24]. Compounds that impede 
viral replication by binding to viral surface proteins could 
also exist, and these need to be identified.

In the present investigation, using molecular modeling 
and docking, we identified a natural compound from a 
bitter melon that could potentially block binding of the 
S1 and S2 proteins of CoV-2 and thereby inhibit SARS-
CoV-2 infections.

Results
Molecular docking of phytoconstituents of bitter melon 
to SARS‑CoV‑2 S (spike protein)
Binding energy (Kcal/mol) data allow comparisons of 
the affinities of various ligands/compounds with their 
corresponding target receptor molecules. Lower bind-
ing energy indicates a higher affinity of the ligand for the 
receptor. The structure of the SARS-CoV-2 spike protein 
is shown in Fig. 1. The phytoconstituents of bitter melon 
(Momordica charantia) displayed low binding ener-
gies in the range of -5.82 to -5.97  kcal/mol and similar 
binding preferences for the S2 domain of the spike pro-
tein (Fig. 2). However, momordicine I, cycloartenol, and 
vicine are bound to the N-terminal of the S1 domain. 
Despite having a similar preference for the S2 and S1 
domains, an additional hydroxyl group on the chromone 
ring of various constituents of bitter melon affected 
its hydrogen-bonding interactions with various resi-
dues of the S2 and S1 domains. As shown in Figs. 2 and 
3, momordicine I interacted with the S1 spike domain 
through PHE374, SER373, SER371, LEU368, PHE338, 
GLY339, PHE342, and ASN343 residues through 
H-bonding and hydrophobic interactions (based on 3D 
views of different -OH groups forming H-bonds). Simi-
larly, momordicine-II interacted with THR286, ASP287, 
ALA288, VAL289, ASP290, LEU293, ASP294, LEU296, 
and SER297; multiflorenol with GLN872, SER876, 
PRO807, LEU806, ILE788, TYR789, LYS790, THR791, 
and PRO793; stigmasterol with ILE788, TYR789, 
LYS790, THR791, PRO807, LEU806, LYS795, GLN872, 
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and SER875; campesterol with GLY1059, HID1058, 
PRO1057, ALA1056, SER1055, ILE870, ASP867, LEU865, 
and PRO863; charine with ILE870, PHE782, THR778, 
VAL729, SER730, MET731, THR732, LYS733, and 
PRO863; cryptoxanthin with PHE856, ASN856, VAL860; 
PRO863, LEU865, THR866, ASP867, and ILE870; 
cycloartenol with VAL367, LEU368, SER371, SER373, 
PHE374, TRP436, ASN437, SER438, and ASN439; eryth-
rodiol with VAL860, PRO863, ASP867, ILE870, THR732, 
SER730, GLY1059, PRO1057, and ALA1056; and vicine 
with LEU368, VAL367, TYR365, ASP364, ALA363, 
VAL362, CYS336, PRO337, and PHE338. Overall, the 
docking study disclosed two distinct sets of ligands that 
bind at the S1 and S2 domains of the SARS-CoV-2 spike 
protein.

Absorption, distribution, metabolism, and excretion 
(ADME) profiling of the phytoconstituents
The Lipinski rule of five [25, 26], which is often used to 
evaluate potential interactions between candidate drugs 
and target molecules, evaluates the propensity of a com-
pound with a notable pharmacological or biological 
activity to be used as a potential drug. The rule serves 
as a filter to screen potential therapeutic agents/drugs 
at the program’s initiation, thereby minimizing the labor 
and cost of exercises involving clinical drug development 

and, to a large extent, preventing late-stage clinical fail-
ures. The rule mainly determines the various molecular 
properties of a compound that are its prime character-
istics to be a potential drug. Lipinski’s rule states that, 
for any compound to be selected as a potential drug, 
it should have (a) a molecular mass < 500 daltons, (b) 
high lipophilicity (expressed as LogP < 5), (c) less than 5 
hydrogen bond donors, (d) less than 10 hydrogen bond 
acceptors, and (e) a molar refractivity between 40–130. 
If a compound of interest possesses more than two of 
the abovementioned criteria, it is likely to be a candidate 
for drug development. The phytochemicals used in this 
study passed all five of Lipinski’s criteria (Table 1). Thus, 
we suggest that these phytochemicals have the potential 
capacity to function effectively as drugs.

Identification of the erythrodiol and SARS‑CoV‑2 spike 
protein S2 interaction
Assessment of the binding kinetics and affinities between 
molecules is a well-established practice in drug develop-
ment. Among advances in technology related to drug and 
receptor interaction, surface plasmon resonance (SPR) 
is a label-free technique that can monitor the real-time 
the association (kon) and dissociation (koff) rate constant) 
molecular interactions. SPR is also used as a tool in a 
wide variety of interactions of biomolecules, including 

Fig. 1  The structure of SARS-CoV-2 spike protein (PBD-ID: 6VYB). A FASTA sequence of the SARS-CoV-2 spike protein chain A, B & C. B The 
molecular structure is showing the surface of SARS-CoV-2 spike protein chain A
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small molecules, nucleic acids, carbohydrates, lipids, 
ligand-receptor kinetics, antibody-antigen interactions, 
enzyme–substrate reactions, and epitope mapping [27–
30]. To confirm the binding affinity between erythrodiol 
and the S2 spike protein, we employed COOH sensor 
chip-based SPR. A typical SPR signal from experimental 
data at various analyte concentrations is shown in Fig. 4. 
Our results showed that the S2 spike protein bound 
to erythrodiol with a high association rate constant, 
ka = 1.93 × 103  M−1S−1; the dissociation rate constant 
was kd = 2.21 × 10–3 S−1. The binding kinetics showed an 
equilibrium dissociation constant (KD) value of 1.15 μM. 
In sum, erythrodiol displayed a strong interaction with 
the SARS-CoV-2 spike S2 protein.

Discussion
COVID-19 outbreaks are threats to human beings across 
the globe. Scientists, clinicians, and researchers are work-
ing to develop effective treatments for the highly conta-
gious coronavirus strains. To date, several compounds 
are being screened for potency and selectivity before 
conducting human trials. In computer-aided drug design, 
particularly for identifying a lead compound [31, 32], 
molecular docking is employed to explore the various 
types of binding interactions of prospective drugs with 
various domains or active sites of the target molecules. 

The interactions include H-bond, π-π, and amide-π inter-
actions. The binding affinity of a ligand with an active site 
has been determined by evaluating its hydrogen-bonding 
pattern [31, 33] and the nature of residues present at the 
active site. The binding energy (Kcal/mol) data allow 
comparisons of the binding affinity of various ligands/
compounds with their corresponding target receptor 
molecules. A lower binding energy indicates a higher 
affinity of the ligand to the receptor. Ligands with high 
affinities can be selected as potential drugs.

Natural compounds derived from plant extracts are 
assets in identifying new drugs. To date, only a few natu-
ral compounds have been identified as therapeutic with 
specificity for cellular and molecular targets. For instance, 
Taxol binds to β-tubulin, which distorts the cytoskel-
eton framework and causes cell-cycle arrest and, sub-
sequently, cell death, has been used for several decades 
to treat various tumors [34]. Furthermore, natural com-
pounds exhibit a myriad of biological activities, including 
antiviral activity. A virtual screening study demonstrates 
that natural compounds can inhibit the binding of SARS-
CoV-2 to ACE2 [35]. Here, we investigated the effect of 
biomolecule extracted from Momordica charantia to 
block the SARS-CoV-2 spike protein, which is necessary 
for SARS-CoV-2 infection. Components from Momor-
dica charantia exhibit immunosuppressive as well as 

Fig. 2  Interaction of phytoconstituents of bitter melon with the domain of spike protein: A Bitter melon (Momordica charantia) plants. B Table 
shows the docking results of hydrogen bonding interaction between phytoconstituents to the active site of SARS-CoV-2 spike protein S1 and S2
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Fig. 3  The molecular docking of SARS-CoV-2 spike protein and bitter melon phytoconstituents: The 3-dimensional ribbon structure of SARS-CoV-2 
spike protein and stick model of bitter melon phytoconstituents showing the binding site of the SARS-CoV-2 spike protein. The LigPlot structure is 
showing the interaction with amino acid residues of SARS-CoV-2 spike protein
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Table 1  ADME Properties of selected bitter melon (Momordica charantia) phytoconstituents against SARS-CoV-2 spike protein
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immunostimulatory activity. The immunosuppressive 
activity of alpha- and beta-momorcharin is due to lym-
phocytotoxicity or to a shift in the kinetic parameters 
of the immune response [36]. In contrast to this, other 
studies have shown that this compound potentiates the 
immune system by increasing natural killer cell num-
bers and cytotoxic activity [37]. At doses of 25, 50, and 
100  mg/kg body weight, an ethanolic extract showed a 
stimulatory effect on both humoral and cellular functions 
in vivo [38]. Furthermore, the immunomodulatory activ-
ity of Momordica charantia fruits and seeds is attributed 
to their property of inhibiting the release of TNF-α and 
nitric oxide (NO) [38].

Erythrodiol, a precursor of pentacyclic triterpenic acids, 
displays activity against HIV-1 reverse transcriptase with 
an IC50 of 5 μM [24]. To characterize the binding inter-
action between erythrodiol and SARS-CoV-2 spike pro-
tein S2, we employed SPR, which has been used to screen 
interactions between potential drugs and their receptors. 
Our results demonstrate that erythrodiol has high selec-
tively (binding affinity 1.15 μM) and inhibitory activity for 
SARS-CoV-2 spike protein S2. This is supported by the 
fact that SPR technology has been used to screen a library 
of 960 compounds for binding to ACE2 [5].

Conclusions
An in-silico approach to finding a natural compound that 
binds and prevents the attachment/internalization of the 
SARS-CoV-2 virus is a therapeutic and preventive option 

for the development of drugs with a time constraint. Bio-
informatics approaches to make a fast and more or less 
accurate predictions for potential drugs or inhibitors. In 
this study, we used multiple bioinformatics tools to iden-
tify potent natural compounds, mainly flavonoids, that 
target and bind to the spike protein of SARS-CoV-2. We 
identified 10 flavonoids capable of binding either to the 
S1 or S2 domain of the SARS-CoV-2 protein. Our find-
ings suggest that compounds from Momordica charantia 
have the potential to inhibit the SARS-CoV-2 spike pro-
tein and should be explored further as agents for prevent-
ing COVID-19.

Materials and methods
Ligands and Receptor
The 3-dimensional structures of phytoconstituents of 
bitter melon (Momordica charantia) were downloaded 
from the PubChem database, and these structures were 
converted to a Protein Data Bank (PDB) format by use of 
chimera software. The structure of SARS-CoV-2 S (spike 
protein) (Fig.  1) was downloaded from the RCSB pro-
tein data bank (PDB-ID: 6VYB) [8]. The structures of the 
ligands are provided in Table 1.

Molecular docking of bitter melon (Momordica charantia) 
phytoconstituents to the SARS‑CoV‑2 spike protein
The structure of SARS-CoV-2 spike protein was used 
for the docking analysis. SARS-CoV-2 spike protein is 
a heterotrimer consisting of chains A, B, and C [8]. For 

Fig. 4  Binding kinetics analysis of SARS-CoV-2 spike protein and the bitter melon phytoconstituent, erythrodiol. Surface plasmon resonance 
(SPR) sensogram showing the binding kinetics for immobilized SARS-CoV-2 spike protein S2 and the bitter melon phytoconstituent, erythrodiol. 
A typical response curve at different analyte concentrations (green, 1 μM; black, 10 μM; red, 20 μM; blue, 50 μM) shows the association 
(ka = 1.93 × 103 M-1S-1) and dissociation (kd = 2.21 × 10 − 3 S-1) rate constant of interaction. A binding affinity between SARS-CoV-2 spike protein 
S2 and erythrodiol showed an equilibrium dissociation constant (KD) value, 1.15 μM. Data sets were analyzed by one-to-one (1:1) binding fit models 
using TraceDrawer evaluation software
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the docking experiment, chain A of the spike protein was 
used. All the docking experiment was performed using 
MTiOpenScreen web server. First, the SARS-CoV-2 spike 
protein file was uploaded with respective bitter melon 
(Momordica charantia) phytoconstituents, and then vir-
tual screening was performed using AutoDock Vina [39], 
with employs a gradient-based conformational search. 
AutoDock defines the search space by a grid box defined 
by the box center coordinates with its dimensions of x, y, 
and z. In AutoDock Vina, the grid resolution is internally 
assigned to 1 Å. We used the number of binding modes 
of 10 and exhaustiveness of 8. The grid dimensions and 
center provided were automatically calculated based on 
the protein residues of the binding site. The scoring of 
the generated docking poses and ranking of the ligands 
were based on the Vina empirical scoring function and 
approximated the kcal/mol’s binding affinity. The hydro-
philic and hydrophobic interactions were determined 
using PyMol and Schrodinger software.

Prediction of ADME analysis
ADME profiling of the phytoconstituents was deter-
mined using online software tools at pH 7 [25]. The 
essential parameters allied with ADME properties, such 
as Lipinski’s rule of five and the drug’s solubility, phar-
macokinetic properties, molar refractivity, and likeliness, 
were deliberated [26]. All calculated values are shown in 
Table 1.

Surface plasmon resonance (SPR) signal detection 
in SARS‑CoV‑2 spike protein and erythrodiol binding
Following our previous publication [40], we investigated 
the binding interaction between SARS-CoV-2 spike 
protein and erythrodiol using an OpenSPR instrument 
(Nicoya Lifescience, ON, Canada). Briefly, for covalent 
coupling, the first carboxyl (COOH) sensor chip was 
loaded into the instrument and pumped with running 
buffer 1X PBS (pH 7.4). Next, the amine coupling kit 
EDC:1-(3-dimethylaminopropyl)-3-ethylcarbodiimide 
hydrochloride; NHS: N-hydroxysuccinimide (EDC/
NHS) was applied as described in the manufacturer’s 
protocol. Further, a ligand, recombinant protein SARS-
CoV-2 spike protein S2 (50  μg/mL, Fisher Scientific, 
PA, USA) was diluted in activation buffer and immobi-
lized on a sensor chip. After 5 min of interaction, it was 
blocked with a blocking buffer supplied by the manu-
facturer (Nicoya Lifescience, ON, Canada), followed by 
the blank buffer. Subsequently, various concentrations 
(1  μM-50  μM) of analyte erythrodiol (Fisher Scientific, 
PA, USA) were injected onto the ligand-immobilized 
sensor chip with a flow rate of 20 μL/min. Further, to 
assess the interaction, the buffer blank generated by the 
flow cell was subtracted, and the data sets were analyzed 

by one-to-one (1:1) binding fit models using Trace 
Drawer software.
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