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Abstract

Background: This research estimates the effects of vulnerability on the spread of COVID-19 cases across U.S.
counties. Vulnerability factors (Socioeconomic Status, Minority Status & Language, Housing type, Transportation,
Household Composition & Disability, Epidemiological Factors, Healthcare system Factors, High-risk Environments,
and Population density) do not only influence an individual’s likelihood of getting infected but also influence the
likelihood of his/her neighbors getting infected. Thus, spatial interactions occurring among individuals are likely to
lead to spillover effects which may cause further virus transmission.

Methods: This research uses the COVID-19 community index (CCVI), which defines communities likely vulnerable to
the impact of the pandemic and captures the multi-dimensionality of vulnerability. The spatial Durbin model was
used to estimate the spillover effects of vulnerability to COVID-19 in U.S. counties, from May 1 to December 15,
2020.

Results: The findings confirm the existence of spatial spillover effects; with indirect effects (from neighboring
counties) dominating the direct effects (from county-own vulnerability level). This not only validates social
distancing as a strategy to contain the spread of the pandemic but also calls for comprehensive and coordinated
approach to fight its effects. By keeping vulnerability factors constant but varying the number of reported infected
cases every 2 weeks, we found that marginal effects of vulnerability vary significantly across counties. This might be
the reflection of both the changing intensity of the pandemic itself but also the lack of consistency in the measures
implemented to combat it.

Conclusion: Overall, the results indicate that high vulnerability in Minority, Epidemiological factors, Healthcare
System Factors, and High-Risk Environments in each county and adjacent counties leads to an increase in COVID-19
confirmed cases.

Keywords: COVID-19, Vulnerability index, Spatial spillovers, Minorities, Pre-existing conditions, Transportation,
Housing, Healthcare

Background
As of May 4, 2021, the Centers for Disease Control and
Prevention (CDC) reported effects of the COVID-19
pandemic included 32,267,958 cases, and 574,679 deaths
in the U.S. [1]. At the same time, there is increasing evi-
dence that rates of infections and mortality from

COVID-19 are not evenly distributed across locations
and socio-economic groups. For example, the percentage
of hospitalizations, intensive care unit admissions, and
deaths were highest among persons aged 70 years or
higher, regardless of underlying conditions [2]. More-
over, the presence of underlying health conditions in-
creases vulnerability to severe complications from
COVID-19 [3]. Furthermore, communities with high
levels of poverty, high concentration of less-educated
adults, and minorities are more likely to face devastating
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effects of the virus [4, 5]. As evidence suggests, lower so-
cioeconomic status, homelessness, poverty, racial and
ethnic disparities [6], and health-related factors [7, 8]
may significantly contribute to the COVID-19 transmis-
sion and incidence rates, thereby accounting for some of
the spatial variation.
These factors do not only influence an individual’s

likelihood of getting infected but do also influence
the likelihood of his/her neighbors getting infected.
Spatial interactions occurring among individuals are
likely to lead to spillover effects which may cause fur-
ther virus transmission. Hence, analyzing the spread
of COVID-19 without accounting for spatial dispar-
ities and spillover effects will lead to biased estimates
and erroneous policy recommendations. This study
aims at estimating the effects of vulnerability factors
on COVID-19 cases while explicitly accounting for
spatial spillover effects.
Although several studies have looked at disparities,

vulnerability, and COVID-19 spread [9–13], none has
examined the related spillover effects. This is particu-
larly important as people travel across counties and
states. McLaren (2020) examined the relationship be-
tween COVID-19 severity and racial composition and
found that minority’s population share is strongly cor-
related with overall COVID-19 deaths [14]; neighbor-
hoods that are predominantly comprised of Black and
Hispanic persons are disproportionately at risk to
COVID-19 infections and mortality [15]. Unemployment
has also been a contributing factor as the share of people
not working and thus not commuting is correlated with
higher death rates [16]. Likewise, age structure matters as
the proportion of people living in nursing homes were
shown to be significant and persistent predictors of num-
ber of deaths [17].
Several indices have been developed to measure vul-

nerability and identify populations at risk of contracting
the virus. The CDC’s Social Vulnerability Index (SVI) in
particular, is widely used in health research and was re-
cently applied to COVID-19 analysis in U.S. counties
([9, 11, 18]). Moreover, spatial models have been used to
capture the dynamics of COVID-19 prevalence in U.S.
counties as they partially explain the geographic dis-
parities in COVID-19 period prevalence [19]. Indeed,
substantial spatial heterogeneity is observed across
U.S. counties, and the association between case
counts of COVID-19 infection and social vulnerability
in U.S. counties allowed the most vulnerable counties
to be identified. These counties had on average higher
incidence rates compared to least vulnerable counties
[9, 20, 21]. Neelon et al. (2021) reported that
COVID-19 disproportionately affected less vulnerable
counties at the outset of the pandemic, before spread-
ing to more vulnerable counties over time [11].

Methods
Social interactions models
Social interaction models study how interaction among
individuals or entities can lead to collective behavior and
aggregate patterns [22]. These models incorporate en-
dogenous effects, contextual effects, and unobserved cor-
relation effects. As pointed out by Lewnard et al. (2020)
in the health literature, symptoms of COVID-19 vary –
some infected people seem to experience no symptoms,
while others suffer from many symptoms which typically
take from two to fourteen days to appear after infection
[23]. The rate at which a susceptible person in a given
subpopulation acquires the infection is determined by
his/her interactions with infectious persons, either in the
home subpopulation or in its neighboring subpopula-
tions [18].
In general, latent persons will transit to asymptomatic

infectious stage with high probability of becoming symp-
tomatic infectious (Fig. 1). Infectious persons with symp-
toms can further be divided between those who can
travel and those who are travel restricted. This paper fo-
cuses on those who can transmit the disease through so-
cial interactions, which further sparks disease spread
across locations.
Infections occur mainly though exposure to respira-

tory droplets when a person is in close contact with
someone who has COVID-19 (six feet of one another)
[24]. Thus, there is potential for spillover effects because
people who are physically near a person with COVID-19
or have direct contact with that person are at greater
risk of infection [25]. Qu et al. (2012) argue that ignor-
ing the fact that spatial or social interactions among in-
dividuals simultaneously determine the outcomes can
cause biased estimates for the effects of exogenous vari-
ables and may also underestimate their influences [26].
Indeed, location i ’s exogenous attributes will not only
influence its own rate of pandemic spread but, due to
spatial interactions, its neighbors’ pandemic rate may
also be influenced, which will in turn affect location i ’s
pandemic level and so on as described in Fig. 2.
Given the presence of spatial interactions, the number

of infections (y) and its determinants (X), we implement
a spatial Durbin model (SDM) of the following form
[27]:

y ¼ ρWyþ XβþWXγ þ ε ð1Þ

where y is an n × 1 vector of observations on the
dependent variable, X is an n × K matrix of observations
on the explanatory variables, ρ is n × 1 vector of spillover
parameter, β and γ are K × 1 vectors of parameters, W is
n × n spatial weight matrix that capture the structure
spatial interactions, and ε~N(0, In) is n × 1 vector of the
error term.

Ulimwengu and Kibonge BMC Public Health         (2021) 21:1765 Page 2 of 11



Where
Y1 = number of infections in location 1 (number of

COVID-19 confirmed cases in county 1).
Y2 = number of infections in location 2 (number of

COVID-19 confirmed cases in county 2).
X1 = determinant of Y1 (explanatory variable in

county 1).
X2 = determinant of Y2 (explanatory variable in

county 2).
ε1 = error term in county 1.
ε2 = error term in county 2.
As pointed out by Lesage et al. (2008), the SDM in-

cludes most models used in applied spatial econometrics
literature: i) if γ=0, eq. (1) becomes a spatial

autoregressive (SAR) model that includes a spatial lag of
infected cases from related counties, but excludes these
counties’ vulnerability factors; ii) if γ = − ρβ, it becomes
a spatial error model (SEM); iii) if γ = 0 and ρ = 0, it is a
non-spatial least-squares model that assumes locations’
dependent variables are independent [28].
For K locations, Lesage and Fisher (2008) show that

eq. (1) can be rewritten as

y ¼
Xk

r¼1
Kr Wð ÞXr þ A Wð Þ−1ε; ð2Þ

where Kr(W) =A(W)−1(Inβr +Wθr) and A(W)−1 = (In
− ρW)−1, and

Fig. 1 Compartmental structure of the epidemic model within each subpopulation, adapted from [18]

Fig. 2 SMD for 2 locations
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Lesage et al. (2011) propose a series of metrics to in-
terpret estimates from eq. (2); direct, indirect, and total
marginal effects of the determinants of y [29]. Direct
marginal effects show how each determinant (Xs) affects
y while indirect effects show how each determinant af-
fects y in neighboring counties through social interac-
tions. The total marginal effects provide a complete
picture of impacts of each variable, considering the spill-
over effects. The expansion of the expected value of eq.
(2) is given by
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for variable i, the expected value of (3) takes the follow-
ing form:

E yið Þ ¼
Xk

r¼1
Kr Wð Þi1x1r þ…þ Kr Wð Þn1xnr
� � ð4Þ

Spatial direct and indirect effects are derived as
follows:

i) Indirect effects: the impact on the expected value of
location i given a change in the explanatory variable
xr in location j is

∂E yið Þ
∂xjr

¼ Kr Wð Þij ð5Þ

where Kr(W)ij represents the i, j th element of matrix
Kr(W).

ii) Direct effects: the impact on the expected value of
location i, given a change in certain variable for the
same location is given by

∂E yið Þ
∂xir

¼ Kr Wð Þii ð6Þ

It follows that for K locations, there will be K × n2

marginal effects which might be burdensome to report
on.

Data
This study uses the COVID-19 Community Vulnerabil-
ity Index (CCVI) developed by the Surgo Foundation
which combines the Social Vulnerability Index (SVI)
with other vulnerability factors specific to COVID-19
(Epidemiological factors, public health system capacity,
and variables capturing high risk environments).
Developed by the CDC, the SVI has been applied in

disaster management to help identify vulnerable people
and areas. It specifies the relative vulnerability of every
U.S. Census tract, and is built by ranking each of the 15
census variables from highest to lowest across all census
tracts in the U.S. The tracts are then grouped into four
themes (Socioeconomic Status, Household Composition
and Disability, Minority Status & Language, and Housing
type & Transportation).
A percentile rank was then calculated for each census

tract and each theme, and percentile values range from
0 to 1, with higher values indicating greater vulnerability.
For each of the four themes, the percentiles are summed
up for the variables comprising each theme. Then the
summed percentiles are ordered for each theme to de-
termine percentile ranking that are specific to each
theme [30].
The CCVI builds on the SVI and identifies communi-

ties that are vulnerable by aggregating dozens of indica-
tors across six themes (citation: Surgo ventures).
The Surgo Foundation1defines “more vulnerable” com-

munities as those that “have a limited ability to mitigate,
treat, and delay transmission of a pandemic disease, and
to reduce its economic and social impacts” [31]. More
recently, a new version of the CCVI was developed and
focuses on 40 variables covering seven core themes to
account for additional factors that make a community or
individual susceptible to the COVID-19 pandemic. This
new and composite CCVI metric ranks each geography
(state, county, or census tract) relative to one another on
a 0–1 scale (0 = least vulnerable, 1 =most vulnerable),
and the data is available in the Surgo Foundation website
[31], Appendix D.

Dependent and independent variables
The dependent variable is the COVID-19 confirmed cu-
mulative cases from May 1 to December 15, 2020. Fif-
teen sub-periods are considered: May 1–May 15, May
16–May 31, June 1–June 15, June 16–June 30, July 1–15,

1The Surgo Foundation collected data from the CDC, Centers for
Medicare, & Medicaid Services (CMS), the Harvard Global Health
Institute, PolicyMap, the U.S Bureau of Labor Statistics (BLS), the U.S.
Census Bureau (USCB), the National Cancer Institute (NCI), the
National Center for HIV, STD and TB Prevention (NCHSTP), Kaiser
Health News, Centers for Medicare & Medicaid Services (CMS),
Census Economic Annual Surveys, the Vera institute for Justice, and
the Association of Public Health Laboratories.
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July 16–31, August 1–15, August 16–31, September 1–
15, September 16–30, October 1–15, October 16–31,
November 1–15, November 16–30, December 1–15. For
each county and each sub-period, the cumulative counts
of confirmed cases by county is divided by the total
population multiplied by 100,000. Data on the number
of people tested for COVID-19 was retrieved from the
CDC COVID Data Tracker (https://covidtracking.com/
about-data/cdc-comparison).
The independent variables are the CCVI for each of

the 7 themes that account for the following types of vul-
nerability: Socioeconomic status, Minority status & Lan-
guage, Transportation, Household composition &
Disability, Epidemiological factors, Healthcare system,
High-risk environment, and Population density. It is a
percentile-based index and ranks each county relative to
one another on a 0–1 scale, with 0 indicating the least
vulnerable, and 1 indicating the most vulnerable.
CCVI Theme 1: Socioeconomic Status is composed of

percentile rank data for the percentage below poverty,
percentage unemployed, per capita income, and percent-
age with no high school diploma [31].
CCVI Theme 2: Minority Status & Language include

percentage of minority and percentage of those who
speaks English “less than well” [31].
CCVI Theme 3: Transportation, Household Compos-

ition & Disability include persons aged 17 or younger,
older than 5 with a disability, single-parent households,
multiunit structures, mobile homes, crowding, no ve-
hicle, group quarters, and access to indoor plumbing
[31].
CCVI Theme 4: Epidemiological factors was selected

based on the CDC guidelines and identify high risk pop-
ulations as elderly adults and individuals with underlying
conditions (respiratory conditions, cardiovascular condi-
tions, obesity, diabetes, immuno-compromised, and per-
sons aged 65 or Older) [31].
CCVI Theme 5: Healthcare System factors provide a

measure of the capacity, strength, accessibility, and pre-
paredness of the healthcare system in the context of
COVID-19. Health System Capacity includes hospital beds
per 100,000, intensive care unit beds per 100,000, and epi-
demiologist per 100,000. Healthcare accessibility includes
the percentage of the population with a primary care
physician. Health system strength is measured by total
health expenditure and quality of care and includes the
Agency for Healthcare Research and Quality’s (AHRQ)
prevention quality indicator (PQI) composite, Health
spending per capita, and Aggregate cost of medical care.
Health system preparedness includes public health emer-
gency preparedness funding available, health labs per
100,000, and emergency services per 100,000 [31].
CCVI Theme 6: High- Risk Environments measure the

percentage of population working or living in

environments with high infection risk. The variables are
long-term care residents per 100,000, prisons population
per 100,000, and the percentage of populations
employed in high-risk industry. The CCVI considers in-
dustries where workers are in enclosed spaces for ex-
tended time, in proximity of or interacting with others,
and/or exposed to diseases. Rural counties for example
were particularly affected by outbreaks due to their em-
ployment dependence on industries with high-risk work
conditions like the meatpacking industry [32].
CCVI Theme 7: Population Density is measured as the

total number of people per unit area and represent an
important factor in health outcomes.
Table 1 presents the descriptive statistics of variables

used for the contiguous U.S. counties.

Results and discussion
Spatial dependence
The Ordinary Least Squares (OLS) model does not allow
for spillovers as it implicitly assumes that outcomes for
different units (counties) are independent of each other.
To assess the presence of spatial interactions between
counties, several statistics are used including the Mor-
an’s Indices which are positive and significant at 1%
suggesting that the COVID-19 confirmed cases ex-
hibit spatial correlation (see Appendix A). The La-
grange Multiplier test (LM) and the Robust Lagrange
Multiplier test (Robust LM) were conducted and con-
firmed the presence of spatial lag or error terms in
the model. As expected, OLS estimates are biased and
inconsistent as the spillover parameters (ρ and γ) in
eq. (1) are significantly different from zero for all
sub-periods.
The SDM was then used to estimate the interaction ef-

fects and exogenous interaction effects. The results from
non-spatial (OLS) and spatial (SDM) specifications
models for all the sub-periods are presented below (see
Appendix C).
Furthermore, the average impacts (direct, indirect, and

total effects) are estimated to determine the magnitude
of the change in confirmed COVID-19 cases resulting
from changes in the selected vulnerability factors. The
direct effects measure the impact of change in vulner-
ability factors in one county on the confirmed COVID-
19 cases within that county, while the indirect effects
(spillover effects), measure the impact of same change
on confirmed COVID-19 cases from the neighboring
county. The total effect is the sum of both direct and in-
direct effects. To compare the change in spillover effects
over time, the average impacts were calculated for fifteen
sub-periods (May 1 – December 15, 2020). As shown in
Appendix C, the increase in some of the vulnerability
factors will increase the possibility of COVID-19 cases in
the target county.
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Overall, the results indicate significant differences be-
tween direct and indirect effects across time and across
vulnerability factors. This suggests that failing to account
for spatial correlation would lead to biased estimates.

Socioeconomic factors
As expected, marginal effects of socioeconomic vulner-
ability on the number of confirmed cases are positive
and significant; except for the last four periods indicat-
ing that COVID-19 confirmed cases increase with higher
socioeconomic vulnerability (Fig. 3 and Appendix C).
Similarly, Nayak found that socioeconomic status was
associated with higher incidence after adjusting for age
and comorbidities, and other studies found that most
vulnerable counties based on socioeconomic status had
greater risk of COVID-19 diagnosis and death [9, 11,
20].
Except for the last four sub-periods, the average direct

effect of socioeconomic vulnerability indicates that a
marginal point increase in vulnerability index is likely to
increase COVID-19 cases by 0.7%. With respect to indir-
ect effects and total effects, the socioeconomic factors
appear to have negative spillover effects on the number

of confirmed cases, especially early in the pandemic
(May 1–June 15) and later (Sept 1 - August 31).

Minorities & Language
The average direct effect suggest that a marginal point
increase in vulnerability index is likely to increase
confirmed cases in a given county by 1.7% (Fig. 4 and
Appendix C).
The indirect effects of Minorities & Languages are

only significant early in the pandemic and later. Add-
itionally, the indirect effects from neighboring counties
in some cases is ten times the magnitude of the direct
impacts, suggesting large spillover effects. On average,
the total impact is positive, with about two third com-
prised of the spillover effects from neighboring counties.
Similar findings indicate that people in the most vulner-
able counties by Minority & Language domain had
greater risks of COVID-19 diagnosis [20], and increased
case counts [19].

Housing type, Transportation, Household Composition &
Disability
The results indicate that Housing & Transportation vul-
nerability exert a positive direct impact on the number

Table 1 Descriptive statistics

Variables Observations Mean Standard deviation Minimum Maximum

Index (0 to 1)

Socioeconomic Status 3142 0.499953 0.288811 0 1

Minority Status & Language 3142 0.499835 0.288924 0 1

Transportation, Household Composition & Disability 3142 0.499962 0.288809 0 1

Epidemiological factors 3142 0.499979 0.288811 0 1

Healthcare System factors 3142 0.499963 0.288809 0 1

High Risk- Environments 3142 0.499931 0.288816 0 1

Population Density 3142 0.500000 0.288813 0 1

Fig. 3 Spatial and non-spatial effects of socioeconomic status on confirmed COVID-19 cases
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of confirmed cases. Counties with higher vulnerability in
Housing & Transportation also experienced higher con-
firmed COVID-19 cases (Fig. 5). Less urban counties
with high-density housing structures, and crowded hous-
ing units had a higher probability of being identified as a
COVID-19 hotspot [2].
However, the indirect effects and total effects from

nearby counties are negative and significant (October 1–
December 15) suggesting a negative relationship be-
tween Housing & Transportation vulnerability and con-
firmed COVID-19 cases. Although counterintuitive,
these findings are similar to those of Karaye et al. (2020)
who pointed out that the direction and magnitude of so-
cial vulnerability varied among U.S. states, and perhaps
could be better explained by local spatial variations be-
tween counties [19].

Epidemiological factors
From August 16 to December 15, the direct effects of
epidemiological factors are negative and significant

whereas indirect effects show positive effects during the
same period (Fig. 6). However, total effects are positive
and significant during the same sub-periods which is
partially consistent with Neelon et al. (2020) who found
that the percentage in fair or poor health tested was
positively associated with more COVID-19 cases; pa-
tients with comorbidities had a higher risk of mortality
than patient without [11, 33].

Healthcare System
Healthcare System vulnerability factors do contribute to
higher number of confirmed cases as shown by the posi-
tive and significant effects in most subperiods except
during the later months of 2020 (Fig. 7). Interestingly,
the indirect and total effects show significant negative
coefficients early in the pandemic (May 1–June 15) and
positive coefficients for the last quarter of 2020 (Septem-
ber 1–November 30).
The U.S health care system experienced tremendous

pressure during the pandemic, and certain measures

Fig. 4 Spatial and non-spatial effects of Minority Status & Language on confirmed COVID-19 cases

Fig. 5 Spatial and non-spatial effects of Housing Type, Transportation, Household Composition & Disability on confirmed COVID-19 cases
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have been implemented to reduce the burden such as
elective procedures, inpatient/outpatient surgery, proce-
dures cancelled [34]. The evolution in treatment protocols
has decreased dependence on ventilators, lowered overall
hospital length of stay, and decreased clinical and
demographic-adjusted mortality rates [35]. These measures
allowed hospitals to increase inpatient bed capacity, equip-
ment, the availability of health care providers, and decrease
the risk of spread of the virus.

High-Risk Environments
High-Risk environment vulnerability has negative and
significant direct effects coefficients early in the pan-
demic and turn positive later. Indirect and total effects
are positive and significant from August to December
(Fig. 8).

Population density
The direct effects are positive and significant only during
a short period (July 1–August 15), and insignificant for
the remaining sub-periods. Along with other studies [36,
37], Kadi et al. (2020) used Algerian data and found a
strong correlation between the population density and

the number of COVID-19 infections [38]. The indirect
and total effects start off positive (May 1–June 15) and
turned negative during the last quarter of 2020 (Fig. 9).
Studies found that population density is not the sole fac-
tor contributing to the adverse COVID-related impacts
in cities [39].

Conclusions
The purpose of this study was to assess the effects of
pre-existing vulnerability factors on COVID-19 con-
firmed cases while accounting for spatial spillover ef-
fects. The findings show that the effect on COVID-19
cases differs widely across vulnerability factors and
across counties. Consistent with previous studies, vul-
nerability factors such as Minorities & Language, Epi-
demiological factors, Transport & Housing, and
Population Density are positively associated with
COVID-19 confirmed cases, suggesting that higher vul-
nerability is associated with higher number of COVID-
19 confirmed cases. The results also indicate that spatial
spillover effects are important determinants of COVID-
19 confirmed cases, and in some cases, these effects are
higher than the direct non-spatial effects. On the other

Fig. 6 Spatial and non-spatial effects of Epidemiological Factors on confirmed COVID-19 cases

Fig. 7 Spatial and non-spatial effects of Healthcare System Factors on confirmed COVID-19 cases
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hand, direct effects estimates are on average significant
and carry the expected positive sign, except for some
subperiods.
A major difference with previous studies is that

COVID-19 confirmed cases are examined at different
points in time (March 1 – December 15) which provides
a better understanding of the rapidly evolving relation-
ship between vulnerability factors and COVID-19 con-
firmed cases. Although Neelon et al. (2020) used
longitudinal data to examine social determinants of
health and disparities in COVID-19 incidence, spatial
spillovers effects were not accounted for [11]. The mag-
nitude and direction of the relationship between vulner-
ability factors and COVID-19 cases vary widely among
U.S. counties. Karaye et al. (2020) found that in the
states of Washington and Oregon, minority status &
Language as well as household composition and dis-
ability were more predictive of COVID-19 cases than
housing and transportation. However, vulnerability to
COVID-19 was better explained by housing and
transportation than by minority status and language

in other states (Gulf Coast states, Southern Arkansas,
and Western Tennessee) [19].
Because of significant spillover effects, the first step in

the fight against the pandemic should be a federal com-
mitment to containing the spread of coronavirus and re-
lated fears. Using Italy’s experience, Pisano et al. (2020)
notes that the most effective time to take strong action
is extremely early, when the threat appears to be small
— or even before there are any cases [40].
If anything, the COVID-19 crisis has taught us that

pandemics precipitate much more than a global health
catastrophe, countries or states cannot fix it alone, and
even though pandemics have been anticipated for many
years, countries were profoundly unprepared [41]. Be-
cause of potential negative spillover effects of individual
actions on nearby communities, there is a need for glo-
bal coalition against COVID-19 pandemic.
Moreover, the more people continue to move from

one location to the other, containing infection would be
challenging and would largely depend on the coordin-
ation across borders. An effective approach to

Fig. 8 Spatial and non-spatial effects of High-Risk Environments factors on confirmed COVID-19 cases

Fig. 9 Spatial and non-spatial effects of Population Density on confirmed COVID-19 cases
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controlling a pandemic such as COVID-19 should in-
volve national/federal coordination.
One limitation of this study is that rural and urban

counties were not differentiated. Indeed, counties with
the highest relative pressure on healthcare system are in
more rural areas of the country and have also relatively
fewer resources nearby to support patients as opposed
to major metropolitan areas.
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