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a b s t r a c t

During the COVID-19 pandemic, contact tracing apps based on the Bluetooth Low Energy
(BLE) technology found in smartphones have been deployed by multiple countries de-
spite BLE’s debatable performance for determining close contacts among users. Current
solutions estimate proximity based on a single feature: the mean attenuation of the
BLE signal. In this context, a new generation of these apps which better exploits data
from the BLE signal and other sensors available on phones can be fostered. Collected
data can be used to extract multiple features that feed machine learning models which
can potentially improve the accuracy of today’s solutions. In this work, we consider the
use of machine learning models to evaluate different feature sets that can be extracted
from the received BLE signal, and assess the performance gain as more features are
introduced in these models. Since indoor conditions have a strong impact in assessing
the risk of being exposed to the SARS-CoV-2, we analyze the environment (indoor or
outdoor) role in these models, aiming at understanding the need for apps that could
increase proximity accuracy if aware of its environment. Results show that a better
accuracy can be obtained in outdoor locations with respect to indoor ones, and that
indoor proximity estimation can benefit more from the introduction of more features
with respect to the outdoor estimation case. Accuracy can be increased about 10% when
multiple features are considered if the device is aware of its environment, reaching a
performance of up to 83% in indoor spaces and up to 91% in outdoor ones. These results
encourage future contact tracing apps to integrate this awareness not only to better
assess the associated risk of a given environment but also to improve the proximity
accuracy for detecting close contacts.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The COVID-19 pandemic has attracted lot of attention on the use of smartphones for contact tracing [1], which consists
n identifying close contacts that can be at risk of being infected with the virus. While contact tracing existed as a
rocedure in public health much before the pandemic, it has never been automated or partly automated by relying on
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data collected by smartphones rather than people [2]. The widespread use of smartphones worldwide enables a unique
opportunity to implement contact tracing apps as a supplementary means to control the outbreak. Besides the advantage
to systematically collect data related to close contacts, these apps can reduce the spread of the infection by alerting
potential infected individuals much earlier, even before symptoms onset.

Smartphones are enabling a new dimension of the traditional manual contact tracing [2], now bringing unprecedented
racing speed and coverage [3–6]. The concept has been widely implemented throughout the world [7–10]. Both the
ublic and private sectors have engaged in investigating the approach. Notably, Google and Apple have released tracing
ervices in their operating systems, enabling a true global potential of the approach [11]. However, contact tracing apps
ave generated much discussion around their key attributes, including system architecture, data management, privacy,
ecurity, attack vulnerability, and proximity estimation [12–16].
In this work, we consider one of the most speculative attributes which relates to the capability of these apps to

stimate proximity among devices. Most contact tracing apps use Bluetooth Low Energy (BLE) signal attenuation to
stimate proximity [17]. However, due to reflection, obstacles, noise and antenna orientation, the relationship between
ignal attenuation and proximity becomes extremely complex and challenging to model [18].
Current contact tracing apps are unaware of the environment, even if the level of exposure to the virus can be much

igher in closed (indoor) spaces with respect to open (outdoor) ones. Hence, it is expected that more evolved apps could
lso gather auxiliary information to determine the type of location (indoor or outdoor) where a close contact occurred.
urrent phones have several sensors that can be used for this purpose, among them all have an ambient light sensor (used
or adjusting the screen brightness) which can be a good estimator of indoor and outdoor conditions. Besides, awareness
f the environment can potentially be used to better estimate proximity among phones. In open spaces, BLE signals mostly
ollow a free space attenuation model where no obstacles nor reflections are present; however, in closed environments,
he observed attenuation of a BLE signal can be lower than expected due to contributions of reflections from walls and
bstacles nearby [17]. In this context, machine learning models can also be designed and fitted to exploit the specific
eatures of each scenario.

This work explores the use of machine learning models for proximity estimation and focus on the feature selection
rocess from observed BLE signals. These features are extracted from the observed BLE signals, not limiting to only average
r minimum attenuation values but also considering others like standard deviation, range, skewness, etc. Different feature
ounts and selections are evaluated for both indoor and outdoor environments to better understand the dependency of
roximity accuracy on the type of location and its sensitivity to multiple features. Different machine learning models
re fitted with an increasing number of features to better understand not only the most relevant features but also to
etermine their actual number and diversity.
To this end, we designed and developed a custom app targeted to generate and scan BLE beacons, and conducted a

eries of measurements campaigns under different scenarios comprising different environments (i.e., outdoor or indoor)
nd multiple distances between the devices (from 0 to 4 m). Collected data was organized into a variety of datasets to
upport the following contributions of this paper:

• We assess the gain of introducing multiple features for each environment to better understand which one is more
sensitive to feature selection, and the required number of features in each case.

• We analyze the influence of the environment (indoor or outdoor) on proximity estimation accuracy in order to
determine its role in these models, and to identify the need of contact tracing apps that can be context-aware.

The article is structured as follows. In Section 2, we review recent literature related to contact tracing apps, and focus
n recent proposals and its open challenges. Section 3 discusses different models used for proximity estimation, their main
arameters, and the motivation behind using machine learning models to improve accuracy on determining close contacts.
ince these models are fitted with data, we describe the experimental setup used to collect data in diverse environments
n Section 4. Next, in Section 5, we introduce a methodology for selecting features that feed machine learning models.
etailed results to assess the value of feature count in both indoor and outdoor scenarios are presented in Section 6
nd a benchmark is provided in Section 7 to compare our best models’ results with reference models. Finally, Section 8
ummarizes the main findings of this work and provides insights for future works.

. Background

In order to preemptively break the SARS-CoV-2 chain of transmission, contact tracing has been considered and
uccessfully implemented in several countries [2]. Leveraging smartphones could, in principle, enhance the efficiency
f the approach by providing a quicker [3,4] and broader [5,6] contact tracing process. Moreover, individuals situated two
ops away from a confirmed case (so-called ‘‘recursive’’ contact tracing) can be easily tracked via smartphones for an even
roader coverage [19,20], which proves to be of concrete practical value [21]. Automated contact tracing applications have
een reported in Singapore [7], Taiwan [8], India [9], China [10], and many others. In general, the benefits of using contact
racing apps have prevailed over controversial cases where technical, legal, ethical, or privacy issues hindered an adequate
mplementation [13–16].

On April 2020, Apple and Google launched the Privacy-Preserving Contact Tracing Project, with the aim of developing
n interoperable contact tracing technology [11]. Indeed, the combined global reach of the two companies’ operating
2
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systems made this announcement a promising initiative with the potential to succeed at a global scale. Inspired by
the DP-3T [22] and TCN [23] protocols, the companies designed and integrated a specific BLE service (or application
programming interface, API) to enable proximity sensing with user privacy and security as the central element [24]. The
first specification was released as v1.0 [25], currently known as the (Google/Apple) Exposure Notification (GAEN) system,
and currently defined in its v1.7 version of the API [26].

The GAEN specification defines that each device periodically advertises itself using BLE beacons and also scans for other
evices’ presence. During a scan, a device may detect several identical BLE beacons (up to once every 250 ms), each with
heir own attenuation. All observed attenuation values during a scan window are grouped together and represented by
he average (typical) attenuation. This attenuation value is then used to estimate a level of exposure to a specific device
ver a period of up to 30 min. This level of exposure is actually inversely proportional to the attenuation values. The lower
he attenuation, the higher the level of exposure. In practice, attenuation values are accumulated into 4 different buckets,
here each bucket represents a proximity level which could be translated into too-close, close, far, and too-far indications.
ach bucket is assigned with a specific weight in order to compute a weighted duration metric for the exposure period,
here time spent during a lower attenuation condition counts more than that related to higher attenuation. However,
he GAEN specification does not define values for these weights nor for the thresholds of the buckets, which need to be
etup through the provided API interface.
During the pandemic, many countries have gravitated toward contact tracing BLE apps, most of them based on the

AEN specification, as they generally represent a more privacy-preserving option compared to using location-based
echnologies such as GPS. While location is kept private using BLE, user identification might not. In order to estimate
nfection risk, contact tracing applications need to map received beacons to actual users who were diagnosed with COVID-
9. Centralized approaches (i.e., TraceTogether app used in Singapore, or the CovidSafe app used in Australia) rely on a
entralized server under control of the healthcare authority which can associate beacon identifiers to users. On the other
and, decentralized contact tracing (i.e., GAEN, DP-3T) improves privacy further by computing infection risk locally on
ser’s devices; thus, only diagnosed identifiers are distributed by the health authority. In both cases, users can be timely
arned about exposure risk, which can indeed mitigate COVID-19 spread or other airborne transmission diseases.
Unfortunately, there exists too much optimism about the accuracy for determining close contacts using BLE. This

echnology was not originally designed to accurately estimate the distance between cellphones. Current generation
f contact tracing apps rely on either theoretical or statistical models to translate smoothed attenuation values to
istances [27] and determine close contacts. To better characterize the effectiveness of range and time estimation
sing the BLE signal, many researchers around the world are collecting BLE data as well as other phone sensor data
e.g., accelerometer, gyroscope, proximity) between various types of phones with simulated real-world variability [18].

From May to August 2020, the U. S. National Institute of Standards and Technology (NIST), in coordination with the MIT
ACT (Private Automated Contact Tracing) project, organized an online challenge1 that gathered research groups around
he world to design and evaluate solutions for detecting if two people have been too close for too long (TC4TL). The basic
ask of the challenge consisted in estimating the distance and time between two cellphones given a series of attenuation
alues along with other cellphone sensor data. Each data series had a contact label associated, i.e., TC4TL or not-TC4TL.
hese labels were generated using true distance and time from contact events where data were collected. Most authors of
his article participated in the challenge which concluded that a more accurate generation of contact tracing apps could
e developed based on machine learning models instead of parametric models as mostly used today. However, no clear
nsights on how to feed these models were obtained from this effort and remained an open question.

Digital contact tracing has emerged as a promising approach to improve the management of the COVID-19 crisis.
owever, and despite a notable effort of the public and private communities, challenges remain in properly exploiting
LE signals to accurately determine and declare close contacts. Besides quick and broad, accuracy arises as a third

fundamental condition for a fully successful smartphone-based contact tracing. Specifically, accuracy is aimed at reducing
false negatives and positives, which could otherwise undermine the benefits of the technique [28]. Thus, ensuring accurate
contact detection would provide the means to exploit the true potential of contact tracing apps not only with COVID-
19, but with any other future air-borne diseases. In this context, the main goal of this work is to provide insights on
the features that can be used to feed machine learning models for next generation of contact tracing apps. It is worth
mentioning that our work does not aim at finding the best model to estimate proximity but instead identify those features
that can provide best results. To this end, we investigate the selection of features derived from the received BLE signal
and how the awareness of the environment can be valuable information in the process of proximity estimation.

3. Proximity estimation

Distance is the most straightforward target variable used to estimate proximity between two objects. Proximity is
then represented by a numerical variable typically expressed in terms of meters. When two BLE devices communicate,
at a given point in time, one is acting as an advertiser and the other as a listener. The former emits its signal at a certain
power level, sometimes referred to as TxPower , measured in dBm, while the latter observes this signal at an attenuated
power level known as received signal strength indicator (RSSI), also expressed in dBm. Since attenuation increases with the

1 NIST Pilot TC4TL Challenge: https://tc4tlchallenge.nist.gov/.
3
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square of distance (radio waves spread out by the inverse square law), distance D between both devices can be estimated
onsidering the well-known path loss model [29] as follows:

D = 10
TxPower−RSSI

10 n (1)

where n is the path loss exponent that corresponds to the environment, whose value is normally in the range of 2 to
4 (where 2 is for propagation in free space, 4 is for relatively lossy environments), but can also be slightly lower than
2 (1.6–1.8) for indoor environments where reflections can increase the actual received power. The TxPower value can
be carried inside the BLE message payload so that the receiving device can locally calculate the resulting attenuation as
TxPower − RSSI to finally estimate the distance D using Eq. (1).

Since smartphones can have different BLE chipsets and/or antenna configurations, observed RSSI values can also depend
on specific device models. Hence, a more accurate predictor of distance based on RSSI can be obtained by using a power
regression against a known table of distance/RSSI values for a specific receiving device.

D = C1

(
RSSI

TxPower

)C2
+ C3 (2)

where C1, C2 and C3 are constants derived for specific device models. The Android Beacon Library2 implements this scheme
nd provides some use cases for these constants.
However, since RSSI values typically fluctuate in time or are influenced by other factors such obstacles and reflections,

iltering techniques can be used to smooth its values. Bayesian filtering techniques such Kalman, particle and non-
arametric filters have been proposed to mitigate these effects and deliver a better distance estimation [30,31]. These
ethods compute a single feature, the RSSI value, from a list of noisy measurements, to estimate distance. In this work
e consider the impact of using multiple features instead. Even if these features could be extracted from smoothed data
enerated by filtering techniques, we consider raw data instead to compute them as our main goal is to explore as many
ifferent features as possible to better assess their value.
Distance estimation is mainly used in location or tracking applications, which typically assume that BLE messages

re received periodically and that the current distance can also be estimated periodically. Instead, in contact tracing
pps BLE messages are received during short observation windows spaced in time. Typically, these windows last a few
econds (e.g., 4 s) and are spaced in the order of minutes (e.g., 5 min). Since the actual goal of contact tracing apps is to
etermine close contact rather than the exact distance among devices, proximity can instead be treated as a classification
roblem to be addressed for each observation window independently. Thus, we consider proximity estimation as a binary
lassification problem where the goal is to determine whether an encounter between two devices is a close contact or
ot. Given the World Health Organization (WHO) defines a close contact as a distance within almost 2 meters (6 ft) for a
otal of 15 min or more, we focus on determining if the users are within 2 meters or not at a given observation window.
ven if the exact distance of a close contact is still under discussion, proximity estimation can also be used to determine
he duration of an encounter which, together with the environment, seems to be the most relevant input to assess the risk
f exposure to the virus. In other words, we only consider the distance of 2 meters as a reference value for our analysis
s has been proposed in other works [32,33].
Previous works related to BLE have proposed the use of machine learning models for determining social interaction

mong users [34–37]. In this work, we use these models to assess the importance of features that can be extracted from the
bserved RSSI values collected from different experiments carried out in either outdoor or indoor locations. The process
s guided by the goal of exploring the benefit of using multiple features in order to improve the accuracy on determining
lose contacts.

. Experimental setup

In order to assess the performance of each potential model when multiple features are used, an experimental setup
as designed and deployed to carry out experiments. Each experiment consisted of at least two smartphones on the same
nvironment which periodically emitted and scanned BLE beacons during an observation window.
To this end, a custom Android application was developed whose user interface is shown in Fig. 1. This app is available

nline in a public repository,3 and can be freely used by the research community to collect data from smartphones.
esides handling BLE beacons, the app is able to log data from multiple sensors on each device. Collected data was then
xported to specific files that contain metadata describing the experiment. Even if a few apps that can emit and collect BLE
essages exist, they are not oriented to program and run multiple experiments, typically requiring manual operation to
onfigure them and to start and stop observation windows. This strongly limits carrying out large experiment campaigns
o collect enough data and may also introduce undesirable variability in experiments due to manual intervention. Hence,
e designed and developed an app oriented to running multiple experiments without any intervention (experiments are
cheduled and run for specific times and duration).

2 Android beacon library. https://altbeacon.github.io/android-beacon-library/index.html.
3 Contactar public repository: https://lcd-unc.github.io/.
4
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Fig. 1. App User Interface for scheduling an experiment. Left: Setup Experiment Middle: List/Add Experiments Right: Run Experiment.

Each device is assigned a universally unique identifier (UUID) of 16 bytes, which is sent on the payload of each BLE
beacon together with the TxPower value. BLE data are collected on each device by logging the arrival time (timestamp),
the UUID, the TxPower , and the observed RSSI value for each received BLE beacon. As discussed in [38], the TxPower can
e integrated in the estimation model to improve its accuracy since each device can transmit its beacons with a different
ower value. In [38] the TxPower is used as a feature to feed the models, but in this work we use it in combination
ith the observed RSSI values to compute attenuation values, which are then used to feed the models. To this end, for
implicity, all phones used in the experiments were configured to send beacons with the same power level, which was
et to 0 dBm.
All experiments lasted at least 5 min and some where extended up to 20 min to better understand the stationarity of

he collected data. Observation windows of 5 s were used to capture BLE beacons. These windows were also spaced by
efault for another 5 s to represent a 50% duty cycle. In real apps, this duty cycle could be further reduced to save power
onsumption.
Besides the environment (i.e., indoor or outdoor), each experiment was conducted while carefully measuring distances

mong participating devices (ranges from 0 to 4 meters were considered). Experiments were carried out by placing
martphones horizontally on a flat surface. The rationale was to mimic social gatherings, which have been identified
s one of the most critical scenarios for virus infection. Even if other situations could have been considered as having
hones at hand or even inside a bag or a pocket, we focused on social gatherings where devices are left on flat surface
i.e., a table).

Different outdoor and indoor spaces were used to conduct measurement campaigns during several weeks. On each
pace, a balanced number of experiments considering close and far contact distances were carried out. Indoor experiments
ere conducted at different rooms, comprising both houses and apartments from authors. Outdoor spaces consisted of
pen parking lots, parks and large building terraces.
Devices from different vendors and models were first analyzed, in particular two different models from Motorola (G8

lay and One Zoom) and two others from Samsung (S20 and A01). This selection was aimed to better understand potential
ifferences between high-end and lower-end technology. Early experiments demonstrated some differences up to 10 dB
n the received RSSI values (from the same source) on two different phones; however, this difference showed up to be
odel specific rather than vendor dependent. Since most significant difference was seen among the two different Motorola
odels, the final testbed was made up of 2 phone pairs: one Motorola G8 Play pair, and one Motorola One Zoom pair.
A total of 517 experiments were carried out to feed the datasets used in this work. In particular, 248 corresponds to

ndoor and 269 to the outdoor scenarios. The following distances were used on these experiments: 0, 0.5, 0.8, 1.0, 1.5, 1.8,
.0, 3.0 and 4.0 m. All data and scripts used in this work are available on the same public repository where the Android
pp is hosted, and they can be freely used by the research community. As discussed before, distances less than 2 meters
ere used to label data as close contact (302 experiments), and those from 2 meters on, as far contact (215 experiments).

. Feature selection

Data from the aforementioned experiments was used to investigate on the potential sets of features to feed machine
earning models. For each experiment, 15 features were derived from the series of normalized RSSI values. These
eatures were: mean, trimmed mean, median, first and third quartiles, minimum, maximum, standard deviation, range,
5
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Fig. 2. Correlation between all different features.

Table 1
Feature groups.
Group
Position

Group
Dispersion

Group
Shape

Mean (mean) Standard deviation (std) Skewness (skew)
Trimmed mean (tmean) Range (range) Kurtosis (kur)
Median (median) Interquartile range (iqr) Count (cnt)
First quartile (q1) L1 distance

to the mean (dis1)
Third quartile (q3) Mean L1 distance

to the median (dis2)

Minimum (min)
Maximum (max)

interquartile range, L1 distance to the mean ( 1n
∑n

i=1 |xi − x|), L1 distance to the median ( 1n
∑n

i=1 |xi − x̃|), kurtosis,
skewness, and the count of different values describing the series.

Due to the high dependency among many of these explanatory variables, it may not be worth considering all possible
combinations but only a subset of them. Therefore, we performed an analysis by observing the Pearson correlation
between each of these features plotted in Fig. 2 heatmap. From this figure, it can be seen that 3 different groups
can be clearly identified. Strong correlated features are grouped together. As summarized in Table 1, the 3 groups are
the following: measures of position (Group 1), measures of dispersion (Group 2), and measures of shape (Group 3).
Within-groups correlations for groups 1 and 2 are larger than between-groups correlations. For instance, all within-group
correlations for Group 1 are larger than 0.9 (except for corr(min−q3) = 0.88). Features in Group 3 are the less correlated.

Even if all features could be considered to feed models, we limit them up to 3 seeking to preserve the principle of
parsimony with a more simple model with great explanatory predictive power [39]. Also, as some features are very
correlated with each other, including all of them in the model can introduce multicollinearity, which can mask the
importance of certain features.

Once the groups were determined, feature selection was performed by choosing variables from different groups. In
this way we avoided multicollinearity and reduced the number of models to explore. We evaluated combinations of 1, 2
and 3 features in the following way: when using a unique feature (single feature) it was possible to choose any feature
of the position group. When 2 features were used (double feature), it was possible to choose 1 position feature and 1
dispersion feature or 1 position feature and 1 shape feature. When 3 features were evaluated (triple feature) a feature
from each group was selected.

Taking this criterion into account, all combinations of 1, 2 and 3 features were evaluated for the 3 different models:
Logistic Regression (LR), Support Vector Machine (SVM) and Random Forest (RF). The accuracy was considered as the
figure of merit. It can be defined as the percentage of correctly classified instances: (TP + TN)/(TP + TN + FP + FN), where
TP , FN , FP and TN represent the number of true positives, false negatives, false positives and true negatives, respectively.

In order to obtain correct estimates of the models’ accuracy, classes were balanced, outlier values were removed and
each model was trained and evaluated using grid search with cross validation with KFold=5 and with 5 repetitions.

Therefore, each accuracy score (condensed into a box plot) was computed in the validation sets as the average of 25

6
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Table 2
Hyperparameters optimization.

Hyperparameters

LR [{’penalty’ : [’l2’], ’C’ : [1, 5, 10, 100]}]

SVM [{’kernel’ : [’rbf’], ’C’ : [1, 10, 100]}, {’kernel’ : [’poly’], ’degree’ : [2], ’C’ : [1, 10, 100]}]

RF [{’n_estimators’ : [50, 100], ’max_depth’ : [4, 6, 10, 14], ’criterion’ : [’entropy’]}]

Fig. 3. Feature variability for different RSSI samples length.

values. The Python scikit-learn library and the hyperparameters values defined in Table 2 were used in the grid search
with cross validation process. Furthermore, 20% of the dataset was kept out as a test set to evaluate final models’ metrics.

Another important analysis that was taken into account is the number of RSSI samples that are necessary to obtain
features with low variability. Fig. 3 shows 3 features of each group in each row. It can be seen that position features like
mean and max get stabilized with 60 to 80 samples of RSSI values, while dispersion and shape features require between
120 and 140 samples. It is noteworthy that, in stationary conditions, if the time between samples is in the order of 100 ms
to 200 ms, the data collection time required to make a prediction is in the order of 15 to 30 s. If we consider a 50% duty
cycle with the objective of saving cellphone battery energy, it is reasonable to make predictions in less than 1 min.

6. Main results

Proximity estimation was analyzed under 3 different scenarios. The first two of them consider that contact tracing
apps can be aware of its environment for determining whether a contact is a close one or not. In these scenarios, features
are selected to optimize accuracy for a specific dataset related to one specific environment. Hence, selected features
can be different for each environment, which means that these apps can have two different models: one for indoor
estimation, and another for outdoor. Since the app is aware of its location conditions, it chooses the proper model to
estimate proximity. In this way, we can assess whether this awareness is worth to be integrated in these apps to improve
its accuracy.
7
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Indoor–Outdoor (IO) detection using a smartphone has been well-investigated and several techniques proposed
40,41], which primarily leverage lightweight sensing resources, such as light sensors, magnetism sensors, cell tower
ignals and GPS satellites’ visibility. Even if it is out of the scope of this work to propose and investigate how awareness
an be integrated, we have analyzed its feasibility using only the light sensor available on phones. In our experiments, we
ere able to predict the type of environment (either indoor or outdoor) where the experiment was carried out with an
ccuracy of 87%. We claim that this could be further improved by other data potentially available on the phone such as
he amount of GPS satellites seen as proposed in [41], which in general is large in outdoor environments with respect to
ndoor ones. Besides, voting schemes could be implemented if phones advertise in their BLE messages (using a flag field)
he type of environment they estimate based on local data. Hence, we claim that awareness integration is feasible on these
evices. In this paper, we always assume the smartphone can detect the environment properly as our contribution relates
o the analysis of the set of features that can be used for each environment rather than how to detect the environment.

Mixed models (one phone indoor while the other outdoor) are not considered as most likely there is no need to
stimate proximity as these conditions could be associated to a low risk exposure (i.e., far contact). However, it is worth
entioning that devices would need to be aware of its context and send in the beacon payload its environment. Hence,
ach phone could check if both phones belong to the same environment before assessing proximity. If not, then proximity
stimation may be not relevant at all.
Having two different proximity estimation models can be justified if there is a performance gain with respect to the

ase where a single model is used instead. To evaluate this condition, Section 6.3 considers the context-unaware scenario
here apps cannot distinguish between indoor and outdoor conditions.
For each environment, we also assess the gain of introducing multiple features in the models. To this end, we evaluate

he performance gain of adding up to three features, one from each group as discussed in Section 5. Even if this enables
o compare the relative gain of introducing a new feature, it does not provide an absolute comparison to assess its actual
erformance. To this end, we introduce as a benchmark, the accuracy results derived from using 3 different single-feature
odels proposed in the literature.

.1. Indoor aware analysis

First, we analyze proximity estimation in indoor environments. We consider different scenarios defined by the machine
earning model and by the number of considered features (from 1 to 3). For each scenario, the best 5 feature sets, out of
ll possible options, are selected.
Fig. 4 summarizes performance for all 9 different scenarios resulting from the 3 model types and the 3 feature counts.

ccuracy for each feature selection is illustrated using box plots ordered by its mean value from left to right. For all cases,
esults confirm that accuracy improves as more features are fed to the models. However, most significant gain is obtained
hen considering 2 features instead of only one; while a lower gain is obtained when using 3 features with respect to
nly 2. Furthermore, accuracy becomes less feature dependent as the number of features is increased. Indeed, accuracy
ariability is higher for a single feature, but significantly reduced for 3 features.
Among the three model types, LR models show the lowest performance, while RF ones slightly outperform SVMmodels.

ven if we do not aim at selecting one model type, it can be observed that best performing models are less sensitive to
eature count. Indeed, the accuracy gain as the number of features is increased is lower for RF with respect to SVM, and
lso SVM shows a lower gain with respect to LR. Despite these gain differences, we claim that using models with 3 features
eems to be a good design criteria if accuracy needs to be maximized.

.2. Outdoor aware analysis

Next, we consider proximity estimation in outdoor environments. Similar scenarios as for the indoor case are shown
n Fig. 5. If compared to Fig. 4, it becomes evident that proximity estimation in outdoor can be much more accurate
han for indoor spaces. Besides, accuracy seems to be less sensitive to the model types as all of them have quite similar
erformance. However, the same trend as for our previous indoor analysis is still present: RF models slightly outperform
VM, while SVM models perform better than LR. Performance gain as the feature count is increased, has a much lower
mprovement when compared to the indoor case. Indeed, a small but reasonable gain is achieved when considering 2
eatures with respect to only one, but almost negligible gains are obtained for 3 features. Therefore, outdoor models could
ely on 2 features instead of 3 as required for indoor ones. This also provides evidence that the main gain from introducing
ultiple features is when considering proximity estimation in indoor environments, which actually represent the riskiest

ocation for virus exposure.

.3. Context unaware analysis

Finally, we compare accuracy results assuming that a single model is used for proximity estimation in both envi-
onments. To this end, we compute the average accuracy obtained for models where feature selection is optimized for

ach specific environment. Hence, we compare the accuracy of indoor models when feature selection is optimized for

8
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Fig. 4. Indoor accuracy with respect to the number of considered features for different models. Top: Logistic Regression Models Middle: Support
Vector Machine Models Bottom: Random Forest Models.

the indoor environment with respect to the accuracy of these models when optimized for an outdoor environment, and
vice-versa.

Fig. 6 shows accuracy values for each model type (in different colors). If a single feature is used for these models,
then proximity can be estimated using an unaware model since accuracy difference between indoor and outdoor feature
selections is negligible. Indeed, from Figs. 4 and 5, it can be observed that the best features for all models and environments
are almost the same (i.e. from the same group). However, as the feature count is increased, awareness becomes more
relevant as the accuracy for an aware model is much higher than that of an unaware one.

Awareness seems also more relevant for improving proximity estimation in indoor environments. Up to 5% accuracy
increase can be obtained for the RF models, and up to 7%, for SVM ones. Instead, for outdoor models the increase is about
3%.

7. Benchmark analysis

Even if our main goal is to assess the performance gain of introducing multiple features in predictive models, comparing
these models to others can also provide insights of this performance gain. To this end, we provide as a benchmark the
accuracy results derived from using 3 different single-feature models proposed in the literature: the Path Loss Model and
the Android Beacon Library Model that were described in Section 3, and an Alternative Model that was described and used
in a related recent work [42]. Each of their coefficients/parameters were fitted (data adjusted) using the same data that
was used to feed the machine learning models. To perform the fit, the sum of squared errors was minimized using the
9
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V

(
a

Fig. 5. Outdoor accuracy with respect to the number of considered features for different models. Top: Logistic Regression Models Middle: Support
ector Machine Models Bottom: Random Forest Models.

Fig. 6. Accuracy when apps are unaware of the environment. Top: Performance of indoor models when feature selection is aware of the environment
light color) and when is not (dark color) Bottom: Performance of outdoor models when feature selection is aware of the environment (light color)
nd when is not (dark color).
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Table 3
Comparison of accuracy obtained in indoor and outdoor environments with single-feature
reference models: Path Loss Model, Android Beacon Library Model, Alternative Model, and models
that can incorporate more features: Logistic Regression, Support Vector Machine and Random
Forest. Best case for each model is highlighted in bold font.
Model Indoor accuracy Outdoor accuracy

Path Loss Model (data adjusted coefs) 61.7% 80.8%
Android Beacon Lib (Nexus 5 coefs) 48.4% 82.7%
Android Beacon Lib (Moto X Pro coefs) 49.6% 72.7%
Android Beacon Lib (XT1092 coefs) 49.2% 66.9%
Android Beacon Lib (data adjusted coefs) 60.9% 83.5%
Alternative Model (data adjusted coefs) 68.9% 87.7%
Logistic Regression 1 Feature 61.9% 86.8%
Logistic Regression 2 Features 70.5% 87.1%
Logistic Regression 3 Features 71.8% 87.1%
Support Vector Machine 1 Feature 73.4% 86.5%
Support Vector Machine 2 Features 79.6% 88.9%
Support Vector Machine 3 Features 80.7% 88.6%
Random Forest 1 Feature 74.0% 83.4%
Random Forest 2 Features 79.3% 91.4%
Random Forest 3 Features 83.0% 91.5%

Levenberg–Marquardt algorithm. In addition, in the case of the Android Beacon Library Model, the coefficients proposed
for 3 different cellphones were also considered (Nexus 5, Moto X Pro, XT1092).

As shown in Table 3, the Path Loss Model and the Android Beacon Library Model have a lower accuracy than the
ogistic Regression with a single feature, while the Alternative Model performs better and approaches the performance of
he Logistic Regression with 2 features. In general, our models provide a considerably higher accuracy than the 3 reference
odels used as benchmarks and the difference is up to 14% with respect to the best reference model when the Random
orest is used in indoor environments which are the places with the highest risk of infection. Based on this analysis, it is
lear that all considered machine learning models provide greater performance when at least 2 features are used.

. Conclusions

Contact tracing apps can become a valuable means to help control virus spread. Even if its potential has been recognized
orldwide during the COVID-19 pandemic (with an increasing number of deployments in many countries during 2020),

ts value has still to be proven in the field. Besides privacy concerns, its actual accuracy in determining close contacts
s questionable mainly due to the nature of BLE signals. Current apps make use of simple models to estimate proximity,
ith little evidence of its resulting performance. In this work, we provided insights to foster the development of a next
eneration of these apps which could exploit both the awareness of its surrounding environment as well as the use of
ultiple features to feed models based on machine learning. In particular, we focused on the feature selection process
iming to understand which data could be used to improve accuracy.
Results obtained from experimental campaigns demonstrated that increasing the feature count contributes to enhanc-

ng proximity estimation, in particular for indoor environments. Environmental awareness has also been identified as a
otential improvement to these apps, not only to better assess exposure risks but also because a better model can be
sed for each space, increasing the resulting accuracy.
We envision as future work the analysis of other scenarios that can consider greater variability, hence not limiting to

ocial gatherings as mainly assumed in this work. This will enable to validate if our findings can be generalized to other
ituations that are relevant for addressing this pandemic.
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